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Abstract. While non-interactive zero-knowledge (NIZK) proofs require
trusted parameters, Groth, Ostrovsky and Sahai constructed non-
interactive witness-indistinguishable (NIWI) proofs without any setup;
they called their scheme a non-interactive zap. More recently, Bellare,
Fuchsbauer and Scafuro investigated the security of NIZK in the face
of parameter subversion and observe that NI zaps provide subversion-
resistant soundness and WI.

Arguments of knowledge prove that not only the statement is true,
but also that the prover knows a witness for it, which is essential for
anonymous identification. We present the first NIWI argument of knowl-
edge without parameters, i.e., a NI zap of knowledge. Consequently, our
scheme is also the first subversion-resistant knowledge-sound proof sys-
tem, a notion recently proposed by Fuchsbauer.
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1 Introduction

The concept of zero-knowledge proof systems, first proposed by Goldwasser et al.
[GMR89], is a central tool in modern cryptography. Consider an NP relation R
which defines the language of all statements x for which there exists a witness
w so that R(x,w) = true. In a zero-knowledge proof for R a prover, knowing a
witness, wants to convince a verifier that x is in the language. The protocol must
be complete, that is, if the prover knows a witness for x then it can convince the
verifier; it should be sound, in that no malicious prover can convince the verifier
of a false statement, and zero-knowledge: the execution of the protocol reveals
no information to the verifier (beyond the fact that x is in the language).

Feige and Shamir [FS90] proposed a relaxation of zero-knowledge called wit-
ness indistinguishability, which only requires that it is indistinguishable which
witness was used to compute a proof. This notion turns out to be sufficient in
many contexts. Non-interactive zero-knowledge proofs (NIZK) [BFM88] allow
the prover to convince the verifier by only sending a single message. However,
they rely on the existence of a common-reference string (CRS) to which prover
and verifier have access. The CRS is assumed to have been set up by some
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trusted party, which represents a serious limitation for all applications of NIZK
in scenarios where parties mutually distrust each other.

Dwork and Naor [DN00] constructed a two-round witness-indistinguishable
proof system for NP in the plain model, that is, where no trusted CRS is assumed.
In their protocol the first message (sent from the verifier to the prover) can
be fixed once and for all, and the second one provides the actual proof. They
called such protocols zaps. Barak et al. [BOV03] introduced the concept of non-
interactive zaps, where the prover sends a single message to deliver the proof.
Non-interactive zaps are thus non-interactive proof systems without a CRS.
Since in this scenario it is impossible to achieve zero-knowledge [GO94], wit-
ness indistinguishability (WI) is the best one can hope for. Groth, Ostrovsky,
and Sahai constructed the first non-interactive zaps from standard assumptions
[GOS06a]. Subsequently [GOS06a], there have been many works extending this
line of research [BW06,BW07,Gro06].

All aforementioned schemes guarantee that proofs can only be computed
for valid statements. Arguments of knowledge are proof systems that satisfy a
stronger notion of soundness. They require the prover to know a witness for the
proved statement. This is formalized via the notion of knowledge soundness that
demands that for each prover there exists an efficient extractor which can extract
a witness from the prover whenever the latter outputs a valid proof. (When this
holds for computationally bounded provers only, we speak of arguments rather
than proofs.) Since, by definition, false statements have no witnesses, knowledge
soundness implies the standard notion of (computational) soundness.

Succinct non-interactive arguments of knowledge (SNARKs) are non-
interactive proof systems with short (that is, independent of the size of the
statement or the witness) efficiently verifiable proofs that satisfy knowledge
soundness. SNARKs were initially introduced for verifiable computation and are
now the most widely deployed proof systems in the real world. They are used
in cryptocurrencies such as Zcash [BCG+14], which guarantees anonymity via
zero-knowledge SNARKs. As for all NIZK systems, a drawback of SNARKs is
that they require a CRS, that is, they require a one-time trusted setup of public
parameters. Since for SNARKs every CRS has a simulation trapdoor, subversion
of these parameters leads to full compromise of soundness.

Subversion Resistance. Motivated by the subversion of trusted public param-
eters in standardized cryptographic protocols led by mass-surveillance activities,
Bellare et al. [BFS16] investigate what security properties can be maintained for
NIZK when its trusted parameters are subverted. CRS’s for NIZK are espe-
cially easy to subvert, since they must be subvertible by design: zero knowledge
requires that an honest CRS must be indistinguishable from a backdoored one,
where the backdoor is the trapdoor used to simulate proofs.

Bellare et al. defined multiple security properties that protect against param-
eter subversion: subversion soundness (S-SND) means that no adversary can
generate a malicious CRS together with a valid proof for a false statement;
subversion zero knowledge (S-ZK) requires that even if the adversary sets up
the CRS, there exists a simulator able to produce its full view; and subversion
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witness indistinguishability (S-WI) formalizes that even for proofs that were
made under a subverted CRS, it is still infeasible to tell which of two witnesses
was used.

Following Goldreich and Oren [GO94], Bellare et al. [BFS16] also showed that
it is impossible to achieve subversion soundness and (standard) zero-knowledge
simultaneously. For subversion-sound proof systems, subversion witness indistin-
guishability is thus the best one can hope for. The authors [BFS16] observe that
since proof systems that do not rely on a CRS cannot succumb to CRS-subversion
attacks, non-interactive zaps [GOS06a] achieve both S-SND and S-WI.

