
Continuously Non-malleable Codes
with Split-State Refresh

Antonio Faonio1(B), Jesper Buus Nielsen2, Mark Simkin2,
and Daniele Venturi3

1 IMDEA Software Institute, Madrid, Spain
antonio.faonio@imdea.org

2 Aarhus University, Aarhus, Denmark
3 Sapienza University of Rome, Rome, Italy

Abstract. Non-malleable codes for the split-state model allow to encode
a message into two parts, such that arbitrary independent tampering on
each part, and subsequent decoding of the corresponding modified code-
word, yields either the same as the original message, or a completely
unrelated value. Continuously non-malleable codes further allow to tol-
erate an unbounded (polynomial) number of tampering attempts, until
a decoding error happens. The drawback is that, after an error hap-
pens, the system must self-destruct and stop working, otherwise generic
attacks become possible.

In this paper we propose a solution to this limitation, by leveraging a
split-state refreshing procedure. Namely, whenever a decoding error hap-
pens, the two parts of an encoding can be locally refreshed (i.e., without
any interaction), which allows to avoid the self-destruct mechanism. An
additional feature of our security model is that it captures directly secu-
rity against continual leakage attacks. We give an abstract framework for
building such codes in the common reference string model, and provide a
concrete instantiation based on the external Diffie-Hellman assumption.

Finally, we explore applications in which our notion turns out to
be essential. The first application is a signature scheme tolerating an
arbitrary polynomial number of split-state tampering attempts, with-
out requiring a self-destruct capability, and in a model where refresh-
ing of the memory happens only after an invalid output is produced.
This circumvents an impossibility result from a recent work by Fuijisaki
and Xagawa (Asiacrypt 2016). The second application is a compiler for
tamper-resilient RAM programs. In comparison to other tamper-resilient
compilers, ours has several advantages, among which the fact that, for
the first time, it does not rely on the self-destruct feature.

Keywords: Non-malleable codes · Tamper-resilient cryptography

1 Introduction

Tampering attacks are subtle attacks that undermine the security of crypto-
graphic implementations by exploiting physical phenomena that allow to mod-
ify the underlying secrets. Indeed, a long line of works (see, e.g., [3,4,16,18])
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 121–139, 2018.
https://doi.org/10.1007/978-3-319-93387-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_7&domain=pdf


122 A. Faonio et al.

has established that black-box interaction with a tampered implementation can
potentially expose the entire content of the secret memory. Given this state of
affairs, protecting cryptographic schemes against tampering attacks has become
an important goal for modern cryptographers.

An elegant solution to the threat of tampering attacks against the mem-
ory comes from the notion of non-malleable codes (NMCs), put forward by
Dziembowski et al. [10]. Intuitively, a non-malleable encoding (Encode,Decode)
allows to encode a value M into a codeword C ←$ Encode(M), with the guaran-
tee that a modified codeword ˜C = f(C) w.r.t. a tampering function f ∈ F , when
decoded, yields either M itself, or a completely unrelated value. An important
parameter for characterizing the security guarantee offered by NMCs is the class
of modifications F that are supported by the scheme. Since non-malleability
is impossible to obtain for arbitrary (albeit efficient) modifications,1 research
on NMCs has focused on constructing such schemes in somewhat restricted, yet
interesting, models. One such model that has been the focus of intensive research
(see, e.g., [1,2,12,17]) is the split-state model, where the codeword C consists
of two parts (C0, C1) that can be modified independently (yet arbitrarily). This
setting is also the focus of this paper.

Unfortunately, standard NMCs protect only against a single tampering
attack,2 To overcome this limitation, Faust et al. [12] introduced continuously
non-malleable codes (CNMCs for short), where the attacker can tamper for an
unbounded (polynomial) number of times with the codeword, until a decoding
error happens which triggers the self-destruction of the device. As argued in [12],
the self-destruct capability is necessary, as each decoding error might be used to
signal one bit of information about the target codeword.

Another desirable feature of non-malleable codes is their ability to addition-
ally tolerate leakage attacks, by which the adversary can obtain partial infor-
mation on the codeword while performing a tampering attack. Note that in the
split-state model this means that the adversary can leak independently from
the two parts C0 and C1. All previous constructions of leakage-resilient NMCs
either achieve security in the so-called bounded-leakage model [1,12,17], where
the total amount of leakage (from each part) is upper-bounded by a value � that is
a parameter of the scheme, or only satisfy non-continuous non-malleability [11].

Our Contributions. We introduce a new form of CNMCs (dubbed R-CNMCs)
that include a split-state algorithm for refreshing a valid codeword. The refresh
procedure is invoked either after a decoding error happens, or in order to amplify
resilience to leakage, and takes place directly on the memory and without the

1 As it can be seen by considering the tampering function that first decodes the code-
word, flips one bit of the message, and then encodes the result.

2 When using NMCs to obtain security against memory tampering, one can still obtain
security against continuous attacks by enforcing a re-encoding of the secret key after
each invocation; however, this comes with several disadvantages [11], among which
the fact that the encoding process is considerably more complex than the decoding
process.



Continuously Non-malleable Codes with Split-State Refresh 123

need of a central unit. Our new model has a number of attractive features, which
we emphasize below.

– It captures security in the so-called noisy-leakage model, where between each
refresh the adversary can leak an arbitrary (yet independent) amount of
information on the two parts C0, C1, as long as the leakage does not reveal
(information-theoretically) more than � bits of information. Importantly, this
restriction is well-known to better capture realistic leakage attacks.

– It avoids the need for the self-destruct capability in some applications. Besides
mitigating simple denial-of-service attacks, this feature is useful in situations
where a device (storing an encoding of the secret state) is not in the hands
of the adversary (e.g., because it has been infected by a malware), as it still
allows to (non-interactively) refresh the secret state and continue to safely
use the device in the wild.

Our first contribution is an abstract framework for constructing R-CNMCs,
which we are able to instantiate under the external Diffie-Hellman assumption.
This constitutes the first NMC that achieves at the same time continuous non-
malleability and security under continual noisy leakage, in the split-state model
(assuming an untamperable common reference string).

Next, we explore applications of R-CNMCs. As second contribution, we show
how to construct a split-state3 signature scheme resilient to continuous (non-
persistent) tampering and leakage attacks, without relying on the self-destruct
capability, and where the memory content is refreshed in case a decoding error
is triggered. Interestingly, Fujisaki and Xagawa [13] recently showed that such
a notion is impossible to achieve for standard (i.e., non split-state) signature
schemes, even if the self-destruct capability is available; hence, our approach can
be interpreted as a possible way to circumvent the impossibility result in [13].

