
GSP (Geo-Semantic-Parsing): Geoparsing
and Geotagging with Machine Learning

on Top of Linked Data

Marco Avvenuti1 , Stefano Cresci2(B) , Leonardo Nizzoli1,2,
and Maurizio Tesconi2

1 Department of Information Engineering, University of Pisa, Pisa, Italy
marco.avvenuti@unipi.it

2 Institute for Informatics and Telematics, IIT-CNR, Pisa, Italy
{stefano.cresci,leonardo.nizzoli,maurizio.tesconi}@iit.cnr.it

Abstract. Recently, user-generated content in social media opened up
new alluring possibilities for understanding the geospatial aspects of
many real-world phenomena. Yet, the vast majority of such content lacks
explicit, structured geographic information. Here, we describe the design
and implementation of a novel approach for associating geographic infor-
mation to text documents. GSP exploits powerful machine learning algo-
rithms on top of the rich, interconnected Linked Data in order to over-
come limitations of previous state-of-the-art approaches. In detail, our
technique performs semantic annotation to identify relevant tokens in
the input document, traverses a sub-graph of Linked Data for extract-
ing possible geographic information related to the identified tokens and
optimizes its results by means of a Support Vector Machine classifier.
We compare our results with those of 4 state-of-the-art techniques and
baselines on ground-truth data from 2 evaluation datasets. Our GSP tech-
nique achieves excellent performances, with the best F1 = 0.91, sensibly
outperforming benchmark techniques that achieve F1 ≤ 0.78.
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1 Introduction

The ever-growing amount of user-generated content in social networking and
social media platforms has recently opened up new possibilities for studying
and understanding the geospatial aspects of many real-world phenomena [14].
Yet, the vast majority of user-generated content lacks explicit and structured
geographic information. For instance, only 1% to 4% of all Twitter posts (hence-
forth tweets) come with latitude and longitude coordinates [4]. This lack of
geospatial information drastically limits the usefulness of social data for solv-
ing many important problems [2]. Indeed, having access to geotagged content
could allow journalists to identify and cross-check the location of breaking news,
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by corroborating multiple posts related to the same event [17]. Similarly, geo-
tagged health-related posts could be exploited by epidemiologists to track the
spread and diffusion of epidemics [9]. Furthermore, during mass emergencies, first
responders could leverage crisis maps in order to track the unfolding situation
and identify stricken locations that require prioritized intervention [1,3,17].

Given the importance of geospatial information in user-generated content, a
large body of research has recently tackled the tasks of geoparsing and geotag-
ging [11,14]. However, a number of challenges make these tasks extremely diffi-
cult, thus limiting the performance of current state-of-the-art techniques. Among
such challenges is the problem of toponymic polysemy. Namely, a toponym might
refer to different places according to the context in which it is used [1]. For exam-
ple, the word “Washington” can refer to 30 different cities in the US1. Other
challenges are the variable degree of granularity with which results should be
returned (i.e., country-level, city-level, or even street- and building-level, depend-
ing on the application) [17], the time-evolving nature of geospatial information
(e.g., new places and points-of-interest are continuously created, moved, and
removed, especially in urban environments) [8,14], and the limited amount of
context information typically available for social media content (e.g., tweets are
limited to 280 characters).

Meanwhile, the Semantic Web has recently seen a flourishing of new datasets
published as Linked Data, thus forming a rich and interconnected network of
structured information. Indeed, such data already proved valuable in a number
of practical domains, comprising health, journalism, and tourism [5,17]. A few
preliminary works also investigated the usefulness of Linked Data from a geospa-
tial perspective [12,17]. However, to date no working solution has ever been pro-
posed to perform geoparsing and geotagging of text documents by exploiting
Linked Data.

Contribution. We aim at demonstrating that previous state-of-the-art geop-
arsing and geotagging techniques can be outperformed by leveraging powerful
machine learning algorithms on top of the rich and interconnected Linked Data.
Our proof-of-concept is a context-agnostic Geo-Semantic-Parsing (GSP) tech-
nique for automatically associating geographic coordinates to text documents.
GSP receives a text document as input and returns an enriched document, where
all mentions of places/locations are associated to the corresponding geographic
coordinates. To achieve this goal, in a first step GSP performs semantic annota-
tion with the aim of identifying relevant parts of the input text, and to link them
to pertinent resources (e.g., DBpedia entities) in the Linked Data cloud. Then,
GSP exploits the rich and structured information associated to RDF resources
to identify, via machine learning, geographic resources and to extract the right
geographic coordinates for each resource.