Bellare et al. did not consider the stronger notion of knowledge soundness,
which is the notion achieved by SNARKs, and which in many applications is
the required notion for the used proof systems. For example, for all kinds of
anonymous authentication, users prove knowledge of signatures (often called
certificates or credentials, depending on the context); in this case soundness is
not sufficient, as signatures always exist, but in the security proof they must
actually be extracted in order to rely on their unforgeability. Fuchsbauer [Fuc18]
has recently defined a subversion-resistant notion of knowledge soundness but
left it open to give a scheme that achieves it. Such a scheme would protect
against possible parameter subversion in any context where proving knowledge
of a witness is required.

Our Contribution. Our result can be summarized as follows:

(i) We provide the first non-interactive zap with knowledge soundness; that is,
a witness-indistinguishable proof system without parameters for which there
exists an extractor that recovers a witness from every valid proof.

(ii) Our zap is also the first fully subversion-resistant WI argument-of-knowledge
system. In particular, it satisfies the recently defined notion of subversion
knowledge soundness [Fuc18], as well as subversion witness indistinguisha-
bility [BFS16] (the strongest notion compatible with S-SND).

Bellare et al. [BFS16] introduce a new type of knowledge-of-exponent assump-
tion, which they call DH-KE. They prove (standard) soundness and subversion
zero knowledge of their main construction under DH-KE and the decision lin-
ear assumption (DLin) [BBS04]. Our construction builds on the DLin-based
non-interactive zap from [GOS06a], whose soundness we upgrade to knowledge
soundness, assuming DH-KE. As for this zap, the language of our proof system
is circuit satisfiability and thus universal. Groth et al. [GOS06a] starting point is
a “dual-mode” [GOS06b,PVW08] non-interactive proof system, for which there
are two indistinguishable types of CRS: one leading to proofs that are perfectly
sound and the other leading to proofs that are perfectly WI. To construct a
non-interactive zap, they let the prover choose the CRS. As the prover could
choose a CRS that leads to “unsound” proofs, the prover must actually choose
two CRS’s that are related in a way that guarantees that at least one of them
is of the “sound” type. It must then provide a proof of the statement under
both of them. The authors [GOS06a] then show that this protocol still achieves
computational WI.
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We turn their construction into a proof of knowledge by again doubling
the proof, thereby forcing the prover to prove knowledge of a trapdoor which
allows to extract the witness from one of the sound proofs. We prove our non-
interactive zap of knowledge secure under the same assumptions as Bellare et al.’s
S-ZK+SND scheme. Our result is summarized in the following theorem.

Theorem 1. Assuming DLin and DH-KE, there exists a non-interactive zap for
circuit satisfiability that satisfies knowledge soundness. The proof size is O(λk),
where λ is the security parameter and k is the size of the circuit.

Let us finally note that our system also implies a proof system which achieves
(standard) knowledge soundness, (standard) zero knowledge and subversion wit-
ness indistinguishability. This is obtained by plugging our zap of knowledge into
the construction by Bellare et al. [BFS16] that achieves SND, ZK and S-WI.

Their scheme uses a length-doubling pseudorandom generator (PRG) and
a CRS contains a random bit string σ of length 2λ (where λ is the security
parameter). A proof for statement x is a zap for the following statement: either
x is a valid statement or σ is in the range of the PRG. Using a zap of knowledge
(ZaK), knowledge soundness follows from knowledge soundness of the ZaK since
with overwhelming probability σ is not in the range of the PRG. (The extractor
must thus extract a witness for x.) Zero knowledge follows from WI of the zap,
as after replacing σ with an element in the range of the PRG, proofs can be
simulated using a preimage of σ. Finally, S-WI follows from S-WI of the zap.

Related Work. Since the introduction of non-interactive zaps [BOV03,
GOS06a], a number of papers have studied and provided different (and more
efficient) implementations of zaps. Groth and Sahai [GS08] provided a more gen-
eral framework for NIWI and NIZK proofs, which leads to more efficient proofs
for concrete languages (instead of circuit satisfiability). Furthermore, their proof
system can also be based on other assumptions apart from DLin, such as SXDH,
allowing for shorter proofs.

Bitanski and Paneth [BP15] presented a different approach to constructing
zaps and WI proofs based on indistinguishability obfuscation (iO), but construc-
tions using iO are only of theoretical interest. Ràfols [Ràf15] showed how to base
non-interactive zaps on Groth-Sahai proofs, thereby achieving an improvement
in efficiency (by a constant factor) over the original construction [GOS06a]. Her
construction can be implemented in asymmetric (“Type-1”) pairing groups.

Her scheme can also serve as the starting point for a scheme achieving knowl-
edge soundness and we explore this in the full version [FO18]. (See Table 1 for an
overview.) Although this scheme is more efficient, we decided to concentrate on
building a scheme from [GOS06a], as we can prove it secure under the assump-
tions that underlie Bellare et al.’s [BFS16] SND+S-ZK scheme; in contrast, a
scheme built on asymmetric bilinear groups would require an analogue of the
DH-KE assumption in such groups (we refer to it as ADH-KE in [FO18]). This
is a qualitatively different assumption, as without a symmetric pairing it cannot
be checked whether the triple returned by the adversary is of the right form
(see Fig. 3); it would thus not be efficiently decidable if an adversary has won
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Table 1. Efficiency and security of the original zaps and our constructions of zaps of
knowledge, where w is the number of wires, g the number of gates and |G| is the size
of an element of a group G.