Our third contribution consists of two generic compilers for protecting ran-
dom access machine (RAM) computations against tampering attacks. Here, we
build on the important work of Dachman-Soled et al. [7], who showed how to
compile any RAM to be resilient to continual tampering and leakage attacks, by
relying both on an update and a self-destruct mechanism. We refer the reader to
Sect. 5 for further details on our RAM compilers. Below, we highlight the main
technical ideas behind our code construction.

Code Construction. The starting point of our code construction is the recent
work of Faonio and Nielsen [11]. The scheme built in [11] follows a template
that originates in the work of Liu and Lysyanskaya [17], in which the left side
of the encoding stores the secret key sk of a PKE scheme, whereas the right
side of the encoding stores a ciphertext c, encrypting the encoded message M ,
plus a non-interactive zero-knowledge (NIZK) argument that proves knowledge
of the secret key under the label c; the PKE scheme is chosen to be a continual-
leakage resilient storage friendly PKE (CLRS friendly PKE for short) scheme
3 This means that the signing key is made of two shares that are stored in two separate

parts of the memory, and need to be combined upon signing.



124 A. Faonio et al.

(see Dodis et al. [9]), whereas the NIZK is chosen to be a malleable NIZK argu-
ment of knowledge (see Chase et al. [5]). Such a code was shown to admit a
split-state refresh procedure, and, at the same time, to achieve bounded-time
non-malleability.

The NM code of [11] does not satisfy security against continuous attacks. In
fact, an attacker can create two valid codewords (C0, C1) and (C0, C

′
1) such that

Decode(C0, C1) �= Decode(C0, C
′
1). Given this, the adversary can tamper the left

side to C0 and the right side to either C1 or C ′
1 according to the bits of the right

side of the target encoding. In a non-persistent model, the adversary can leak all
the bits of C1 without activating the self-destruct mechanism. More in general,
for any R-CNMC it should be hard to find two valid codewords (C0, C1) and
(C0, C

′
1) such that Decode(C0, C1) �= Decode(C0, C

′
1). This property, which we

call “message uniqueness”, was originally defined in [12].4

Going back to the described code construction, an attacker can sample a
secret key sk and create two ciphertexts, c0 for M and c′ for M ′, where M �= M ′,
together with the corresponding honestly computed NIZKs, and thus break mes-
sage uniqueness. We fix this issue by further binding the right and the left side
of an encoding. To do so, while still be able to refresh the two parts indepen-
dently, we keep untouched the structure of the right side of the codeword, but
we change the message that it carries. Specifically, the ciphertext c in our code
encrypts the message M concatenated with the randomness r for a commitment
γ that is stored in the left side of the codeword together with the secret key
for the PKE scheme. Observe that “message uniqueness” is now guaranteed by
the binding property of the commitment scheme. Our construction additionally
includes another NIZK for proving knowledge of the committed value under
the label sk , in order to further link together the left and the right side of the
codeword.

Proof Strategy. Although our construction shares similarities with previous work,
our proof techniques diverge significantly from the ones in [11,12]. The main
trick of [12] is to show that given one half of the codeword it is possible to
fully simulate the view of the adversary in the tampering experiment, until a
decoding error happens. To catch when a decoding error happens, [12] carries on
two independent simulators in an interleaved fashion; as they prove, a decoding
error happens exactly when the outputs of the two simulations diverge. The
main obstacle they faced is how to succinctly compute the index where the two
simulations diverge so that they can reduce to the security of the inner leakage-
resilient scheme storage (see Dav́ı et al. [8]) they rely on. To solve this, [12]
employs an elegant dichotomic search-by-hash strategy over the partial views
produced by the two simulators. At this point the experiment can terminate,
4 Faust et al. also consider “codeword uniqueness”, where the fact that
Decode(C0, C1) �= Decode(C0, C

′
1) is not required. However, this flavor of uniquness

only allows to rule-out so-called super continuous non-malleability, where one asks
that not only the decoded value, but the entire modified codeword, be independent
of the message. It is easy to see that no R-CNMC can satisfy “codeword uniqueness”,
as for instance C′

1 could be obtained as a valid refresh of C1.



Continuously Non-malleable Codes with Split-State Refresh 125

and thanks to a specific property of the leakage-resilient storage scheme, the
simulator can “extract” the view.

Unfortunately, we cannot generalize the above proof strategy to multiple
rounds. In fact, the specific property of the leakage-resilient storage scheme they
make use of is inherently one shot. Specifically, the property allows the adversary
to get an half of the leakage-resilient codeword. However, to allow this the adver-
sary must lose leakage oracle access to the other half of the codeword. In our
case, we would need to repeat the above trick again and again, after a decoding
error and a subsequent refresh of the target encoding happens; however, once
we ask for an entire half of the codeword, even if we refreshed the codeword, we
cannot regain access to the leakage oracles5. We give a solution to this problem
by relying on a simple information-theoretic observation.

Let (X0,X1) be two random variables, and consider a process that inter-
leaves the computation of a sequence of leakage functions g1, g2, g3, . . . from X0

and from X1. The process continues until, for some index i ∈ N, we have that
gi(X0) �= gi(X1). We claim that ḡi(X0) := g1(X0), g2(X0), · · · , gi−1(X0) do not
reveal more information about X0 than what X1 and the index i already reveal.
To see this, consider ˜H∞(X0 | ḡi(X0)) to be the average conditional min-entropy
of X0, which is, roughly speaking, the amount (in average) of the uncertainty of
X0 given ḡi(X0) as side information. Now, since ḡi(X0) and ḡi(X1) are exactly
the same random variables we can derive6:

˜H∞(X0 | ḡi(X0)) = ˜H∞(X0 | ḡi(X1)) ≥ ˜H∞(X0 | X1, i).

The above observation implies that the size of the view of the adversary, although
much larger than the leakage bound, does reveal only little information.

We can already give a different proof of security for the scheme in [12] where
the reduction to the inner-product leakage-resilient storage loses only a factor
O(κ) in the leakage bound (instead of O(κ log κ)). Briefly, the idea is to carries
on two independent simulators in an interleaved fashion (as in [12]) and, at each
invocation, outputting first the hashes7 of the simulated tampered codeword,
then, if the hashes match, leak the full simulated tampered codeword avoiding,
in this way, the dichotomic search-by-hash strategy. The information-theoretic
observation above guarantees that only the last hashes (which will be different)
reveals information. The latter implies that the amount of leakage is bounded
by O(κ).

