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Abstract. Boyen and Li [AsiaCrypt, 2016] proposed the first almost
tightly secure lattice identity-based encryption scheme in the standard
model. The security of such scheme is proved under learning with errors
assumption in the single-instance, single-challenge setting. In this work,
we show how to extend the Boyen-Li scheme to obtain an almost tight
security reduction in the multi-instance, multi-ciphertext setting, in
which the security loss incurred is poly(κ) in the security parameter κ
and independent of the number of adversarial queries.

1 Introduction

To prove that the security of a cryptosystem is based on some computational
problem, we provide a reductionist proof (in a properly defined security model)
that states: If there exists an efficient adversary with runtime t that breaks the
cryptosystem with non-negligible probability ε, then an efficient algorithm can
be constructed to solve the computational problem with non-negligible proba-
bility ε′ = ε/L in time t′ ≈ t, which contradicts the assumed hardness of such
computational problem. The parameter L ≥ 1 measures the tightness of such a
reduction proof. L usually can be affected by several factors, including the reduc-
tionist proof itself, the security parameter, the number of deployed instance of a
cryptosystem, the number of adversarial queries and so on. We say a reductionist
proof is tight if L is a small constant, and almost tight if L is a polynomial of the
security parameter and independent of other factors. An (almost) tight reduction
usually has smaller and fixed L, which allows us to implement the cryptosystem
with shorter parameters in a more accurate way. In contrast, the parameter L
in loose reductions is often large and depends on some uncontrollable quanti-
ties, e.g., the number of adversarial queries and the number of system instances.
These quantities are difficult to determine accurately when the cryptosystem is
deployed. Once these quantities are increased by adversaries, L could go beyond
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some bound fixed by the implementation, obscuring the cryptosystem’s security.
Therefore, (almost) tight reduction is a desirable feature for cryptosystems.

In [11] the authors propose an almost tightly secure identity-based encryption
(IBE) scheme from lattice. Its security is based on the hardness of learning-with-
errors (LWE) problem and the security of an instantiated pseudorandom function
(PRF). The reduction is tight in the sense that the security loss during the
reduction is independent of the number of key generation queries, say Qkey, made
by the adversary. To make the whole reduction tight, a PRF with tight reduction
is required. However, the security reduction given by Boyen and Li [11] is within
the “single instance, single challenge” (SISC) setting where the adversary is only
given one instance of the IBE scheme and one challenge ciphertext to attack. In
a more realistic scenario, many instances of an IBE scheme would be deployed
and there would be many ciphertexts targeted by an adversary. To model this
“multi-instance, multi-ciphertext” setting, the adversary is allowed to see any
polynomial number of scheme instances, say N , adaptively make any polynomial
number of identity key generation queries, say Qkey, and receive any polynomial
number of challenge ciphertexts, say Qenc. Generically, via a hybrid argument, if
an IBE scheme Π is ε secure (meaning that adversary breaks Π with probability
ε in a defined model) in the SISC setting, then Π is ε′ = ε · N · Qenc secure in
the MIMC setting. This security loss (i.e., N · Qenc) could be significant since N
and Qenc are controlled by the adversary and, therefore, could be large. So it is
preferable to have IBE schemes whose security does not depend on Qkey, Qenc

and N in the MIMC setting.
The first construction of IBE schemes from bilinear pairings with tight reduc-

tions in the MIMC setting was given by Hofheinz et al. [24]. Several subsequent
works, e.g., [4,17,19,20], show various improvements in weakening underlying
assumptions, computational efficiency and size of parameters. On the other hand,
there is no tightly secure IBE scheme in the MIMC setting from lattices.

In this work, we propose the first lattice-based IBE scheme that has almost
tight security reduction in the MIMC setting. We start from the almost tightly
secure lattice IBE scheme by Boyen and Li [11] (the only known such scheme,
albeit in the SISC setting), and extend it to have a tight security reduction in
the MIMC setting under the LWE assumption.