Protocol Efficiency Assumptions

Zap [GOS06a] (18w + 12g + 5) |G| DLin

Zap of knwlg, Sect. 5 (36w + 24g + 14) |G| DLin, DH-KE

Zap [Ràf15] (of knwlg; [FO18]) (12w + 8g + 3) (|G1|+|G2|) SXDH (ADH-KE)

the game. Finally, our main scheme achieves tight security, whereas our proof
of knowledge soundness with asymmetric pairings (which we present in the full
version [FO18]) has a security loss that is linear in the circuit size.

2 Preliminaries

Notation. Let λ be the security parameter. We let M.rl(λ) be a length function
in λ defining the length of the randomness for a probabilistic machine M. When
sampling the value a uniformly at random from the set S, we write a ←$ S. When
sampling the value a from the probabilistic algorithm M, we write a ← M.
We use := to denote assignment. Elements of Zp are denoted in lower case,
group elements are denoted with capital letters. We employ additive notation
for groups. Let R be a relation between statements denoted by φ and witnesses
denoted by w. By R(φ) we denote the set of possible witnesses for the statement
φ in R. We let L(R) := {φ : R(φ) �= ∅} be the language associated to R.

We consider the language of circuit satisfiability, which is NP-complete. For
a binary circuit C, the set R(C) is the set of inputs w that satisfy C(w) = 1.
Without loss of generality, we assume that circuits consist solely of NAND gates.
Unless otherwise specified, all following algorithms are assumed to be randomized
and to run in time poly(λ). As Bellare et al. [BFS16], who follow [Gol93], we
only consider uniform machines to model the adversary A and the extractor
Ext. (See [BFS16,Fuc18] for discussions on how this choice affects the hardness
assumptions and security guarantees.)

Bilinear Groups. Throughout this work, we make use of prime-order abelian
groups equipped with a (symmetric) bilinear map. Concretely, we assume the
existence of groups G,GT of odd prime order p of length λ and an efficiently
computable non-degenerate bilinear map e : G×G → GT . That is, the map e is
such that for all U, V ∈ G and a, b ∈ Zp : e(aU, bV ) = ab · e(U, V ), and if U is a
generator of G, then e(U,U) is a generator of GT . We say that a bilinear group
is verifiable if there exists an efficient verification algorithm that outputs true if
and only if Γ = (p,G,GT , e) is the description of a bilinear group. For instance,
the elliptic-curve group of [BBS04] equipped with the Weil pairing is publicly
verifiable. In most practical scenarios, the group description is embedded as a
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part of the protocol specification and agreed upon in advance; in these cases
there is no need for verification.

Throughout this paper, we assume the existence of a deterministic algorithm
G that, given as input the security parameter in unary 1λ, outputs a bilinear
group description Γ . The same assumption was already employed by Bellare et al.
[BFS16]. The main advantage in choosing G to be deterministic is that every
entity in the scheme can (re)compute the group from the security parameter,
and no party must be trusted with generating the group. Moreover, real-world
pairing schemes are defined for groups that are fixed for some λ. For the sake
of simplicity, we define all our schemes w.r.t. a group description Γ and assume
that the security parameter (λ ∈ N such that Γ := G(1λ)) can be derived from Γ .

Extractable Commitment Schemes. A commitment scheme Com consists of
the following three algorithms:

– (σ, τ) ← Com.K(Γ ), the key generation algorithm, outputs a CRS σ together
with the trapdoor information τ .

– (C, r) ← Com.C(σ, v), the commitment algorithm, outputs a commitment C
to the given value v together with the opening information r.

– bool ← Com.O(σ,C, v, r), the opening algorithm, outputs true if C is a com-
mitment to v witnessed by r, and false otherwise.

In our case, Com.C returns the used randomness and Com.O simply recom-
putes the commitment and checks that C = Com.C(V ; r). Consequently, correct-
ness of the scheme is trivial. To ease notation for commitments and openings,
we will always assume that the group description Γ can be deduced from σ, and
omit the opening information from the returned value.

Generally, we require commitment schemes to be hiding and binding. Loosely
speaking, a scheme is hiding if the commitment C reveals no information about v.
A scheme is binding if a cheating committer cannot change its mind about the
value it committed to. Formally, it is hard to find C, v, r, v′ and r′ such that
v �= v′ and Com.O(σ,C, v, r) = true = Com.O(σ,C, v′, r′).

We also require a perfectly binding commitment scheme to be extractable,
that is, Com is equipped with an efficient extraction algorithm Com.E that, given
as input the trapdoor information τ , recovers the value v to which C is bound.

Proof Systems. A non-interactive proof system Π for a relation R consists of
the following three algorithms:

– (σ, τ) ← Π.K(Γ ), the CRS generation algorithm that outputs a CRS σ (and
possibly some trapdoor information τ). Since we are dealing with publicly
verifiable protocols, the trapdoor information τ will be omitted in most cases
and used solely in the proofs or when combining protocols.