2 Preliminaries and Building Blocks

We introduce the cryptographic primitives on which we build. For space reasons,
standard notation and formal definitions are deferred to the full version of the
paper.
5 In particular, this property does not hold for a CLRS friendly PKE scheme.
6 In the last equation, we also use that the output of a function is at most as infor-

mative as the input.
7 By collision resistance of the hash function, if the two hashes match then the simu-

lated tampered codewords are the same for both the simulators.



126 A. Faonio et al.

Oracle Machines. Given a pair of strings X = (X0,X1) ∈ ({0, 1}∗)2 define the
oracle O∞(X) to be the split-state leakage oracle that takes as input tuples of
the form (β, g), where β ∈ {0, 1} is an index and g is a function described as
a circuit, and outputs g(Xβ). An adversary A with oracle access to O∞(X) is
called �-valid, for some � ∈ N, if for all β ∈ {0, 1} the concatenation of the
leakage functions sent by A is an �-leaky function of Xβ (i.e., the total amount
of leakage does not reduce the entropy of Xβ by too much).

Given two PPT interactive algorithms A and B we write (yA; yB) ← (A(xA) �
B(xB)) to denote the execution of algorithm A (with input xA) and algorithm
B (with input xB). The string yA (resp. yB) is the output of A (resp. B) at the
end of such interaction. In particular, we write A � O∞(X) to denote A having
oracle access to the leakage oracle with input X. Moreover, we write A � B,C
to denote A interacting in an interleaved fashion both with B and with C.

Non-interactive Zero-Knowledge. Let R ⊆ {0, 1}∗ × {0, 1}∗ be an NP-relation;
the language associated with R is LR := {x : ∃w s.t. (x,w) ∈ R}. We typically
assume that given a pair (x,w) it is possible to efficiently verify whether (x,w) ∈
R or not. Roughly, a non-interactive argument (NIA) for an NP-relation R
allows to create non-interactive proofs for statements x ∈ L, when additionally
given a valid witness w corresponding to x. More formally, a NIA NIA :=
(CRSGen,Prove,Ver) for R, with label space Λ, is a tuple of PPT algorithms
specified as follows (1) The (randomized) initialization algorithm CRSGen takes
as input the security parameter 1κ, and creates a common reference string (CRS)
ω ∈ {0, 1}∗; (2) The (randomized) prover algorithm Prove takes as input the
CRS ω, a label λ ∈ Λ, and a pair (x,w) such that (x,w) ∈ R, and produces a
proof π ←$ Proveλ(ω, x,w); (3) The (deterministic) verifier algorithm Ver takes
as input the CRS ω, a label λ ∈ Λ, and a pair (x, π), and outputs a decision bit
Verλ(ω, x, π).

Completeness means that for all CRSs ω output by CRSGen(1κ), for all labels
λ ∈ Λ, and for all pairs (x,w) ∈ R, we have that Verλ(ω, x,Proveλ(ω, x,w)) = 1
with all but a negligible probability. As for security, we require the following
properties.

– Adaptive multi-theorem zero-knowledge: Honestly computed proofs do
not reveal anything beyond the validity of the statement, and, as such, can
be simulated given only the statement itself.

– Φ-Malleable label simulation extractability: Our construction will be
based on a so-called label-malleable NIA, parametrized by a set of label trans-
formations Φ, where for any φ ∈ Φ, the co-domain of φ is a subset of Λ. For
such NIAs, given a proof π under some label λ ∈ Λ, one can efficiently gen-
erate new proofs π′ for the same statement under a different label φ(λ), for
any φ ∈ Φ (without knowing a witness); this is formalized via an additional
(randomized) label-derivation algorithm LEval, which takes as input the CRS
ω, a transformation φ ∈ Φ, a label λ ∈ Λ, and a pair (x, π), and outputs a new
proof π′. The property we need intuitively says that a NIA satisfies knowl-
edge soundness, except that labels are malleable w.r.t. Φ. More in details,



Continuously Non-malleable Codes with Split-State Refresh 127

there exists a knowledge extractor K that for any adversary which can query
polynomially many simulated proofs of false statements and then it produces
a tuple (x, λ, π) where π is a valid NIZK proof for (x, λ) can extract either
(1) the witness for x or (2) a transformation φ ∈ Λ which maps φ(λ′) = λ
and (x, λ′) was precedently queried by the adversary.

– Label derivation privacy: It is hard to distinguish a fresh proof for some
statement x (with witness w) under label λ, from a proof re-randomized using
algorithm LEval w.r.t. some function φ ∈ Φ; moreover, the latter should hold
even if (x,w, λ, φ) are chosen adversarially (possibly depending on the CRS).

Public-Key Encryption. A public-key encryption (PKE) scheme is a tuple of
algorithms PKE = (Setup,KGen,Enc,Dec) with the usual syntax. We will require
two additional algorithms, the first one to re-randomize a given ciphertext, and
the second one for re-randomizing the secret key (without changing the cor-
responding public key). More formally: The (randomized) algorithm UpdateC
takes as input a ciphertext c, and outputs a new ciphertext c′; The (random-
ized) algorithm UpdateS takes as input a secret key sk , and outputs a new secret
key sk ′.

As for security, we require the following properties.

– CLRS friendly PKE security: This property is essentially a strengthen-
ing of semantic security, where the adversary can additionally observe noisy
independent leakages from S0 = sk and S1 = c (c is the challenge ciphertext).

– Ciphertext-update privacy: The distributions of fresh and updated
ciphertexts are the same.

– Secret-key-update privacy: The distributions of fresh and updated keys
are the same.

Additionally, we make use of a (non-interactive) commitment scheme
COM = (CRSGen,Commit) with statistical hiding and computationally bind-
ing and of an authenticated encryption scheme SKE := (KGen,Enc,Dec). This
notions are standard therefore we defer the definitions to the full version of the
paper.

3 Non-malleability with Refresh

A coding scheme in the CRS model is a tuple of polynomial-time algorithms
CS = (Init,Encode,Decode) with the following syntax: (1) The (randomized)
initialization algorithm Init takes as input the security parameter 1κ, and outputs
a CRS ω ∈ {0, 1}∗; (2) The (randomized) encoding algorithm Encode takes as
input the CRS ω and a message M ∈ M, and outputs a codeword C ∈ C; (3)
The (deterministic) decoding algorithm Decode takes as input the CRS ω and a
codeword C ∈ C, and outputs a value M ∈ M∪{⊥} (where ⊥ denotes an invalid
codeword). A coding scheme is correct if for all ω output by Init(1κ), and any
M ∈ M, we have P[Decode(ω,Encode(ω,M)) = M ] = 1, where the probability
is taken over the randomness of the encoding algorithm.