Among the advantages that GSP has over previously proposed solutions are:
(i) it does not require any explicit geographic information (e.g., GPS coordinates,
location information, timezones), contrarily to [9]; (ii) it only exploits text data of
input documents (e.g., it does not require any user information or social network
1 https://en.wikipedia.org/wiki/Washington.
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topology), contrarily to [15]; (iii) it processes only one text document at a time
(e.g., it does not require all tweets from a user’s timeline, or many documents
on a given topic), contrarily to [4]; (iv) it does not require users to specify a
target geographic region but, instead, it geoparses and geotags places all over
the world, contrarily to [17]; (v) by leveraging Linked Data, GSP is capable of
extracting fine-grained, structured geographic information (e.g., street/building
→ city → county/region → country) similarly to [9,13].

2 Related Work

The task of associating geographic information to social media content has been
carried out mainly in 3 fashions: inferring (i) users home location [4,15], (ii) posts
origin location [8,9], and (iii) locations of places mentioned within posts [11,13,
14,17]. In the following, we thoroughly survey relevant approaches to the latter
task, since our work also falls in that category.

The majority of approaches to (iii) are either based on named entity recog-
nition (NER), gazetteer lookup and matching, language models (LM), or on a
combination of them. Among state-of-the-art systems, is the one proposed by
Middleton et al. [17]. It is publicly accessible via the geoparsepy Python pack-
age2 and it is based on a combination of NER and gazetteer matching. Input
texts undergo token expansion and tokenization, before being matched against
an in-memory cache of known location n-gram tokens. The pre-loaded cache of
known locations is stored in a local planet-deployment of the OpenStreetMap’s
gazetteer. Possible locations matches are disambiguated via heuristics and then
ranked by confidence. Highest confidence matches are then selected as the output
of the algorithm. Similarly, also the mordecai system by Halterman [13] is dis-
tributed as the namesake Python package3. The system takes unstructured text
as input and returns structured geographic information. It is based on spaCy ’s
NER to extract toponyms from text. Then, it leverages the Geonames gazetteer
to find the potential coordinates of extracted toponyms. The final coordinates
returned by mordecai are selected via deep learning by a neural network classifier.
In [11] is described an algorithm for extracting fine-grained mentions of places
(i.e., streets, buildings) from text. It is based on lexico-semantic pattern recog-
nition to identify streets and abbreviations, lexico-semantic matching enriched
with gazetteer for spell checking and toponym identification and machine learn-
ing for abbreviation disambiguation and identification of buildings.

Grounding on the assumption that NER and gazetteer approaches to geop-
arsing are intrinsically hard due to the informal nature of social media content,
in [14] is proposed a solution based on LM. The system in [14] does not operate
on top of an explicit toponym dictionary, but instead it is trained on a large cor-
pora of geotagged images complemented with textual tags. Given the set of tags
related to a non-geotagged image, the learned model provides an estimate of the
likelihood that the image refers to a particular location. Although proving very
2 https://pypi.python.org/pypi/geoparsepy.
3 https://github.com/openeventdata/mordecai.

https://pypi.python.org/pypi/geoparsepy
https://github.com/openeventdata/mordecai


20 M. Avvenuti et al.

effective for geotagging images, [14] cannot directly operate on text documents,
differently from our proposed approach.

In addition to the works briefly surveyed in this section, others have tackled
the tasks of geoparsing and geocoding. However, we omitted a specific discussion
of those works since they are largely overlapping with, or outperformed by, those
already surveyed here.

3 The Geo-Semantic-Parsing Approach

We aim at developing a technique that, given a text document Ti, is capable of
extracting the correct set Ci of geographic coordinates related to all and only
the K places mentioned within Ti:

Ti
?−−−−−−−−→ {Ci,1, Ci,2, . . . , Ci,K}

To achieve this goal, our proposed Geo-Semantic-Parsing (GSP) technique
employs machine learning on top of Linked Data, and combines the strengths
of several state-of-the-art approaches introduced in Sect. 2. In detail, we firstly
perform semantic annotation [10] in order to identify possible toponyms within
the input document Ti. Semantic annotation is a process aimed at augmenting
portions of a plain-text (i.e., tokens) with pertinent links to RDF resources (E)
contained in knowledge-bases, such as DBpedia. The result of this process is
an enriched (annotated) text where mentions of knowledge-bases entities in Ti

have been linked to the corresponding RDF resource. This annotation process is
highly informative since it enables the exploitation of the rich information asso-
ciated to the RDF resources Ei,j that have been linked to the j-th annotated
portion of the i-th text. The resulting text enrichment effectively mitigates the
drawbacks related to the limited amount of context. Semantic annotation also
has the side effect of alleviating geoparsing mistakes caused by toponymic poly-
semy. In fact, some tokens of a plain-text can potentially be linked to multiple
knowledge-bases entities. Semantic annotators automatically perform a disam-
biguating operation and only return the most likely reference to a knowledge-base
entity for every annotated token [22]. Notably, this disambiguation operation is
much more accurate than those carried out in previous works, such as those
based on simple heuristics [17].