1.1 Our Techniques

We first briefly review the proof idea of Boyen-Li IBE scheme. Let CPRF be a
Boolean circuit of a secure one-bit output pseudorandom function PRF. In the
security reduction, given any identity, a simulator devises two publicly com-
putable matrices Fb = [A|ARid] and F1−b = [A|AR̃id + (1 − 2CPRF(k, id))G]
in which b = PRF(k, id) ∈ {0, 1}, G is the gadget matrix, and the low-norm
matrices Rid, R̃id are only known to the simulator. For a key generation query
on identity id, the simulator uses the G trapdoor of the matrix F1−b to sample
a decryption key. For the encryption (challenge) query, using its LWE samples,
the simulator constructs a challenge ciphertext c�

b = s�[A|ARid] + e� where
e is correlated with the secret matrix Rid. Since b is pseudorandom (if PRF is
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secure), the adversary would attack c�
b with probability ≈1/2, providing non-

trivial information for solving the LWE problem.
While this idea works well in the single instance and single ciphertext set-

ting, it runs into issues in the MIMC setting, particularly when we aim for an
(almost) tight reduction. Firstly, for, say, N instances of such IBE scheme, we
will have to provide N instances of PRF (specified by the key ki). In order to
make the reduction independent of N , we need to, at some point, switch all
instances of PRF to random function in a single step (or with poly(κ) steps that
only depends on the security parameter κ). It is not known how to achieve this
with existing normal PRFs (a straightforward hybrid argument introduces a fac-
tor N in the security loss). Secondly, in the Boyen-Li IBE scheme, the noise e
of the challenge ciphertext is setup by using Rid. By adding a small “smooth-
ing” noise to e, Boyen and Li showed that Rid remains hidden under polynomial
LWE modulus (assuming the PRF circuit is in NC1). If adversary is able to
make multiple challenge queries with the same identity or correlated identities,
such an information-theoretic argument would not work any more. Because the
adversary can gradually learn the information about Rid from multiple chal-
lenge ciphertexts on identities that are the same as/correlated to id, and fail the
reduction.

We deal with the two issues as follows. Firstly, recall one-bit output PRFs are
sufficient for Boyen-Li IBE scheme. We notice that the single-instance security of
a PRF with certain key-homomorphism could be tightly extend to the security
in multi-instance setting, as long as different PRF instances do not evaluate the
same input. A PRF PRF : K × X → Y is key homomorphic if (K,�) and (Y,+)
are groups, and given PRF(k,x),PRF(k′,x), then PRF(k� k′,x) = PRF(k,x) +
PRF(k′,x). Given an oracle access to PRF(k∗, ·) one can simulate a PRF with a
uniformly random key ki by freshly choosing a key k̃i and setting its output as
PRF(k∗, ·) + PRF(k̃i, ·). On the other hand, given an oracle access to a random
function F (·), one can simulate a random function as F ′(·) = F (·) + PRF(k̃i, ·)
if all queries are different. However, only approximate key-homomorphic PRFs
from lattices are known which satisfy PRF(k�k′) = PRF(k,x)+PRF(k′,x)+ε for
a small error term ε. We can set parameters such that ε barely affects the most
significant bits of outputs: with overwhelming probability, MSB (PRF(k � k′)) =
MSB (PRF(k,x) + PRF(k′,x)). This idea was used in a very different context,
i.e., building distributed PRFs from approximate key-homomorphic PRFs [10].

For the issue of constructing multiple challenge ciphertexts (or answering
multiple encryption queries), we use the lossy mode of LWE: embedding an
instance of LWE problem into the matrix A make s�[A|ARid]+e� statistically
lose the information of s. While s and e now are independent of the LWE problem
that we embedded, we can pick fresh s, e for each challenge ciphertext and, thus,
eliminate the problem that we have in Boyen-Li IBE scheme. Moreover, while
one instance of LWE problem is embedded (trough multiple samples) to all
scheme instances (i.e., different matrix A), we can switch half of the challenge
ciphertexts (the ones indexed by the bit b

(j)
id = PRF(k(j), id) for the scheme
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instance j.) to random in a single step. Such an idea stems from the notion of
lossy trapdoor function [6,27] and has recently been used in [12,25].

2 Preliminaries

We use PPT to denote “probabilistic polynomial-time”. We denote by x||y the
concatenation of bit x and y. For a positive integer n, we denote by [n] the
set of positive integers no greater than n. We use bold lowercase letters (e.g.
a) to denote vectors and bold capital letters (e.g. A) to denote matrices. For a
positive integer q ≥ 2, let Zq be the ring of integers modulo q. We denote the
group of n × m matrices in Zq by Z

n×m
q . Vectors are treated as column vectors.

The transpose of a vector a (resp. a matrix A) is denoted by a� (resp. A�). For
A ∈ Z

n×m
q and B ∈ Z

n×m′
q , let [A|B] ∈ Z

n×(m+m′)
q be the concatenation of A

and B. We write ‖x‖∞ for the infinity norm of a vector x. The Euclidean norm
of a matrix R = {r1, . . . , rm} is denoted by ‖R‖ = maxi ‖ri‖. We denote ‖R‖GS
by the Euclidean norm of the Gram-Schmidt orthogonalization of the column
vector of R. The spectral norm of R is denoted by s1(R) = supx∈Rm+1 ‖R · x‖.
For a security parameter κ, a function negl(κ) is negligible in κ if it is smaller
than all polynomial fractions for a sufficiently large κ.