128 A. Faonio et al.

We consider coding schemes with an efficient refreshing algorithm. Specifi-
cally, for a coding scheme CS we assume there exists a randomized algorithm
Rfrsh that, upon input the CRS ω and a codeword C ∈ C, outputs a codeword
C ′ ∈ C. For correctness we require that for all ω output by Init(1κ), we have
P[Decode(ω,Rfrsh(ω,C)) = Decode(ω,C)] = 1, where the probability is over the
randomness used by the encoding and refreshing algorithms.

Split-State Model. In this paper we are interested in coding schemes in the
split-state model, where a codeword consists of two parts that can be refreshed
independently and without the need of any interaction. More precisely, given a
codeword C := (C0, C1), the refresh procedure Rfrsh(ω, (β,Cβ)), for β ∈ {0, 1},
takes as input either the left or the right part of the codeword, and updates
it. Sometimes we also write Rfrsh(ω,C) as a shorthand for the algorithm that
independently executes Rfrsh(ω, (0, C0)) and Rfrsh(ω, (1, C1)).

Correctness here means that for all ω output by Init(1κ), for all C ∈ C, and
for any β ∈ {0, 1}, if we let C ′ = (C ′

0, C
′
1) be such that C ′

β ←$ Rfrsh(ω, (β,Cβ))
and C ′

1−β = C1−β , then P[Decode(ω,C ′) = Decode(ω,C)] = 1.

3.1 The Definition

We give the security definition for continuously non-malleable codes with split-
state refresh (R-CNMCs for short). Our notion compares two experiments, which
we denote by Tamper and SimTamper (cf. Fig. 1). Intuitively, in the experi-
ment Tamper we consider an adversary continuously tampering with, and leak-
ing from, a target encoding C = (C0, C1) of a message M ∈ M (the message
can be chosen adaptively, depending on the CRS). For each tampering attempt
(f0, f1), the adversary gets to see the output ˜M of the decoding corresponding
to the modified codeword ˜C = (f0(C0), f1(C1)). Tampering is non-persistent,
meaning that each tampering function is applied to the original codeword C,
until, eventually, a decoding error happens; at this point the adversary is allowed
to make one extra tampering query (f∗

0 , f∗
1 ), and, if the corresponding tampered

codeword ˜C∗ is valid and is not an encoding of the original message M , it receives
a refresh of ˜C∗ (otherwise the adversary receives M or ⊥). After that, the tar-
get encoding C is refreshed, and the adversary can start tampering with, and
leaking from, the refreshed codeword. (Below we explain why this extra feature
is useful.)

In the experiment SimTamper, we consider a simulator S = (S0,S1), where
S0 outputs a simulated CRS, while S1’s goal is to simulate the view of the
adversary in the real experiment; the simulator S1, in faking a tampering query
(f0, f1), is allowed to output a special value 
, signaling that (it believes) the
adversary did not change the encoded message, in which case the experiment
replaces 
 with M ; We stress that the simulator S is stateful; in particular
algorithms S0,S1 implicitly share a state.



Continuously Non-malleable Codes with Split-State Refresh 129

TamperCS,A(κ, �, q):
i ← 0; err, stop ← 0
ω ← Init(1κ)
(M, s0) ← A0(ω)
C0 := (C0

0 , C0
1 ) ←$ Encode(ω, M)

For all i ∈ [0, q]:
si+1 ← (A1(si) � O∞(Ci), Otamp(Ci))
Ci+1 ←$ Rfrsh(ω, Ci)
i ← i + 1; err, stop ← 0

Return A2(sq).

SimTamperA,S(κ, �, q):
i ← 0
ω ←$ S0(1κ)
(M, s0) ← A0(ω)
For all i ∈ [0, q]:
si+1 ← (A1(si) � S1(Leak, ·), OS1

sim tamp(·))
i ← i + 1

Return A2(sq).

Oracle Otamp(Ci, (f0, f1)):
Upon (Tamp, f0, f1):

M̃ = Decode(ω, f0(Ci
0), f1(Ci

1))
If (M̃ = ⊥) then err ← 1
If ((err = 1) ∨ (stop = 1))

M̃ ← ⊥
Return M̃

Upon (Final, f∗
0 , f∗

1 ):
stop ← 1
C̃∗ = (f∗

0 (Ci
0), f∗

1 (Ci
1))

M̃∗ = Decode(ω, C̃∗)
If (M̃∗ ∈ {⊥, M}) then C̃′ ← M̃∗

Else, C̃′ ←$ Rfrsh(ω, C̃∗)
Return C̃′.

Oracle OS1
sim tamp(·):

Upon (Tamp, f0, f1):
M̃ ←$ S1(Tamp, f0, f1)
If (M̃ = �) then M̃ ← M

Return M̃
Upon (Final, f∗

0 , f∗
1 ):

C̃′ ←$ S1(Final, f∗
0 , f∗

1 )
If ((C̃′ = �) ∨ (Decode(ω, C̃′) = M))

C̃′ ← M

Return C̃′

Fig. 1. Experiments defining continuously non-malleable codes with split-state refresh.

Definition 1 (Continuous non-malleability with split-state refresh).
For κ ∈ N, let � = �(κ) be a parameter. We say that a coding scheme CS is
an �-leakage-resilient and continuously non-malleable code with split-state refresh
(R-CNMC for short) if for all adversaries A := (A0,A1,A2), where A0 and A2 are
PPT algorithms and A1 is an �-valid deterministic polynomial-time algorithm,
there exists a PPT simulator S = (S0,S1) and a negligible function ν : N → [0, 1]
such that, for any polynomial q(κ), the following holds:

∣

∣P
[

TamperCS,A(κ, �, q) = 1
] − P

[

SimTamperA,S(κ, �, q) = 1
]∣

∣ ≤ ν(κ),

where the experiments TamperCS,A(κ, �, q) and SimTamperA,S(κ, �, q) are
defined in Fig. 1.

We give some intuitions on why the extra tampering query is meaningful. First,
observe that for (standard) continuously non-malleable codes, the notion of non-
persistent tampering is strictly stronger than the notion of persistent tamper-
ing. This is because the effect of any sequence of persistent tampering functions



130 A. Faonio et al.

f1, f2, f3, · · · can be simulated in the non-persistent setting by the sequence of
tampering functions f1, f2 ◦ f1, f3 ◦ f2 ◦ f1, · · · . For R-CNMCs, instead, we can-
not simulate persistent tampering, as in such a setting the refreshing procedure
can be invoked on invalid codewords. The extra tampering query in our defini-
tion allows for some flavor of persistent tampering, in that the adversary gets
to see a refresh of the tampered codeword, as long as the codeword is valid8.
Unfortunately, it is impossible to further generalize our definition to handle the
refreshing of invalid codewords.9

As additional remark, we notice that in the Tamper security game the adver-
sary does not have a “direct” access to a refresh oracle (namely, an oracle that,
under request of the adversary, would refresh the codeword). We skim this extra
detail to not overload the (already heavy) notation. However, the choice comes
without loss of any generality. In fact, we can simulate an adversary that makes
explicit call to a refreshing oracle by an adversary stop, and return its state (this
would indeed trigger a refresh in the experiment), and restart again in the next
iteration of the Tamper experiment.