As a result of semantic annotation, each annotated token represents a rel-
evant portion of Ti, and the entity to which it has been linked can potentially
contain geographic information useful for geoparsing. Thus, after the semantic
annotation step carried out by a given annotator An, we parse the metadata of
each RDF resource Ei,j linked to Ti by An and we extract any geographic infor-
mation it contains. In this way, every RDF resource with geographic information
is automatically associated to a geographic coordinate Ci,j = (lati,j , loni,j):

Ti
semantic−−−−−−−−→

annotation
{Ei,1, Ei,2, . . . , Ei,X}

parsing−−−−−−−−→ {Ci,1, Ci,2, . . . , Ci,Y }, Y ≤ X (GSP)
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(a) GSP. (b) E-GSP.

Fig. 1. The expansion step of E-GSP allows to extend the search for geographic infor-
mation to all the E0, . . . , EN resources of the E sameAs graph, thus exploiting all
knowledge-bases in which E is described.

Given the basic GSP approach defined above, in the following we introduce two
improvements that can be adopted in order to respectively (i) increase the num-
ber of geographic information retrieved (E-GSP) and (ii) optimize the output of
the algorithm, thus limiting prediction errors (GSP-F). These two improvements
can also be combined together, in the so-called E-GSP-F approach.

3.1 E-GSP: Extracting Additional Geographic Information

Given a resource Ei,j linked to a portion of document Ti by An, the basic GSP
approach only exploits metadata of Ei,j in order to extract geographic infor-
mation. However, the links between different semantic resources of the Linked
Data graph open up the possibility to exploit metadata of many more nodes
of the graph. Many different types of links exist between RDF resources, so
as to express a broad range of different relations. Among them, owl:sameAs
relations link the descriptions of equivalent RDF resources within and across
knowledge-bases. Given an RDF resource Ei,j , the graph of all E0

i,j , E1
i,j , . . . , EN

i,j

RDF resources directly or indirectly connected to Ei,j via owl:sameAs links is
called the Ei,j sameAs graph [7]. Thus, in order to extract geographic information
about a resource Ei,j , the Expanded Geo-Semantic-Parsing (E-GSP) technique
also exploits all semantically-equivalent resources E0

i,j , E1
i,j , . . . , EN

i,j reachable by
traversing the Ei,j sameAs graph:

Ti
semantic−−−−−−−−→

annotation
{Ei,1, Ei,2, . . . , Ei,X}

expansion−−−−−−−−→ {{E0
i,1, . . . , EN1

i,1 }, . . . , {E0
i,X , . . . , ENX

i,X }}
parsing−−−−−−−−→ {Ci,1, Ci,2, . . . , Ci,Y }, Y ≤ X (E-GSP)

Figure 1 visually highlights the difference between the GSP and the E-GSP
approaches, by leveraging the formalism of multilayer networks. The previously
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defined expansion step opens up the possibility to leverage the set of resources
{E0

i,j , E1
i,j , . . . , E

Nj

i,j } for extracting geographic information, instead of the sin-
gle resource used in GSP. However, only one geographic coordinate Ci,j must
be associated to each resource Ei,j linked to the input document Ti. Thus, the
E-GSP approach also includes a voting mechanism used to select one coordinate,
when multiple resources of the Ei,j sameAs graph contain geographic informa-
tion. In detail, geographic coordinates are extracted for each resource of the
{E0

i,j , E1
i,j , . . . , E

Nj

i,j } set. Then, a geospatial binning is applied in order to group
and count coordinates that lay near to one another. This process acts pretty
much like a geographic clustering step. The final Ci,j coordinate associated to Ei,j

is the geographic centroid of the biggest cluster. When two or more clusters con-
tain the same number of elements, the winning cluster is picked as the one con-
taining the “best” resource Êi,j (i.e., the most reliable one). In E-GSP, resources
in {E0

i,j , E1
i,j , . . . , E

Nj

i,j } are ranked by a score Sn
i,j , and the “best” resource is the

one achieving the highest score: Êi,j = E n̄
i,j | n̄ = arg maxn Sn

i,j . The score Sn
i,j

quantifying the goodness of a resource can be computed in many ways – e.g.,
by computing its Page Rank value, by employing one of the many ranking algo-
rithms for Linked Data or by computing simple metrics of completeness, such
as the number of predicates that describe the RDF resource.