– π ← Π.P(σ, φ,w), a prover which takes as input some (φ,w) ∈ R and a CRS
σ, and outputs a proof π.

– bool ← Π.V(σ, φ, π) a verifier that, given as input a statement φ together with
a proof π outputs true or false, indicating acceptance of the proof.
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Fig. 1. Witness indistinguishability (WI) game.

A proof is complete if every correctly generated proof verifies. If the CRS is
clear from the context, we omit σ from the arguments of Π.P or Π.V.

Zaps. A zap is a two-round, witness-indistinguishable proof system where the
first-round message is fixed “once and for all” [DN00] for all future instances of
the protocol. The notion of witness-indistinguishability [FLS90] informally states
that no PPT adversary can tell which of two possible witnesses has been used
to construct a proof.

Definition 2. A proof system Π is witness-indistinguishable (WI) for relation R
if Advwi

Π,R,A(λ) is negligible in λ for any PPT adversary A, where Advwi
Π,R,A(λ) :=

Pr
[
WIΠ,R,A(λ)

] − 1/2 and WIΠ,R,A(λ) is depicted in Fig. 1.

A zap is non-interactive if there is no first-round message from the verifier
to the prover: the prover simply sends a single message. The proof system thus
reduces to a pair (P,V) or can be considered as defined above, but with a CRS
generation algorithm that always outputs ⊥. We next define the soundness notion
for non-interactive arguments of knowledge.

Knowledge soundness [BG93] means that for any prover able to produce a
valid proof there exists an efficient algorithm, which has access to the prover’s
random coins, capable of extracting a witness for the given statement.

Definition 3. A proof system Π is knowledge-sound for R if for any PPT adver-
sary A there exists a PPT extractor Ext such that AdvksndA,Ext,R,Π(λ) is negligible
in λ, where AdvksndΠ,R,A,Ext(λ) := Pr

[
KSNDΠ,R,A,Ext(λ)

]
and KSNDA,Ext,R,Π(λ) is

defined in Fig. 2. An argument of knowledge is a knowledge-sound proof system.

Variations of this argument are often found in the literature. Most of them
allow the extractor to rewind the adversary for interactive proof systems in

Fig. 2. Game for knowledge soundness.
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Fig. 3. Games for Assumptions 1 (DLin) and 2 (DH-KE).

addition to black-box access, most notably for Σ-protocols. In case of non-
interactive provers the extractor is provided with the adversary’s random coins.

Assumptions. Our protocol is based on the DH-KE assumption and the exis-
tence of a homomorphic extractable commitment scheme. Such schemes have
been widely studied and there are constructions from standard assumptions such
as the subgroup decision assumption or the decisional linear (DLin) assumption
[BBS04]. For this work, we rely on the latter, which is also used in [GOS06a].

The DLin assumption [BBS04] for an abelian group G = 〈G〉 of order p states
that it is computationally difficult to distinguish (uG, vG, urG, vsG, (r + s)G)
with u, v, r, s ←$Zp from a uniformly random 5-tuple in G.

Assumption 1 (DLin). We say that the Decisional Linear assumption holds
for the group generator G if for all PPT adversaries A we have:

AdvdlinG,A (λ) := Pr
[
DLinG,A(λ)

] − 1/2 = negl(λ) ,

where the game DLinG,A(λ) is defined in Fig. 3.

The intuition behind DH-KE [BFS16] is that it is difficult for some machine
to produce a (Diffie-Hellman) DH triple (xG, yG, xyG) in G without knowing
at least x or y. The assumption is in the spirit of earlier knowledge-of-exponent
assumptions [Gro10,BCI+10], whose simplest form states that given (G, xG) ∈
G

2 it is hard to return (yG, xyG) without knowing y.

Assumption 2 (DH-KE). The Diffie-Hellman Knowledge of Exponent ass-
umption holds for the bilinear group generator G if for any PPT adversary A
there exists a PPT extractor Ext such that:

AdvdhkeG,A,Ext(λ) := Pr
[
DH-KEG,A,Ext(λ)

]
= negl(λ) ,

where the game DH-KEG,A,Ext(λ) is defined in Fig. 3.

In other variants of knowledge of exponent assumptions the adversary is pro-
vided with some auxiliary information, which amounts to a stronger assumption.
This is typically required as in the security proofs the reduction obtains a chal-
lenge which it needs to embed in the input to the adversary. In our specific case,
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all the proof material is generated by the prover itself, including the CRS. Con-
sequently, the game DH-KE considers an adversary that simply takes as input
a group description, without any auxiliary information. Compared to [BFS16],
where the adversary is provided with additional information, our variant is thus
weaker.

3 An Extractable Commitment Scheme from DLin

We recall the homomorphic commitment scheme based on linear encryption
[BBS04] by Groth et al. [GOS06a]. It defines two types of key generation:
a perfectly hiding and perfectly binding one. Given a bilinear group Γ :=
(p,G,GT , e,G), it defines two key-generation algorithms Com.K(b) and Com.K(h)

producing binding and hiding keys, respectively:

Com.K(h)

τ := (ru, sv) ←$ (Z∗
p)

2; (x, y) ←$ (Z∗
p)

2

F := xG, H := yG

(U, V, W ) := (ruF, svH, (ru + sv)G)

σ := (F, H, U, V, W )

return (σ, τ)

Com.K(b)

τ := (x, y, z) ←$ (Z∗
p)

3; (ru, sv) ←$ (Z∗
p)

2

F := xG, H := yG

(U, V, W ) := (ruF, svH, (ru + sv + z)G)

σ := (F, H, U, V, W )

return (σ, τ)

In order to commit to a value m ∈ Zp, one samples r, s ←$Zp and returns:

C = Com.C(m; r, s) =
(
mU + rF,mV + sH,mW + (r + s)G

)
.