2.1 Randomness Extractor

Let X and Y be two random variables over some finite set S. The statisti-
cal distance between X and Y , denoted as Δ(X,Y ), is defined as Δ(X,Y ) =
1
2

∑
s∈S |Pr[X = s] − Pr[Y = s]| . Let Xλ and Yλ be ensembles of random vari-

ables indexed by the security parameter λ. X and Y are statistically close if
Δ(Xλ, Yλ) = negl(λ). The min-entropy of a random variable X over a set S
is defined as H∞(X) = − log(maxs∈S Pr[X = s]). A random variable X has
ε-smooth min-entropy at least k, denoted by Hε

∞(X) ≥ k, if there exists some
variable X ′ such that Δ(X,X ′) ≤ ε and H∞(X ′) ≥ k. We write Hsmooth

∞ (·) for
some (unspecified) negligible ε.

Definition 1 (Universal Hash Functions). H = {H : X → Y} is called a
family of universal hash functions if for all x, x′ ∈ X , with x �= x′, we have
Pr[H(x) = H(x′)] ≤ 1

|Y| over the random choice of H ← H.

Lemma 1 ([27], Lemma 2.2). Let X, Y be random variables such that X ∈
{0, 1}n and H̃∞(X|Y ) ≥ k. Let H : {0, 1}n → {0, 1}� be a family of universal

hash functions where k ≥ � + 2λ. It holds that for H
$←− H and r

$←− {0, 1}�,
Δ ((H,H(X), Y ), (H, r, Y )) ≤ 2−λ.

Lemma 2 ([1], Lemma 4). Suppose that m > (n+1) log q+ω(log n) and that
q > 2 is prime. Let R be an m×k matrix chosen uniformly in {1,−1}m×k mod q
where k = k(n) is polynomial in n. Let A and B be matrices chosen uniformly
in Z

n×m
q and Z

n×k
q respectively. Then, for all vectors w ∈ Z

m
q , the distribution

(A,AR,R�w) is statistically close to the distribution (A,B,R�w).
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2.2 Lattice Background

Definition 2. Let a basis B = [b1 | . . . |bm] ∈ (Rm)m of linearly indepen-
dent vectors. The lattice generated by B is defined as Λ = {y ∈ R

m : ∃si ∈ Z,
y =

∑m
i=1 sibi} . For q prime, A ∈ Z

n×m
q , we define the m-dimensional (full-

rank) random integer lattice Λ⊥
q (A) = {e ∈ Z

m : Ae = 0 (mod q)}.
We denote the discrete Gaussian distribution over a lattice Λ with Gaussian
parameter s > 0, center 0 by DΛ,s. We refer to [18] for the definition of discrete
Gaussian distribution. We recall the following facts of “gadget matrix” [26].

Lemma 3 ([26], Theorem 1). Let q be a prime, and n, m be integers with
m = n log q. There is a fixed full-rank matrix G ∈ Z

n×m
q such that the lattice

Λ⊥
q (G) has a publicly known trapdoor matrix TG ∈ Z

n×m with ‖TG‖GS ≤ √
5.

Lemma 4 ([9], Lemma 2.1). There is a deterministic algorithm, denoted
G−1(·) : Z

n×m
q → Z

m×m, that takes any matrix A ∈ Z
n×m
q as input, and

outputs the preimage G−1(A) of A such that G · G−1(A) = A (mod q) and
‖G−1(A)‖ ≤ √

m.

Lattice Trapdoors. It is shown in [2] how to sample a “nearly” uniform random
matrix A ∈ Z

n×m along with a trapdoor matrix TA ∈ Z
m×m which is a short

or low-norm basis of the induced lattice Λ⊥
q (A).

Lemma 5. There is a PPT algorithm TrapGen that takes as input integers n ≥
1, q ≥ 2 and a sufficiently large m = O(n log q), outputs a matrix A ∈ Z

n×m
q and

a trapdoor matrix TA ∈ Z
m×m, such that A · TA = 0 (mod q), the distribution

of A is statistically close to the uniform distribution over Z
n×m
q and ‖TA‖GS =

O(
√

n log q).

Lemma 6. Let n, q,m be integers with m = O(n log q). Let s ∈ Z
n
q , A ∈ Z

n×m
q ,

e ∈ Z
m. Given y� = s�A + e� mod q and a basis T of Λ⊥

q (A) such that∥
∥e�T

∥
∥

∞ ≤ q/4, there is an algorithm Invert(y,A,T) that outputs s with over-
whelming probability.