4 Code Construction

Let PKE = (Setup,KGen,Enc,Dec,UpdateC,UpdateS) be a CLRS friendly
PKE scheme, with secret-key space SK. We assume there exists an efficient
polynomial-time function PK that maps a secret key to the corresponding pub-
lic key. Let COM = (CRSGen,Commit) be a commitment scheme in the CRS
model. Consider the following NP-relations, parametrized by the PKE and the
commitment scheme, respectively:

R0 := {(pk , sk) : pk = PK(sk), sk ∈ SK} ,

R1 := {((ω, γ), (M, r)) : γ = Commit(ω,M ; r)} .

Let Φ0 and Φ1 be two sets of label transformations defined below:

Φ0 := {φ : ∃pk , sk s.t. (∀m, r) Dec(sk , φ(Enc(pk ,m; r))) = m, pk = PK(sk)}
Φ1 := {φ : (∀sk) PK(sk) = PK(φ(sk))} .

8 A sequence of persistent tampering functions f1, f2, · · · , fq followed by a refresh-
ing (on tampered codeword) can be simulated in the non-persistent setting by the
sequence of concatenation of tampering functions (as described above) and then
invoking a final tampering query with tampering function set to f1 ◦ f2 ◦ ... ◦ fq.

9 This can be seen by the following attack. Consider an attacker that computes offline
a valid codeword (C0, C1), and then makes two extra tampering queries (in two
subsequent rounds, say, i and i + 1) such that the first query overwrites (Ci

0, C
i
1)

with (Ci
0, C1), and the second query overwrites (Ci+1

0 , Ci+1
1 ) with (C0, C

i+1
1 ); by

combining the refreshed codewords obtained as output, the adversary gets a refresh
of the original codeword, which cannot be simulated in the ideal experiment (recall
that the refresh algorithm updates the two shares independently).



Continuously Non-malleable Codes with Split-State Refresh 131

Notice that R0,R1, Φ0 and Φ1 are implicitly parametrized by the public param-
eters ρ ∈ {0, 1}∗ of the PKE scheme. Finally, let U0 and U1 be the following sets
of label transformations:

U0 := {UpdateC( · ; ru) : ru ∈ {0, 1}∗}
U1 := {UpdateS( · ; ru) : ru ∈ {0, 1}∗} .

It is easy to verify that Uβ ⊆ Φβ , for β ∈ {0, 1}. In fact, for β =
0, by the correctness of the PKE scheme, there exists sk such that
P[Dec(sk ,UpdateC(Enc(pk ,m))) = m] = 1 and pk = PK(sk); similarly, for β = 1,
again by correctness of the PKE scheme, for any sk ′ ←$ UpdateS(pk , sk) we have
that PK(sk) = PK(sk ′).

Scheme Description. Let NIA0 = (CRSGen0,Prove0,Vrfy0, LEval0) and
NIA1 = (CRSGen1,Prove1,Vrfy1, LEval1) be NIAs for the above defined rela-
tions R0 and R1. Our code CS = (Init,Encode,Decode) works as follows.

– Init(1κ): For β ∈ {0, 1}, sample ωβ ←$ CRSGenβ(1κ), ω ← CRSGen(1κ), and
ρ ← Setup(1κ). Return ω = (ω0, ω1, ω, ρ).

– Encode(ω,M): Parse ω := (ω0, ω1, ω, ρ), sample (pk , sk) ←$ KGen(ρ), and
r ←$ {0, 1}∗. Compute c ←$ Enc(pk ,M ||r), γ = Commit(ω,M ; r), and π0 ←$

Provec
0(ω0, pk , sk), and π1 ←$ Provesk1 (ω1, (ω, γ), (M, r)). Set C0 := (pk , c, π0)

and C1 := (sk , γ, π1), and return C := (C0, C1).
– Decode(ω,C): Parse ω := (ω0, ω1, ω, ρ) and C := (C0, C1), where C1 :=

(sk , γ, π1) and C0 = (pk , c, π0). Compute M ||r := Dec(sk , c), and if the fol-
lowing conditions hold return M else return ⊥:
I. Left check: Verc0(ω0, pk , π0) = 1.

II. Right check: Versk1 (ω1, (ω, γ), π1) = 1.
III. Cross check: Commit(ω,M ; r) = γ.

– Rfrsh(ω, (β,Cβ)): Parse ω := (ω0, ω1, ω, ρ), C0 := (pk , c, π0), and C1 =
(sk , γ, π1). Hence:

• For β = 0, pick r0upd ←$ {0, 1}∗, let c′ := UpdateC(c; r0upd) and π′
0 ←$

LEval0(ω0,UpdateC(·; r0upd), (pk , c, π0)), and return C ′
0 := (pk , c′, π′

0).
• For β = 1, pick r1upd ←$ {0, 1}∗, let sk ′ := UpdateS(sk ; r1upd), and π′

1 ←$

LEval1(ω1,UpdateS(·; r1upd), ((γ, ω), sk , π1)), and return C ′
1 := (γ, sk ′, π′

1).

We show the following result. In the full version we provide a concrete instanti-
ation of our code, based on fairly standard computational assumptions.

Theorem 1. Let PKE be a PKE scheme with message space Mpke and public-
key space PK, let COM be a commitment scheme with message space M, and
let NIA0 (resp. NIA1) be a NIA w.r.t. the relations R0 (resp. R1). Define
μ(κ) := log |M|, μpke(κ) := log |Mpke|, and δ(κ) := log |PK|.

For any � ∈ N, assuming that PKE is an (� + 3μ + 2κ + max{δ, μpke})-
noisy CLRS-friendly PKE scheme, that COM is a non-interactive statistically
binding commitment scheme, and that NIA0 (resp. NIA1) satisfies adaptive
multi-theorem zero-knowledge, Φ0-malleable (resp. Φ1-malleable) label simulation



132 A. Faonio et al.

extractability, and label derivation privacy, then the coding scheme CS described
above is an �-leakage-resilient continuously non-malleable code with split-state
refresh.