Notably, the voting mechanism introduced in E-GSP also solves possible mis-
takes caused by spurious wrong metadata in the description of an RDF resource.
For example, extracting the coordinates for the city of Milan (Italy) exclusively
from the corresponding resource in the Italian DBpedia4 results in a mistake,
since such coordinates point (at the time of writing) to a place in Switzerland.
Instead, by aggregating and counting the coordinates found in the sameAs graph
of Milan, it is actually possible to infer the correct coordinates. Considering that
our proposed technique grounds on data contained in collaboratively-curated
knowledge-bases, the ability to automatically correct inconsistencies and mis-
takes represents a much desirable feature [20].

3.2 GSP-F: Filtering Results to Increase Correctness

As with any algorithm, not all results returned by the algorithm are correct. For
our task, this means that some of the Ci,j coordinates found with the GSP app-
roach, might have been erroneously identified. In order to reduce the occurrences
of wrong predictions, many machine learning algorithms include an optimization
phase where candidate results are evaluated before being returned to the users.
In this way, only those results for which the algorithm is reasonably confident
are actually returned. In order to enhance the correctness of the coordinates
identified by our GSP technique, we devised the Geo-Semantic-Parsing with Fil-
tering (GSP-F) approach, in which a binary machine learning classifier is trained
to evaluate candidate results. The classifier takes as input a number of features
and outputs a binary label defining whether a candidate result Ci,j should actu-
ally be returned (Ci,j), or whether it should rather be discarded, being probably
4 http://it.dbpedia.org/resource/Milano.

http://it.dbpedia.org/resource/Milano
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incorrect:

Ti
semantic−−−−−−−−→

annotation
{Ei,1, Ei,2, . . . , Ei,X}

parsing−−−−−−−−→ {Ci,1, Ci,2, . . . , Ci,Y }, Y ≤ X

filtering−−−−−−−−→ {Ci,1, Ci,2, . . . , Ci,Z}, Z ≤ Y (GSP-F)

The features used by the machine learning classifier, its training and its
evaluation are described in detail in Sect. 4.3.

3.3 E-GSP-F: Expanded GSP with Filtering

The E-GSP and the GSP-F techniques previously described can be employed
simultaneously, on top of the basic GSP approach, for optimized performances.
Indeed, the E-GSP and the GSP-F improvements are orthogonal, since the former
aims at increasing the set of candidate results, while the latter reduces actual
results by filtering out those candidate results that are likely to be incorrect.
The E-GSP-F technique resulting from the combination of E-GSP and GSP-F is
defined in the following, and it is described by the pseudo-code in Algorithm1:

Ti
semantic−−−−−−−−→

annotation
{Ei,1, Ei,2, . . . , Ei,X}

expansion−−−−−−−−→ {{E0
i,1, . . . , EN1

i,1 }, . . . , {E0
i,X , . . . , ENX

i,X }}
parsing−−−−−−−−→ {Ci,1, Ci,2, . . . , Ci,Y }, Y ≤ X

filtering−−−−−−−−→ {Ci,1, Ci,2, . . . , Ci,Z}, Z ≤ Y (E-GSP-F)

4 System Implementation

4.1 Semantic Annotation

In recent years, the tasks of semantic annotation, wikification and entity link-
ing have attracted a great interest from scholars of many disciplines [10]. This
large body of work resulted in a number of readily available tools and Web
APIs capable of effectively performing semantic annotation. Thus, when imple-
menting the semantic annotation step of our system, we could rely on a number
of well-known, state-of-the-art, off-the-shelf semantic annotators. In particular,
we developed Python wrappers to DBpedia Spotlight [16], TagMe [10], Dexter
2.0 [21] and Dandelion5. All these systems provide Web applications6,7,8,9 as

5 https://dandelion.eu/.
6 DBpedia Spotlight: http://demo.dbpedia-spotlight.org/.
7 TagMe: https://tagme.d4science.org/tagme/.
8 Dexter 2.0: http://dexter.isti.cnr.it/demo/.
9 Dandelion: https://dandelion.eu/semantic-text/entity-extraction-demo/.

https://dandelion.eu/
http://demo.dbpedia-spotlight.org/
https://tagme.d4science.org/tagme/
http://dexter.isti.cnr.it/demo/
https://dandelion.eu/semantic-text/entity-extraction-demo/
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input : T // tweet to analyze
An // semantic annotator to use

output: C // coordinates extracted from T
1 C = ( );
2 E = semanticAnnotation(An, T );
3 for i = 1 to |E| do
4 aliases = expansion(Ei);
5 allCoords = ( );
6 for n = 1 to |aliases| do
7 coordsi,n = parsing(En

i );
8 if coordsi,n �= null then
9 allCoords.append(coordsi,n);