We use the following lattice basis sampling algorithms due to [1,16,26].

Lemma 7. There is an efficient algorithm SampleLeft which takes as input a
full-rank matrix A ∈ Z

n×m
q , a matrix B ∈ Z

n×m
q , a short basis TA ∈ Z

m×m,
a Gaussian parameter s where s > ‖TA‖GS · ω(

√
log 2m), and for F = [A|B],

outputs a full-rank basis TF of Λ⊥
q (F) where the distribution of TF is statistically

close to DΛ⊥
q (F),s and ‖TF‖∞ ≤ s

√
2m.

Lemma 8. There is an efficient algorithm SampleRight which takes as input
A ∈ Z

n×m
q , low-norm matrix R ∈ Z

m×m, non-zero scalar h ∈ Zq, gadget matrix
G ∈ Z

n×m
q , a Gaussian parameter s where s >

√
5 · s1(R) · ω(

√
log m), and for

F = [A|AR+hG], outputs a full-rank basis TF of Λ⊥
q (F) where the distribution

of TF is statistically close to DΛ⊥
q (F),s and ‖TF‖∞ ≤ s

√
2m.
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Homomorphic Evaluation Algorithm. We adopt the following lemma.

Lemma 9 ([11]). Let C : {0, 1}� → {0, 1} be a NAND Boolean circuit. Let
{Ai = ARi +xiG ∈ Z

n×m
q }i∈[�] be � different matrices correspond to each input

wire of C where A $←− Z
n×m
q , Ri

$←− {1,−1}m×m, xi ∈ {0, 1} and G ∈ Z
n×m
q is

the gadget matrix. There is an efficient deterministic algorithm EvalBV that takes
as input C and {Ai}i∈[�] and outputs a matrix AC = ARC + C(x1, . . . , x�)G =
EvalBV(C,A1, . . . ,A�) where RC ∈ Z

m×m and C(x1, . . . , x�) is the output of
C on the arguments x1, . . . , x�, s1(RC) ≤ O(4d · m3/2). EvalBV runs in time
poly(4d, �, n, log q). Particularly, if C has depth d = c log � for some constant c,
i.e. C is in NC1, we have s1(RC) ≤ O(�2c · m3/2).

Computational Assumptions. We recall the following variant of decision learning
with errors assumption.

Definition 3 (Decision LWE). Let n and q be positive integers. Let χ be a

distribution over Zq. Let s $←− Z
n
q be a secret vector. Define oracles :

– Os: samples a $←− Z
n
q , column vector e ← χ; returns (a, s�a + e mod q).

– O$: samples a $←− Z
n
q , b

$←− Zq; returns (a, b).

The decision LWE problem, denote LWEn,q,χ, asks to distinguish between OS

and O$. The (decision) LWE assumption says that for an efficient algorithm A,
there is a negligible functuon negl(κ) such that

Adv
LWEn,q,χ

A (κ) =
∣
∣Pr[AOs(1κ) = 1] − Pr[AO$(1κ) = 1]

∣
∣ ≤ negl(κ)

Notice that the decision LWE problem does not restrict the number of oracle
calls (or the number of samples available to A). In the security proof of our
IBE scheme, we use this fact to obtain enough samples from a single instance
of LWE problem to simulate multiple challenge ciphertexts. Usually, the noise
distribution χ is a discrete Gaussian distribution DZ,αq where α ∈ (0, 1) and
αq > 3

√
n. For fix dimension n, the modulus-to-noise ratio q/α measures the

hardness of LWE problem. The larger the ratio, the easier the LWE problem.
In our construction, we use a variant of LWE problem where the secret is a

random matrix S ∈ Z
n×h
q (we choose the noise as vectors where coordinates are

independently sampled according to χ). Via a hybrid argument, such a variant
is polynomially equivalent to the LWE problem we define above up to a factor
of h in the reduction.

2.3 Lossy Mode for LWE

A series of works [3,6,25] show that LWE/LWR problem (with a-priori polyno-
mially bounded number of samples) has a lossy mode in which the samples only
reveal partial information of its secret. More precisely, given m LWE samples
y� = s�A+ e� (mod q) where A ∈ Z

n×m
q , if A is generated in the lossy mode,

then s still has some entropy given y, A. The following lemma states this fact.
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Lemma 10 ([3], Lemma B.4). Let κ be a security parameter. Let n, n′, m∗,
q, β∗, γ, σ and λ be integers and χ be the LWE error distribution over Zq where
Prx←χ[|x| ≥ β∗] ≤ negl(κ) and σ ≥ β∗γnm∗. For random variables s ∈ [−γ, γ]n,

e $←− [σ, σ]m
∗

and A = CB + F (mod q) where C $←− Z
n×n′
q , B $←− Z

n′×m∗
q and

F ← χn×m∗
, we have

Hsmooth
∞ (s|A, s�A + e�) ≥ H∞(s) − (n′ + 2κ) log q

The following theorem, which is a direct consequence of Lemma 10, is essen-
tial for the security proof of our IBE scheme.