Proof Intuition. The proof of the above theorem is quite involved. We provide
some highlights here. We defer the formal proof to the full version of the paper.
Consider a simulator (S0,S1), where S0 simulates a fake CRS ω = (ω0, ω1, ω, ρ)
by additionally sampling the corresponding zero-knowledge and extraction trap-
doors for the NIAs (which are then passed to S1). At the core of our simulation
strategy are two algorithms T0 and T1, whose goal is essentially to emulate the
outcome of the real tampering experiment, with the important difference that T0

is only given the left part of a (simulated) codeword C0 and the left tampering
function f0, whereas T1 is given (C1, f1).

The simulator S1 then works as follows. Initially, it samples a fresh encoding
(C0, C1) of 0μ. More in details, the fresh encoding comes from the (computa-
tionally close) distribution where the proofs π0 and π1 are simulated proofs. At
the beginning of each round, it runs a simulated refresh procedure in which the
ciphertext c is updated via UpdateC (and the simulated proof π0 is re-computed
using fresh randomness), and similarly the secret key sk is updated via UpdateS
(and the simulated proof π1 is re-computed using fresh randomness). Hence, for
each tampering query (f0, f1), the simulator S1 runs ˜M0 := T0(C0, f0), ˜M1 :=
T1(C1, f1), and it returns ˜M0 as long as ⊥ �= ˜M0 = ˜M1 �= ⊥ (and ⊥ otherwise).
The extra tampering query (f∗

0 , f∗
1 ) is simulated similarly, based on the out-

come of the tampering simulators (T0,T1). We briefly describe the tampering
simulators T0 and T1:

– Algorithm T0 lets f0(C0) := (˜pk , c̃, π̃0). If the proof π̃0 does not verify, it
returns ⊥. Else, if (˜pk , c̃, π̃0) = (pk , c, π0), it returns 
. Else, it extracts the
proof π̃0, this leads to two possible outcomes10:
(a) The extractor outputs a secret key ̂sk which is used to decrypt c̃, and the

tampering simulator returns the corresponding plaintext ˜M .
(b) The extractor outputs a transformation φ which maps the label of the

simulated proof π0, namely the encryption of 0μ, to c̃. In this case the
tampering function f0 has modified the original ciphertext c to the mauled
ciphertext c̃ which is an encryption of the same message, so we can safely
output 
.

– Algorithm T1 lets f1(C1) := (γ̃, ˜sk , π̃1). If the proof π̃1 does not verify, it
returns ⊥. Else, if (γ̃, ˜sk , π̃1) = (γ, sk , π1), it returns 
. Else, it extracts the
proof π̃1, again, this leads to two possible outcomes:
(a) the extractor outputs the committed message ˜M (along with the random-

ness of the commitment), so the tampering simulator can simply return
˜M .

10 The above description is simplified, in that extraction could potentially fail, however,
this happens only with negligible probability when the proof verifies correctly.



Continuously Non-malleable Codes with Split-State Refresh 133

(b) The extractor outputs a transformation φ which maps the label of the
simulated proof π1, namely the original secret key sk , to the mauled secret
key ˜sk . In this case, the mauled proof ˜π1 must be a valid proof which
instance is the original commitment, so, again, we can safely output 
.

To show that the above simulator indeed works, we use a hybrid argument where
we incrementally change the distribution of the ideal tampering experiment until
we reach the distribution of the real tampering experiment. Each step introduces
a negligible error, thanks to the security properties of the underlying building
blocks. Perhaps, the most interesting step is the one where we switch the cipher-
text c from an encryption of zero to an encryption of the real message (to which
we always have to append the randomness of the commitment); in order to show
that this change is unnoticeable, we rely on the CLRS storage friendly security
of the PKE scheme. In particular, this step of the proof is based on the following
observations:

– The reduction can perfectly emulate the distribution of the CRS ω, and of
all the elements (pk , π0, γ, π1), except for (c, sk). However, by outputting
(0μ||r,M ||r) as challenge plaintexts—where r ∈ {0, 1}∗ is the randomness
for the commitment—the reduction can obtain independent leakages from C0

and C1 with the right distribution.
– Refresh of codewords can also be emulated by exploiting the fact that the

reduction is allowed to update the challenge secret key and ciphertext.
– The reduction can answer tampering queries from the adversary by using T0

and T1 as leakage functions. The main obstacle is to ensure that T0 and T1

are �-leaky, where � ∈ N is the leakage bound tolerated by the PKE scheme.
Luckily, by using carefully the information-theoretic argument explained in
the Introduction, we can show that this is indeed the case, which allows
simulation to go through. In particular, between each refresh the reduc-
tion needs to interleave the executions of T0 and T1 until their outputs
diverge. So let q be the number of tampering queries that the simulator per-
forms until triggering a decoding error. The leakage that the reduction needs
to perform during this stage (namely, between two consecutive refresh) is
T0(C0, f

0
0 ),T1(C1, f

0
1 ), . . . ,T0(C0, f

q
0 ),T1(C1, f

q
1 ) where (f0

0 , f0
1 ), . . . , (fq

0 , fq
1 )

is the list of tampering functions applied. By the information-theoretic argu-
ment:

˜H∞(C0 | T0(C0, f
0
0 ), . . . ,T0(C0, f

q
0 ))

= ˜H∞(C0 | T1(C1, f
0
1 ), . . . ,T0(C1, f

q−1
1 ),T0(C0, f

q
0 )).

In fact, the outputs of the T0(C0, f
i
0) and T0(C0, f

i
0) is exactly the same when

i < q. Moreover:

˜H∞(C0 | T1(C1, f
0
1 ), . . . ,T0(C1, f

q−1
1 ),T0(C0, f

q
0 ))

≥ ˜H∞(C0 | C1, q,T
0(C0, f

q
0 )).



134 A. Faonio et al.

Because the output of a function cannot be more informative than the inputs
of the function itself. Lastly, we can notice that C1 gives little information
about C0 and that q and T0(C0, f

q
0 ) can decrease the min-entropy of C0 of at

most their size which is O(κ). The reduction, therefore, is a valid adversary
against for the CLRS storage-friendly security experiment of the PKE.

Remark 1 (On the refresh procedures). The notion of split-state refresh does not
imply that a refreshed codeword is indistinguishable from a freshly sampled one.
And indeed the codeword of our CNMC-R is not, as the public key pk (resp.
the commitment γ) do not change after the refresh algorithms are executed.
However, the latter is not required for our proof, as the only thing that matters
is that the information about the target codeword that the adversary gathers
before a refresh takes place will not be useful after the refresh. Put differently, the
adversary could potentially leak the entire values pk and γ, but this information
would not be useful for breaking the security of the scheme.