10 end

11 end
12 bestCoord = votingMechanism(allCoords);
13 C.append(bestCoord);
14 end

15 C = filter(C);
16 return C;

Algorithm 1. E-GSP-P algorithm for associating geographic coordi-
nates C to document T , by exploiting the semantic annotator An.

well as RESTful APIs for programmatic access. Each wrapper is capable of
querying the Web APIs of the related semantic annotator, passing a textual
document and returning URIs of the RDF resources found in the document by
the semantic annotator. Despite the different inner functioning of the 4 sup-
ported semantic annotators, all wrappers expose a common interface to the rest
of our system, so that the choice of the specific annotator to use is transparent
to the users and to the other components of our system. Among the information
returned by our wrappers for each found RDF resource, is the DBpedia URI of
the resource and a confidence score ρ expressing how likely is a specific anno-
tation (token → resource) to be correct. Notably, our proposed technique does
not depend on any specific annotator, and indeed it can be implemented with
any annotator currently available or with a combination of them.

4.2 Extraction of Geographic Information

Supported Knowledge-Bases. All proposed versions of our technique involve
a parsing step, where RDF resources are associated to geographic coordinates,
whenever possible. This step is performed by looking for geographic metadata
among the predicates of RDF resources. Possibly relevant metadata is fetched
in JSON format via SPARQL queries, and then it is parsed. As a result of the
semantic annotation step, in GSP and GSP-F all the resources to parse belong
to DBpedia (either the English DBpedia or a different one, depending on the
language of the input document Ti). However, as a consequence of the expan-
sion step employed in E-GSP and E-GSP-F, the system may be required to parse
other equivalent resources belonging to different knowledge-bases (e.g., YAGO,
Freebase, Geonames, etc.). In order to query a knowledge-base for metadata
of a resource, our system must necessarily know the SPARQL endpoint of the
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knowledge-base. However, it is not possible to know in advance all knowledge-
bases that should be queried, since they depend on the resources linked to
each specific input document, which is known only at runtime. Thus, in order
to be able to parse the highest possible set of RDF resources, we provided
support for all DBpedias deploying their SPARQL endpoint to the standard
URL http://<lang>.dbpedia.org/sparql, as well as to 11 other well-known
knowledge-bases for which we manually specified the SPARQL endpoint by
means of a configuration file. Notably, our set of supported knowledge-bases
leverages the results of previous studies on the distribution of geospatial infor-
mation in Linked Open Data [12]. Furthermore, such set can be easily extended
by adding additional SPARQL endpoints to the configuration file.

Geographic RDF Predicates. In Linked Data there exist many different
RDF predicates designed to store geographic information (e.g., geo:lat and
geo:long, georss:point, etc.). The capability of our system to associate a set
of geographic coordinates to an RDF resource depends on its ability to parse as
many as possible of such RDF predicates. In our implementation, we provided
support for as many as 45 RDF predicates. Since the geographic information
conveyed by the supported predicates can be represented in different formats
(e.g., decimal degrees; degrees, minutes, seconds), we then implemented a set of
simple formulas for converting the different input formats into decimal latitude
and longitude coordinates. As a result, the output of the parsing step is repre-
sented, wherever available, by a geographic coordinate Ci,j = (lati,j , loni,j) for
each provided RDF resource Ei,j , thus adhering to the specifications defined in
Sect. 3.

Voting Mechanism. In the E-GSP and E-GSP-F approaches, multiple coordi-
nates extracted from the sameAs graph of a resource are clustered by a voting
mechanism. In our implementation, such coordinates are approximated to the
third decimal place before being grouped and counted. This equals to perform-
ing a geographic binning, with bin width �0.1 km (�0.06 miles) at the equator.
Then, the scoring metric used to resolve draws between geographic clusters con-
taining the same number of resources, simply quantifies the number of predi-
cates of each resource. In other words, in our implementation RDF resources
described by a higher number of predicates are considered more reliable than
those described by fewer predicates.

4.3 Machine Learning Filtering

The GSP-F and the E-GSP-F approaches involve a filtering step, where candidate
results Ci,j are evaluated before being returned to the users. Candidate results
that are likely to be incorrect (Ci,j) are discarded (pruned), while those for which
the system is confident (Ci,j) are outputted. Within this context, a candidate
result is represented by a resource Ei,j (associated to a geographic coordinate)
that has been linked to a portion of the input document Ti by a semantic anno-
tator An. This filtering operation is performed by a binary machine learning clas-
sifier, implemented with a Support Vector Machine (SVM). Once trained, the
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SVM classifier takes as input a set of features describing one candidate result at
a time, and it outputs the predicted class label for that candidate result (either
Ci,j or Ci,j).