Since Com.C(m0; r0, s0)+Com.C(m1; r1, s1) = Com.C(m0 +m1; r0 + r1, s0 + s1),
commitments are additively homomorphic. A committed value is opened by
providing the randomness (r, s). Under a perfectly hiding key, a commitment
to m can be opened to any value m′, given trapdoor information τ = (ru, sv):

Com.C(m; r, s) =
(
(mru + r)F, (msv + s)V, (mru + r + msv + s)G

)

= Com.C
(
m′; r − (m′ − m)ru, s − (m′ − m)sv)

)
.

(1)

Under the DLin assumption, keys output by the perfectly hiding setup are com-
putationally indistinguishable from ones output by the perfectly binding setup.
For this reason, the perfectly hiding setup leads to computationally binding
commitments and vice versa.

We say that a triple of group elements is linear w.r.t. (F,H,G) if it is of the
form (rF, sH, (r + s)G) for some r, s ∈ Zp. Commitments to 0 are linear triples
and every commitment under a hiding key is also a linear. Under a binding key
we have:

Com.C(m; r, s) =
(
(mru + r)F, (msv + s)H, mzG + (mru + r + msv + s)G

)
.

A commitment to m is thus a linear encryption [BBS04] of mzG ∈ G1 under
randomness (mru + r,msv + s). Given a commitment C and the trapdoor infor-
mation τ = (x, y, z), one can extract the committed message. The extraction
algorithm Com.E is defined as:
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Com.E
(
τ, (C0, C1, C2)

)
:= dLog

(
z−1(C2 − x−1C0 − y−1C1)

)
, (2)

where dLog can be efficiently computed if the message space is of logarithmic
size; for instance, assuming m ∈ {0, 1}, we define Com.E to return 0 if (C2 −
x−1C0 − y−1C1) is the identity element, and 1 otherwise.

Theorem 4 ([GOS06a]). Assuming DLin, Com, as defined above, is an
extractable homomorphic commitment scheme that is:

– perfectly binding, computationally hiding when instantiated with Com.K(b);
– computationally binding, perfectly hiding when instantiated with Com.K(h).

The “parameter switching” technique, which defines different types of keys
that are computationally indistinguishable, has proved very useful and also
applies to encryption schemes. The idea has been defined (and named) several
times. “Parameter switching” [GOS06a] is also called “meaningful/meaningless
encryption” [KN08], “dual-mode encryption” [PVW08] and “lossy encryption”
[BHY09].

Proofs of Binarity. As a building block for their zaps Groth et al. [GOS06a]
first construct a witness-indistinguishable non-interactive proof system Bin.
Given a commitment key σ = (F,H,U, V,W ) and a commitment C ∈ G

3, it
allows to prove that C commits to a value in {0, 1} under σ. The proof is per-
fectly sound and perfectly witness-indistinguishable. (We recall their scheme in
the full version [FO18].)

4 Non-interactive Zaps

To construct a non-interactive zap (i.e., a WI proof system without a CRS),
Groth et al. [GOS06a] first construct a proof system for circuit satisfiability with
a CRS, based on the commitment scheme from Sect. 3 and their proof of binarity.
Then, in order to make their scheme CRS-less, they define the prover to pick two
CRS’s that are correlated in a way that makes it impossible for the adversary
to cheat under both of them.

As the commitment scheme described in Sect. 3 is homomorphic, it is possible
to perform linear operations on commitments, and in particular prove logical
relations between them.

First, proving that either C or C ′ := C−(U, V,W ) is linear proves that C is a
commitment to a bit. In order to prove that committed values satisfy wire assign-
ments of a NAND gate, Groth et al. [GOS06b] observe that if a, b ∈ {0, 1} then
c := ¬(a∧b) iff t := a+b+2c−2 ∈ {0, 1}. Reasoning with homomorphic commit-
ments, we have that three commitments A := (A0, A1, A2), B := (B0, B1, B2),
and C := (C0, C1, C2) are bound respectively to the values a, b, c, such that
c = ¬(a ∧ b), if and only if

T := A + B + 2 · C − 2 · (U, V,W ) (3)



54 G. Fuchsbauer and M. Orrù

Fig. 4. The (non-interactive) ZAP protocol of [GOS06a].

is a commitment to either 0 or 1. Thus, to prove that A,B,C are commitments
to values in {0, 1} and that C is a commitment to the NAND of the values in
A and B, it is sufficient to prove that A, B, C and T are all bit commitments.
With these observations, GOS construct a perfectly witness-indistinguishable
proof system Circ for circuit satisfiability as follows:

The key generation algorithm Circ.K simply emulates Com.K(h), that is, it
generates a hiding commitment key. The prover Circ.P(σ, C, w) takes as input a
circuit C and a witness w satisfying C(w) = 1, and does the following: represent
the circuit evaluation C(w) in such a way that wk is the value running in the k-th
wire. For each wk, produce a commitment Ck ← Com.C(σ,wk) to wk and prove
it is to a bit under σ using proof system Bin. For each gate, construct T from
the commitments corresponding to the ingoing and outgoing wires as above and
prove that it too is a commitment to 0 or 1. For the output commitment, create a
commitment Cout to 1 that can be easily reproduced and checked by the verifier:
Cout := Com.C(σ, 1; (0, 0)). Let Π be the collection of all other commitments
together with the respective proofs of binarity generated. Return Π.