5 Applications

Tamper-Resilient Signatures Without Self-destruct. Consider a signa-
ture scheme SS. We would like to protect SS against tampering attacks with the
memory, storing the signing key sk . As observed originally by Gennaro et al. [14],
however, without further assumptions, this goal is too ambitious. Their attack
can be circumvented by either assuming the self-destruct capability, or a key-
update mechanism.

Interestingly, Fujisaki and Xagawa [13] observed that, whenever the key-
update mechanism is invoked only after an invalid output is generated, the goal
of constructing tamper-resilient signature is impossible, even assuming the self-
destruct capability. The idea behind the attack is to generate two valid pairs of
independent signing/verification keys, and thus to overwrite the original secret
key with either of the two sampled signing keys in order to signal one bit of the
original key. Note that such an attack never generates invalid signatures, thus
rendering both the self-destruct capability and a key-update mechanism useless.

In the full version of the paper we show that it is possible to avoid self-
destruct and obtain tamper-resilient signatures against arbitrary attacks in the
split-state model.

RAM Compilers. Consider a RAM machine, where both the data and the
program to be executed are stored in the random access memory. Such a RAM
program is modeled as a tuple consisting of a CPU and its memory. At each clock
cycle the CPU fetches a memory location and performs some computation. We
focus on read-only RAM programs that do not change the content of the memory
after the computation is performed. More in details, a read-only RAM program
Λ = (Π,D) consists of a next instruction function Π, a state state stored in
a non-tamperable but non-persistent register, and some database D. The next



Continuously Non-malleable Codes with Split-State Refresh 135

instruction function Π takes as input the current state state and input inp, and
outputs an instruction I and a new state state′. The initial state is set to (start, �).

A RAM compiler is a tuple of algorithms Σ = (Setup,CompMem,CompNext).
Algorithm Setup takes as input the security parameter 1κ, and outputs an untam-
perable CRS ω. The memory compiler CompMem takes as input the CRS ω, and
a database D, and outputs a database ̂D along with an initial internal state
state. The next instruction function Π is compiled to ̂Π using CompNext and
the CRS. To define security, we compare two experiments (cf. Fig. 2). The real
experiment features an adversary A that is allowed, via the interface doNext,
to execute RAM programs on chosen inputs step-by-step; upon input x, oracle
doNext(x) outputs the result of a single step of the computation, as well as the
memory location that is accessed during that step. Additionally, adversary A can
also apply tampering attacks that are parametrized by two families of functions
Fmem and Fbus, where: (1) Each function f ∈ Fmem is applied to the compiled
memory. (2) Each function f ∈ Fbus is applied to the data in transit on the bus.

The ideal experiment features a simulator S that is allowed, via the interface
Execute, to execute RAM programs on chosen inputs in one g;. Upon input x,
oracle Execute(x) outputs the result of the entire computation and the list of
all the memory locations that were accessed during that computation. Briefly,
a RAM compiler is tamper-resilient if for all possible logics Π, and all efficient
adversaries A, there exists a simulator S such that the real and ideal experiment
are computationally indistinguishable. A formal definition follows.

Definition 2 (Tamper simulatability). A compiler Σ = (Setup,CompMem,
CompNext) is tamper simulatable w.r.t. (Fbus,Fmem) if for every next instruction
function Π, and for every PPT adversary A, there exists a PPT simulator S and
a negligible function ν : N → [0, 1] such that, for all PPT distinguishers D and
any database D, we have that:
∣

∣

∣P

[

D(TamperExecFbus,Fmem

A,Σ,Λ (κ)) = 1
]

− P

[

D(IdealExecS,Λ(κ)) = 1
]∣

∣

∣ ≤ negl(κ)

with Λ := (Π,D), and where the experiments TamperExecFbus,Fmem

A,Σ,Λ and
IdealExecS,Λ(κ) are defined in Fig. 2.

We propose two compilers for protecting arbitrary RAM computations
against tampering attacks.

First Compiler. The first compiler achieves security in a model where only
non-persistent tampering on the buses is allowed. The compiler encodes a ran-
dom secret key k for an authenticated encryption scheme using a R-CNMC; let
(K0,K1) be the corresponding codeword. Then, the compiler encrypts each data
block in the original memory D, along with its index, under the key k; let E be
the encrypted memory. The encoded memory is made of two parts D0 := (K0, E)
and D1 := (K1, E). When fetching the location j, the compiled RAM program
first reads and decodes (K0,K1), and stores k in the untamperable register; then,
it loads E [j] from both D0 and D1 and checks that, indeed, they are the same



136 A. Faonio et al.

Experiment TamperExec
Fbus,Fmem
A,Σ,Λ (k):

ω ← Setup(1κ);
Parse Λ as (D̄, Π̄); Q ← ∅;
D ← CompMem(ω, D̄), D′ ← D;
Π ← CompNext(ω, Π̄);
b ← A(ω) � doNext((D′, Π), ·), Otamp(·)

)
;

Return (b, Q).

Experiment IdealExecS,Λ(κ):
Q ← ∅;
b ← S(1κ) � Execute(Λ, ·), Add(·));
Return (b, Q).

Oracle Add(x):
Q ← Q ∪ {x};

Oracle Otamp:
Upon (TampMem, f):

If f ∈ Fmem, then set D ← f(D).
Upon (TampBus, f):

If f ∈ Fbus, then set D′ ← f(D).

Oracle doNext((D, Π), x):
If state = (start, �)

inp ← x; Q ← Q ∪ {x}
(I, state′) ← Π(state, inp)
If I = (read, v)

inp ← D[v]; state := state′

If I = (stop, z), then state ← (start, �)
Else, state := state′

Output I.

Oracle Execute((D, Π), x):
state ← (start, �), I ← ∅;
repeat I′ ← doNext((D, Π), x); I ← I‖I′;
until I′ = (stop, v);
Output I

Fig. 2. Experiments defining security of a RAM compiler.

ciphertext, which is then decrypted.11 If an error happens, the compiled RAM
invokes the refresh mechanism.

The reason behind the redundant encoding of E can be explained using the
information-theoretic observation described in the introduction of the paper.
In fact, the mauled ciphertexts from D0 (resp. D1) can be arbitrary functions
of the non-malleable encoding K0 (resp. K1). However, as long as the mauled
ciphertexts from D0 are equal to the mauled ciphertexts from D1, the amount of
information they carry about K0 is bounded by the amount of information that
K1 reveals about K0. If the two ciphertexts are not equal, some information
about K0 may be leaked, but in this case the codeword is refreshed and the
leaked information becomes useless.

In the full version of the paper we prove the following theorem and give the
details of the construction.