Features. Features describing candidate results are divided into 3 classes,
according to the information they convey. The first class of features describes
the textual properties of the input document Ti. We rely on a state-of-the-art
natural language processing tool for Italian and English texts [6] for the analyses
of input documents. Given a token (or a sequence of tokens) linked to a resource
Ei,j , we compute categorical features as its (i) coarse- and (ii) fine-grained part-
of-speech (POS) tag, (iii) its morphosyntactic tag, (iv) its type of named entity
(if any) and (v) a binary feature representing whether the token begins with a
capital letter. Our textual features capture linguistic patterns correlated to the
use of toponyms in texts and include information used by state-of-the-art NER
approaches [11,13,17]. The second class of features evaluates the link established
by the semantic annotator An between the token and the resource Ei,j . Features
of this class are (i) the ρ confidence of An for the link and the (ii) absolute
and (iii) percentage edit distance between the token and the rdfs:label of Ei,j .
Notably, the confidence feature that we exploit is similar to that of [17]. The
third class of features describes the properties of the Ei,j resource. Specifically,
we define a (i) binary and an (ii) integer feature for representing if, and how
many times, the token appears in the ontology:abstract of Ei,j . Then, we
devised 3 categorical features for modeling the structural properties of Ei,j as
(iii) the RDF ontologies/vocabularies of the predicates of Ei,j (e.g., OWL, RDFS,
FOAF, etc.), (iv) its RDF predicates and (v) its rdf:types. Indeed, structural
properties of Linked Data have already proved useful for a number of ranking,
clustering, and classification tasks [18,19].

Training Pipeline. The initial data for training the SVM classifier is repre-
sented by �7, 000 manually-annotated candidate results. This dataset is almost
balanced with 57% correct geo-predictions (Ci,j) and 43% incorrect ones (Ci,j).
The training pipeline begins with a stratified sampling of the whole dataset into
a training (80%) and a testing (20%) dataset. Then, preprocessing steps perform
imputation of missing feature values and scaling, in order to improve results of
the learning algorithm. Since some of our categorical features have high dimen-
sionality (e.g., we have over 6,800 different rdf:types), we perform an L1-based
feature selection step, which resulted in a reduced set of only 60 features. Next
in the pipeline, a hyperparameters tuning process picks the best settings for
the SVM classifier (RBF kernel, C = 100, gamma = 0.001), via cross-validation
over the training dataset. We then learn our SVM models on the training dataset
and evaluate their performances in classifying candidate results of the testing
dataset. In detail, we learn 4 different models, one for each of the supported
semantic annotators, plus one global model using all available training data.

Classification Results. Table 1 reports the performances of the SVM classifiers
against testing data. In order to better evaluate the difficulty of the task and the
results of our SVM classifiers, we also compared results with those of 2 simple
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Table 1. Evaluation of the filtering step of GSP-F and E-GSP-F.

Evaluation metrics

Model Precision Recall Specificity Accuracy F1 MCC

Baselines

Majority class 0.569 1.000 0.000 0.569 0.725 –

Random classifier 0.475 0.499 0.512 0.506 0.487 0.012

SVM classifiers

TagMe 0.916 0.932 0.928 0.930 0.924 0.858

DBpedia Spotlight 0.968 0.949 0.971 0.960 0.959 0.921

Dexter 2.0 0.966 0.986 0.974 0.979 0.976 0.958

Dandelion 0.903 0.940 0.911 0.924 0.921 0.849

Global 0.963 0.980 0.967 0.973 0.971 0.946

baseline classifiers that respectively (i) always predict the majority class and (ii)
output random predictions. As shown, our best classifier achieves an excellent
F1 = 0.976, way higher than the baselines and comparable with the other SVM
classifiers. Since the global classifier achieved only slightly lower results with
respect to the best one, in our system implementation we relied on it instead of
using one different classifier for every semantic annotator.

5 Evaluation

Our evaluation metrics are those typically used in previous machine learning and
entity linking tasks [14]. Specifically, we consider as a correct match a prediction
by an algorithm/technique when the predicted coordinate falls within a certain
distance threshold (e.g., a few kilometers/miles) from the ground-truth coor-
dinate. This assumption is the same already made in recent machine learning
challenges, such as the MediaEval 2016 Placing Task10, where participants were
asked to estimate the locations of multimedia items (i.e., photos or videos).