The verifier Circ.V(σ, C,Π), computes Cout := Com.C(σ, 1; (0, 0)) and for
every gate the value T as in Eq. (3); using Bin.V, it checks that all the wire
commitments are to values in {0, 1} and respect the gates (by checking the val-
ues T ); if all verifications succeed, return true. Otherwise, return false.

Theorem 5 ([GOS06a]). Assuming DLin, Circ is a non-interactive, perfectly
sound computationally witness-indistinguishable proof system.

The reason why we cannot let the prover choose the CRS in Circ is that it
could chose it as a perfectly hiding CRS and then simulate proofs. However, if
the prover must construct two proofs under two different CRS’s which are related
in such a way that at least one of them is not linear (and thus binding), then
the prover cannot cheat. In particular, note that given a 5-tuple σ0 ∈ G

5, and
defining σ1 := σ0 +(0, 0, 0, 0, G) then at most one of σ0, σ1 is linear. At the same
time, both of them are valid CRS’s. With this last trick, it is straightforward to
construct the zap scheme ZAP, as illustrated in Fig. 4.

Theorem 6 ([GOS06a]). Assuming DLin, ZAP is a non-interactive zap with
perfect soundness and computational witness indistinguishability.

Remark 7. We note that soundness of ZAP relies only on the fact that Γ is a
bilinear group. In [GOS06a] the prover is allowed to generate Γ and it is required
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Fig. 5. The ZAK protocol.

that Γ is verifiable. We presented a zap for deterministically generated groups, as
considered by Bellare et al. [BFS16], which is also required for our construction
of non-interactive zaps of knowledge in the next section.

5 ZAK: A Non-interactive Zap of Knowledge

We now present our NIWI argument of knowledge for circuit satisfiability. The
high-level idea of our protocol is to double the ZAP proof of [GOS06a] and link
the two CRS’s so the prover must know the extraction trapdoor for one of them.
Whereas the protocol ZAP used two Circ proofs to construct a zap from a proof
that requires a CRS, we will use two zap proofs to not only prove circuit sat-
isfiability, but to prove knowledge of a satisfying assignment. More specifically,
knowledge soundness is obtained by generating two independent zap proofs, and
then linking the respective trapdoor information with multiple DH in a matrix
of group elements Δ. This additional matrix Δ, that we call linking element, is
constructed in such a way that (under DH-KE) it is possible to recover the trap-
door from one of the two zap proofs, and use it to extract the witness from the
commitments contained in a valid zap proof. Witness indistinguishability of the
single proofs follows immediately from [GOS06a], but our proofs also contain the
linking element Δ, which depend on the randomness of the CRS’s. We thus have
to argue that these additional elements do not harm witness indistinguishability.

Bellare et al. [BFS16] also used an extractor to recover the trapdoor hidden
in an adversarially generated CRS to construct a scheme satisfying subversion-
zero knowledge. Our protocol is detailed in Fig. 5, where by DH we denote the
algorithm that checks that δi,j is the CDH of (σ0,0)i and (σ1,0)j (see below).

The trapdoor information τ0 = (x0, y0) and τ1 = (x1, y1) is correlated in Δ
to form the following products:

Δ := [δi,j ]i,j∈{0,1} =

[
x0x1G x0y1G

y0x1G y0y1G

]

(4)
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Correctness of Δ can be checked by the verification algorithm using the
bilinear map. For i = 0, 1, let the CRS be σi = (Fi,Hi, Ui, Vi,Wi), and let xi, yi

be such that:

Fi := xiG, Hi := yiG,

in which case Δ is constructed as in Eq. (4). The verifier checks that the following
holds:

e(δ0,0, G) = e(F0, F1), e(δ0,1, G) = e(F0,H1),
e(δ1,0, G) = e(H0, F1), e(δ1,1, G) = e(H0,H1).

(5)

Let us denote by DH the algorithm that, given as input Σ and Δ returns true if
all equalities of Eq. (5) are satisfied, and false otherwise. This procedure is used
by the verification equation, as detailed in Fig. 5.

We now proceed with the proof of our main result, Theorem1, which we
rephrase here for completeness:

Theorem 1. Assume that DLin and DH-KE hold for G. Then ZAK as defined
in Fig. 5 is a non-interactive zap that satisfies knowledge soundness and witness
indistinguishability. In particular, we have

AdvksndZAK (λ) ≤ 4 · Advdh-ke(λ) and Advwi
ZAK(λ) ≤ 8 · Advdlin(λ).

Completeness of the protocol is trivial: the prover (respectively, the verifier)
simply performs 4 iterations of Circ proofs (respectively, verifications), and there-
fore correctness is implied by Theorem5 and the fact that Δ as in Eq. 4 satisfies
Eq. 5. We now prove knowledge soundness and witness indistinguishability.