Theorem 2 (Informal). Let n, κ ∈ N be parameters. Assume there exists a
coding scheme that is poly(κ, log n)-leakage-resilient R-CNMC and assume there
exists an authenticated encryption scheme with ciphertext space of length at least
poly(log n). Then there exists a tamper-resilient RAM compiler w.r.t. (Fbus, ∅)
for RAM programs with database of length n, where Fbus is the family of split-
state tampering functions.
11 The compiled RAM program additionally needs to check that the encrypted index

is equal to j, in order to avoid shuffling attacks.



Continuously Non-malleable Codes with Split-State Refresh 137

Tamper-Resilient for Persistent Tampering. The above compiler is not secure
against adversaries that can tamper persistently with the memory. In fact, such
attackers can “copy-paste” the value K0 (resp. K1) in a part of the memory
D0 (resp. D1) that is not refreshed, and restore these values at a later point,
bypassing the refreshing procedure.

To partially overcome this problem we assume that, once a decoding error
is triggered, the system can switch in a safe mode where the communication
between CPU and memory is tamper free. While in safe mode, the system will
perform a consistency check. To minimize the dependency on the assumption
we constraint the consistency check to be succinct, meaning that its complexity
depends only on the security parameter and not on the size of the RAM program.
Finally, if the consistency check passes, the refresh procedure will be executed
otherwise the self-destruct is triggered. In the full version of the paper we prove
the following theorem and give the details of the construction.

Theorem 3 (Informal). Let n, κ ∈ N be parameters. Assume there exists a
coding scheme that is poly(κ, log n)-leakage-resilient R-CNMC and assume there
exists an authenticated encryption scheme with ciphertext space of length at least
poly(log n). Moreover, assume the system can switch in safe mode for poly(κ)
number of operations and self destruct, then there exists a tamper-resilient RAM
compiler w.r.t. (Fbus,Fmem) for RAM programs with database of length n, where
both Fbus and Fmem are the family of split-state tampering functions.

The Compiler of [7]. In order to better compare our RAM compilers with pre-
vious work, we first describe the compiler of Dachman-Soled et al. [7] in some
details. The starting point is a RAM program Λ = (Π,D) that is previously
compiled using an Oblivious RAM [15], and later encoded using a (split-state)
locally-updatable and locally-decodable non-malleable code (LULD-NMC)12. In
particular, one first samples a random key k for an authenticated encryption
scheme, encrypts all the locations D[i] block by block, and finally computes a
Merkle tree of the encrypted blocks. A non-malleable encoding (K0,K1) of k
together with the root of the Merkle tree is computed and the resulting code-
word is composed of (K0,K1), the encrypted memory D′, and the merkle tree T .
Since the encoded memory D′ is encrypted block-by-block, it is possible to locally
decode it and update it using Ω(log n) operations,13 where n is the number of
blocks in D.

The security model in [7] is a flavour of the standard 2-split-state model tam-
pering model, where the adversary can choose tampering functions f = (f1, f2).
Tampering function f1 is any tampering function supported by the underlying
2-split-state NMC that was used to compute (K0,K1) and the function can
depend on the encrypted memory blocks D′, and the merkle tree T . Tampering
function f2 enables the adversary to tamper with the memory and the merkle
tree, but the function does not depend on the codeword (K0,K1).
12 The compiler, more generally, can be instantiated with any kind of (standard) NMC,

for concreteness we consider only the instantiation based on split-state NMC.
13 In a subsequent work, Dachman-Soled et al. [6] showed that, in order to have security

against “reset attacks”, the overhead of Ω(log n) is necessary.



138 A. Faonio et al.

Comparison. Finally, let us review the main differences between our RAM com-
pilers and the one by Dachman-Soled et al. [7]. First, the compiler of [7] can
handle very general RAM programs that can also write on the memory. Our
compilers, instead, are specifically tuned for RAMs that make only read oper-
ations (recall that we want to avoid write-back operations); this feature allows
us to exploit the non-interactive refresh procedure of the underlying R-CNMC.
The read-only model is strictly weaker than the model that is considered in [7]
and reset attacks cannot exist in our model. This enables us to avoid the use
of a Merkle tree and obtain a construction similar to the one given in [7], thus
reducing the overhead from Ω(log n) to O(1).

Second, the compiler of [7] only achieves security in a variant of the regular
split-state model (as described above), whereas both our compilers are secure in
the standard split-state model. On the downside, we require an untamperable
CRS, which is not needed in [7].

Third, we do not aim to hide the access pattern of the RAM machine. Notice
that the latter can be avoided using ORAMs (as done in [7]). However, we think
of this as an orthogonal problem. In fact, in some cases, ORAMs could be, more
efficiently, replaced by constant-time implementations, or by fixed-pattern ones
(for example when hardening cryptographic primitives).

Lastly, our first compiler is the first RAM compiler that achieves security
against continuous attacks without relying on the self-destruct capability. This
feature allows us also to tolerate non-malicious hardware faults that may affect
the data of the bus accidentally, while at the same time maintaining security
against malicious tampering attacks. We notice that a similar property could be
achieved in the scheme of [7] by applying a layer of error-correcting code over the
non-malleable encoding. This allows to transparently correct the hardware faults
as long as these faults are supported by the capability of the error correcting code
and otherwise self destruct. On the other hand, our compiler cannot correct such
hardware faults, but it can detect them (without any bound on their nature)
and trigger a refresh before safely continuing the computations.

References

1. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: STOC, pp. 459–468 (2015)

2. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC, pp. 774–783 (2014)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4


Continuously Non-malleable Codes with Split-State Refresh 139

5. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 18

6. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for
leakage-resilient, locally decodable and updatable non-malleable codes. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 310–332. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 13

7. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 18

8. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 9

9. Dodis, Y., Lewko, A.B., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: FOCS, pp. 688–697 (2011)

10. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations in
Computer Science, pp. 434–452 (2010)

11. Faonio, A., Nielsen, J.B.: Non-malleable codes with split-state refresh. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 279–309. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 12

12. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

13. Fujisaki, E., Xagawa, K.: Public-key cryptosystems resilient to continuous tam-
pering and leakage of arbitrary functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 908–938. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 33

14. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 15

15. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC (1987)

16. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: IEEE Symposium on Security and Privacy, pp. 154–165 (2003)

17. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

18. Otto, M.: Fault attacks and countermeasures. Ph.D. thesis, University of Pader-
born, Germany (2006)

https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-642-15317-4_9
https://doi.org/10.1007/978-3-662-54365-8_12
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-53887-6_33
https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-642-32009-5_30

	Continuously Non-malleable Codes with Split-State Refresh
	1 Introduction
	2 Preliminaries and Building Blocks
	3 Non-malleability with Refresh
	3.1 The Definition

	4 Code Construction
	5 Applications
	References