5.1 Datasets

Although capable of working with text documents of any kind, we benchmarked
our proposed GSP technique with social media data, namely for geoparsing and
geotagging tweets. Indeed, social media represent an environment where such
techniques are most needed [4]. In addition, tweets are short documents filled
with jargon and colloquial expressions, thus representing a challenging proving
ground for our technique.

The first evaluation dataset (henceforth labeled ENG-NEEL) is composed of
9,289 English tweets. It is the official dataset of the Named Entity rEcognition
10 http://www.multimediaeval.org/mediaeval2016/.

http://www.multimediaeval.org/mediaeval2016/
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and Linking (NEEL 2016 ) challenge11. The dataset comprises tweets extracted
from a collection of over 18 million documents including event-annotated tweets
covering multiple noteworthy events from 2011 and 2013, and tweets extracted
from Twitter’s Firehose in 2014 and 2015 via a selection of hashtags. Annotated
mentions of places/locations in tweets are provided by NEEL 2016 organizers.

The second evaluation dataset (henceforth labeled ITA-DSTR) is composed
of 1,807 Italian tweets that we collected in the aftermath of 2 major natural
disasters in Italy, respectively the Emilia 2012 earthquake and the Sardinia 2013
flood. Such dataset has recently been used in a number of works related to crisis
mapping and emergency management [1]. Mentions of places/locations in the
dataset have been manually annotated by 2 graduate students.

The distance threshold for comparing the obtained results with the ground-
truth was set equal to 50 Km for the ENG-NEEL dataset and to 20 Km for the
ITA-DSTR dataset.

5.2 Benchmarks

To thoroughly evaluate our proposed technique, we compared our results to those
of different state-of-the-art geoparsing and geotagging techniques, namely the
geoparsing technique by Middleton et al. [17] and the geoparsing and geocod-
ing technique by Halterman [13]. Such benchmark techniques are thoroughly
described in Sect. 2. Since the technique by Middleton et al. only outputs location
tokens extracted from the input text, we obtained coordinates for the tokens via
queries to OpenStreetMap’s APIs. Instead, the technique by Halterman already
outputs coordinates of found locations. Thus, no further operations are needed
in order to include [13] in our evaluation.

In addition to [13,17], we also compared our results to those of 2 baselines.
The “geoparser” baseline leverages the geopy Python package12 and employs
the ArcGIS service to extract coordinates from tweets. The “NER + geocoder”
baseline performs NER and then geocodes location NEs via queries to the Web
APIs of Google Maps. The NER step is performed using the well-known polyglot
natural language processing pipeline13.

5.3 Results

Table 2 reports geoparsing results for all our techniques and all benchmarks, on
the two evaluation datasets. As shown, the simplest of our proposed techniques
(GSP) already achieves results that are in line with those of the best benchmarks.
In fact, it achieves the second best F1 on the ITA-DSTR dataset and the best F1
on the ENG-NEEL dataset, when compared to the benchmarks. Results also show
the effectiveness of our 2 improvements E-GSP and GSP-F. As hypothesized in
Sect. 3, the expansion step of E-GSP increases the number of retrieved coordinates

11 http://microposts2016.seas.upenn.edu/challenge.html.
12 https://geopy.readthedocs.io/.
13 https://polyglot.readthedocs.io/.

http://microposts2016.seas.upenn.edu/challenge.html
https://geopy.readthedocs.io/
https://polyglot.readthedocs.io/
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Table 2. Evaluation results of GSP-derived techniques and comparison with state-of-
the-art techniques and baselines.

Technique ENG-NEEL ITA-DSTR

Precision Recall Accuracy F1 Precision Recall Accuracy F1

Benchmarks

Geoparser 0.030 0.139 0.025 0.050 0.242 0.453 0.182 0.306

NER + geocoder 0.331 0.297 0.186 0.313 0.879 0.698 0.636 0.777

Halterman (mordecai) [13] 0.291 0.288 0.169 0.289 0.625 0.338 0.282 0.439

Middleton (geoparsepy) [17] 0.173 0.373 0.134 0.236 0.567 0.754 0.478 0.647

Our contributions

GSP 0.335 0.403 0.217 0.356 0.686 0.664 0.506 0.668

E-GSP 0.398 0.574 0.295 0.455 0.671 0.769 0.559 0.693

GSP-F 0.655 0.449 0.363 0.531 0.894 0.692 0.640 0.779

E-GSP-F 0.888 0.634 0.588 0.738 0.977 0.813 0.798 0.885

Table 3. Detailed results of the E-GSP-F technique, when using different annotators
for the semantic annotation step.