Proof (of computational knowledge soundness). We show that for any adversary
able to produce a valid proof we can construct a PPT extractor that can extract
a witness from such a proof with overwhelming probability.

Let A be an adversarial prover in game KSND(λ) (Fig. 2, with Π.K void). On
input 1λ, A returns a proof consisting of σi,0 = (Fi,Hi, Ui, Vi,Wi) for i ∈ {0, 1},
of Δ = [δi,j ]i,j∈{0,1} and Π = [πi,j ]i,j∈{0,1}. From A we construct four adversaries
Ai,j (for i, j ∈ {0, 1}) that execute A and output some components of the proof
produced by A, namely

(F0, F1, δ0,0) = (x0G, x1G, x0x1G), (for A0,0)
(F0, H1, δ0,1) = (x0G, y1G, x0y1G), (for A0,1)
(H0, F1, δ1,0) = (y0G, x1G, y0x1G), (for A1,0)
(H0, H1, δ0,1) = (y0G, y1G, y0y1G), (for A1,1)

where xi, yi are such that Fi = xiG, Hi = yiG, and these four equations hold if
ZAK.V(C, (Σ,Δ,Π)) returns true. By the DH-KE assumption there exist extrac-
tors Exti,j for each of the adversaries Ai,j that given its coins outputs:

x0 or x1, x0 or y1, (for Ext0,0, Ext0,1)
y0 or x1, y0 or y1 (for Ext1,0, Ext1,1)
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if the above equations hold. The statement (x0∨x1)∧(y0∨x1)∧(x0∨y1)∧(y0∨y1)
is logically equivalent to (x0 ∧ y0) ∨ (x1 ∧ y1). This means that together, these
four extractors allow to recover either (x0, y0) or (x1, y1), that is, the extraction
trapdoor for one of the CRS’s. Let i∗ be such that (xi∗ , yi∗) is the extracted pair.

For j ∈ {0, 1}, let Fi∗ ,Hi∗ , Ui∗ , Vi∗ ,Wi∗ ∈ G be such that σi∗,j = (Fi∗ ,Hi∗ ,
Ui∗ , Vi∗ ,Wi∗ + jG). Let j∗ ∈ {0, 1} be the smallest integer satisfying:

x−1
i∗ Ui∗ + y−1

i∗ Vi∗ − (Wi∗ + j∗G) �= 0G.

The above implies that σi∗,j∗ is not a linear tuple, which means that it is a
binding CRS. Let C(i∗,j∗),k denote the commitment to the k-th wire contained
in πi∗,j∗ . Using the extraction algorithm described in Eq. (2) we can recover this
witness:

wk = Com.E
(
(xi∗ , yi∗), C(i∗,j∗),k

)
.

It remains to prove that the extracted witness is indeed correct. Upon
receiving a valid proof from adversary A, we know from the verification equa-
tion (the subroutine DH) that each Ai,j will output a DH triple. Therefore,
extractors Exti,j together recover τi∗ = (xi∗ , yj∗) with probability at least
1 − ∑

i,j∈{0,1} AdvdhkeG,Ai,j ,Exti,j (λ), that is, by DH-KE, with overwhelming prob-
ability. Since the commitment scheme Com is perfectly binding if the CRS is
not a linear tuple (Theorem 4), a message wk is always successfully extracted.
Correctness of wk follows from the underlying proof system: by perfect sound-
ness of Bin we are guaranteed that wk ∈ {0, 1}; by perfect soundness of Circ
(Theorem 5) that each gate evaluation is correct. The bound in the construction
of the extractor is tight: we have Advksnd(λ) ≤ 4 · Advdhke(λ). �

Proof (of computational witness indistinguishability). Consider an adversary in
the WI game (Fig. 1, where Π.K is void) that makes q = q(λ) queries to the
Prove oracle, each of the form (C(k), w(k)

0 , w(k)
1 ), for 0 ≤ k < q. Consider the fol-

lowing sequence of hybrid games where H0 corresponds to WIZAK,CIRC-SAT,A(λ)
with b = 0 and H12 corresponds to WIZAK,CIRC-SAT,A(λ) with b = 1. The games
differ in how the Prove oracle is implemented, which is specified in Fig. 6 for
the first half of the hybrids (the second half is analogous). We give an overview
of all hybrids in Table 2 below.

H0 The challenger simulates an honest Prove oracle, using (for every k < q)
the first witness w(k)

0 supplied by the adversary. It outputs (Σ(k),Δ(k),Π(k)),
where in particular we recall:

Σ(k) =

[
σ
(k)
0,0 = (F (k)

0 , H(k)
0 , U (k)

0 , V (k)
0 , W (k)

0 )

σ
(k)
1,0 = (F (k)

1 , H(k)
1 , U (k)

1 , V (k)
1 , W (k)

1 )

]

and Π(k) =

[
π
(k)
0,0 π

(k)
0,1

π
(k)
1,0 π

(k)
1,1

]

.

Recall that the two rows of [Σ(k)|Π(k)] are independent zaps and that σ(k)
0,0

and σ(k)
1,0 are chosen to be hiding. The Prove oracle computes σ(k)

i,j which
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Fig. 6. Overview of the simulations of the prove oracle in the first hybrid games for
the proof of WI. Hybrids H1 and H4 are defined by ignoring all boxes (the light gray

highlights the differences with respect to the previous hybrids), whereas H2 and H5

include the light boxes but not the gray one and H3 includes all boxes.

is of the form σ(k)
i,j =

(
F (k)

i , H(k)
i , U (k)

i , V (k)
i , W (k)

i + jG
)
, for i, j ∈ {0, 1}.

Furthermore, π(k)
i,j is a Circ proof using w(k)

0 under the CRS σ(k)
i,j .

H1 For every Prove query, the simulator uses witness w(k)
1 (instead of w(k)

0 ) to
produce π(k)

0,0. As the respective CRS σ(k)
0,0 was generated using the perfectly

hiding commitment setup Circ.K, the two hybrids are distributed equivalently
(any commitment under a hiding key is a random linear triple; cf. Eq. (1)).

H2 For every Prove query, the simulator now generates CRS σ(k)
0,0 as a binding

key via Com.K(b); σ(k)
0,1 is generated as before (adding (0, 0, 0, 0, G)), and so are

all proofs. Note that the linking elements Δ(k) can be constructed knowing
only the trapdoor (x(k)

1 , y(k)
1 ) of the CRS σ(k)

1,0, which remained unchanged:

Δ(k) =

[
y
(k)
1 H

(k)
0 y

(k)
1 F

(k)
0

x
(k)
1 H

(k)
0 x

(k)
1 F

(k)
0

]

. (6)

H1 and H2 are computationally indistinguishable under the DLin assumption:
given a DLin challenge (F,H,U, V,W ), the reduction can exploit the ran-
dom self-reducibility property of DLin to construct q instances of the DLin
challenge: ∀k < q select x̄(k), ȳ(k), r̄(k), s̄(k), z̄(k) ←$Zp and compute σ(k)

0,0 as(
x̄(k)F, ȳ(k)H, r̄(k)x̄(k)F + z̄(k)x̄(k)U, s̄(k)ȳ(k)H + z̄(k)ȳ(k)V, (r̄(k) + s̄(k))G

+z̄(k)W
)
.

Each σ(k)
0,0 is a random linear tuple if and only if the DLin challenge is, and

it is a uniformly random tuple if the DLin challenge is, as shown in [BFS16].
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Table 2. Overview of changes throughout the hybrids: (h) denotes hiding setup;
(b) denotes binding setup; wb identifies the witness used to produce the proof.

Hybrid σ
(k)
0,0 π

(k)
0,0 σ

(k)
0,1 π

(k)
0,1 σ

(k)
1,0 π

(k)
1,0 σ

(k)
1,1 π

(k)
1,1

H0 (h) w0 (b) w0 (h) w0 (b) w0

H1 w1

H2 (b)

H3 (h)

H4 w1

H5 (b)

H6 (h)

H7 w1

H8 (b)

H9 (h)

H10 w1

H11 (b)

H12 (h) w1 (b) w1 (h) w1 (b) w1

Computing σ(k)
1,0 as in H1 (hiding) and defining Δ as in Eq. 6, the simulator

generates the rest of the game as defined. It returns the adversary’s guess
and thus breaks DLin whenever the adversary distinguishes H1 and H2.

H3 The simulator replaces each CRS σ(k)
0,1 for all k < q with a hiding commitment

and defines σ(k)
0,0 := σ(k)

0,1 − (0, 0, 0, 0, G), which is therefore (once again) bind-
ing. More specifically, the simulator creates a linear tuple invoking Circ.K:

σ(k)
0,1 =

(
x(k)
0 G, y(k)

0 G, x(k)
0 r(k)G, y(k)

0 s(k)G, (r(k) + s(k))G
)

where x(k)
0 , y(k)

0 , r(k), s(k) ←$Zp.
The two distributions are proven computationally indistinguishable under
DLin by an argument analogous to the one for H1 → H2. This time the
challenger constructs all the instances of the DLin challenge for σ(k)

0,1, while
σ(k)
0,0 is derived. From there, the proof proceeds identically.

H4 The simulator replaces each proof π(k)
0,1 by using w(k)

1 instead of w(k)
0 (∀k < q).

This hybrid is equivalently distributed as the previous one; this is proved via
the same argument as for H0 → H1.

H5 The simulator switches σ(k)
0,1 from a hiding to a binding key. This game hop is

analogous to the hop H1 → H2 (which switched σ(k)
0,0 from hiding to binding).

H6 The simulator switches σ(k)
0,0 from binding to hiding. Indistinguishability from

the previous hybrid is shown analogously to the hop H2 → H3. Note that
in this hybrid the first zap (σ(k)

0,0, π
(k)
0,0, π

(k)
0,1) is distributed according to the

protocol specification, but using witness w(k)
1 .



60 G. Fuchsbauer and M. Orrù

Hybrids H7 to H12 are now defined analogously to hybrids H1 to H6, except for
applying all changes to σ(k)

1 and π(k)
1,0 and π(k)

1,1. In hybrid H12 the adversary is
then given arguments of knowledge for witness w1.

As the difference between hybrids H1 and H12 is bounded by 8 times the
advantage of a DLin distinguisher, the adversary has total advantage

Advwi
ZAK,C,A(λ) ≤ 8 · AdvdlinZAK,C,A(λ) = negl(λ) .

The bound is thus tight. �
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