Technique Annotator ENG-NEEL ITA-DSTR

Precision Recall Accuracy F1 Precision Recall Accuracy F1

E-GSP-F TagMe 0.905 0.673 0.629 0.772 0.967 0.853 0.831 0.906

DBpedia

Spotlight

0.888 0.697 0.640 0.781 0.983 0.835 0.824 0.903

Dexter 2.0 0.860 0.513 0.474 0.643 0.992 0.716 0.711 0.829

Dandelion 0.901 0.652 0.608 0.756 0.965 0.847 0.824 0.902

allowing to boost Recall from 0.664 to 0.769 on ITA-DSTR and from 0.403 to
0.574 on ENG-NEEL, an average improvement of +37%. Similarly, the machine
learning filtering step in GSP-F boosts Precision from 0.686 to 0.894 on ITA-DSTR
and from 0.335 to 0.655 on ENG-NEEL, with an average improvement of +63%.
As a result, the E-GSP-F technique, combining both E-GSP and GSP-F, largely
outperforms all other techniques and benchmarks on both datasets. Indeed on
ITA-DSTR, it achieves F1 = 0.885 versus F1 = 0.777 of the best benchmark.
The performance gap is even more pronounced on the much more challenging
ENG-NEEL dataset, where E-GSP-F achieves F1 = 0.738 versus F1 = 0.313.
Furthermore, detailed results of E-GSP-F reported in Table 3 also show that our
performances are consistent when using different semantic annotators, with no
annotator clearly outperforming the others. The best results are obtained with
DBpedia Spotlight on the ENG-NEEL dataset and with TagMe on ITA-DSTR,
respectively with F1 = 0.781 and F1 = 0.906. Instead, Dexter 2.0 achieves
slightly worse results than all other annotators on both datasets, mainly because
of the lower Recall. As such, it is not recommended to use an implementation of
our techniques solely based on Dexter 2.0.

In addition to an evaluation of the correctness of our geo-predictions, we also
evaluated the geospatial granularity of our results. Table 4 shows the different
types of places/locations extracted from tweets by E-GSP-F. As seen, E-GSP-F
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Table 4. Types of places extracted
with E-GSP-F. Place types are
obtained from rdf:types.

Place types �

dbo:Airport

dbo:ArchitecturalStructure

dbo:Building

dbo:Castle

dbo:City

dbo:Country

dbo:Island

dbo:Mountain

dbo:Municipality

dbo:NaturalPlace

dbo:RailwayStation

dbo:Region

dbo:ReligiousBuilding

dbo:River

dbo:Settlement

dbo:Station

� dbo: PREFIX is http://dbpedia.
org/ontology/

Fig. 2. Number of geographic coordinates
extracted from the different knowledge-
bases by E-GSP-F.

geoparsed both coarse- (e.g., countries, regions) and fine-grained (e.g., buildings)
locations, depending on the content of tweets. This result seems to favor the
application of our proposed technique in a broad range of different situations.
Finally, in Fig. 2 we reported the top 5 knowledge-bases from which E-GSP-F
extracted geographic coordinates. As shown in figure, the expansion step of
E-GSP-F allowed to retrieve geographic information from multiple knowledge-
bases, and indeed Geonames proved to be the richest source of geographic infor-
mation, in our experiments.

6 Conclusions

We presented the novel Geo-Semantic-Parsing (GSP) technique for automatically
associating geographic coordinates to text documents. Furthermore, we improved
the basic GSP approach by introducing the Expanded GSP (E-GSP) and GSP with
Filtering (GSP-F), which we also combined together in the so-called E-GSP-F. The
excellent results obtained by E-GSP-F on 2 real-world evaluation datasets (best
F1 = 0.91) demonstrated that previous state-of-the-art approaches can be out-
performed by leveraging powerful machine learning algorithms on top of Linked
Data. In particular, semantic annotation proved to be very effective in overcom-
ing the drawbacks related to the language polysemy and the limited amount of
context, being able to brilliantly perform disambiguation and enrichment tasks

http://dbpedia.org/ontology/
http://dbpedia.org/ontology/


GSP: Geoparsing and Geotagging with Machine Learning and Linked Data 31

by leveraging on the Linked Data content and structural properties. Our results
also showed that our technique is capable of extracting structured geographic
information with variable degrees of granularity, ranging from country-level to
building-level.

Future works along this direction should be focused on further improving
the expansion step in E-GSP. Indeed, current results of E-GSP-F are mainly
constrained by the moderate Recall. This calls for additional efforts aimed at
increasing the set of geographic information extracted from RDF resources.
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