Theorem 1. Let κ be a security parameter. Let n, n′,m, q, γ, σ, λ be integers,
q prime, β real, such that n ≥ κ, m ≥ O(n log q). Let χ be the LWE error
distribution over Zq where Prx←χ[|x| ≥ β] ≤ negl(κ). Let R ∈ Z

m×m be a low-
norm matrix with ‖R‖∞ ≤ B. Assume n ≥ (n′ + 2κ + λ

log q ) log q
log 2γ + 2κ

log q and

σ ≥ 2Bβγnm. For random variables s ∈ [−γ, γ]n, e $←− [σ, σ]2m and A = CB+F

(mod q) where C $←− Z
n×n′
q , B $←− Z

n′×m
q and F ← χn×m such that given FR,

BR is statistically close to the uniform distribution over Z
n′×m
q , we have

Hsmooth
∞ (s|A, s�[A|AR] + e�) ≥ H∞(s) − (n′ + 2κ) log q

≥ 2κ + λ

Proof. The proof follows from the proof of Theorem 7.3, [3]. We can write
[A|AR] = CB∗+F∗ where B∗ = [B|BR] and F∗ = [F|FR]. First of all, the sta-
tistical distance between the distribution of B∗ and the uniform distribution over
Z

n′×2m
q is negl(κ). Secondly, we can bound each entry of F∗ by mBβ. Therefore,

invoking Lemma 10 with m∗ = 2m, β∗ = Bβ, n ≥ (n′ + 2κ + λ
log q ) log q

log 2γ + 2κ
log q ,

σ ≥ 2Bβγnm2 and concealing negl(κ) by the term smooth, we have

Hsmooth
∞ (s|A, s�[A|AR] + e�) ≥ H∞(s) − (n′ + 2κ) log q

≥ n log(2γ) − (n′ + 2κ) log q

≥ 2κ + λ

2.4 Identity-Based Encryption

An identity-based encryption (IBE) scheme with identity space ID and message
space M consists of the following five PPT algorithms:

– Para(1κ) → pub. The public parameter generation algorithm Para takes as
input a security parameter κ, and outputs a set of global parameters pub.

– Setup(pub) → (mpk,msk). The setup algorithm Setup takes as input pub, and
outputs a master public key mpk and a master secret key msk.

– KeyGen(mpk,msk, id) → ctid. The key generation algorithm KeyGen takes as
input the master public key mpk, the master private key msk, and an identity
id, and outputs a user private key skid.
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– Encrypt(mpk, id,m) → ctid. The encryption algorithm Encrypt takes as input
the master public key mpk, an identity id, and a message m, outputs a cipher-
text ctid.

– Decrypt(mpk, skid, ctid) → m or ⊥. The decryption algorithm Decrypt takes
as input the master public key mpk, a private key skid and a ciphertext ctid,
outputs message m or ⊥.

For correctness, we require that for all κ, all pub ← Para(1κ), all
(mpk,msk) ← Setup(pub), all id ∈ ID, all ctid ← KeyGen(mpk,msk, id), all
m ∈ M and for all ctid ← Encrypt(mpk, id,m), Decrypt(mpk, skid, ctid) outputs
m except negligible probability.

Security Definition. The multi-instance, multi-ciphertext security for an IBE
scheme Π = (Para,Setup,KeyGen,Encrypt,Decrypt) is defined through the fol-
lowing security game between a challenger B and an adversary A.

Initial. B runs pub ← Para(1κ) and randomly picks coin ← {0, 1}, and gives
pub to A. A selects N = poly(κ). Then B runs (mpk(j),msk(j)) ← Setup(pub) for
j ∈ [N ], and gives {mpk(j)}j∈[N ] to A.
Query. A adaptively issues the following two types of queries:

– Key Generation Query. The adversary A submits (j ∈ [N ], id ∈ ID) to
the challenger B. B runs sk(j)

id ← KeyGen(mpk(j),msk(j), id) and gives sk(j)
id

to A.
– Encryption Query. The adversary submits the k-th encryption query

(k ∈ [Qenc], j ∈ [N ], id ∈ ID,m0,m1 ∈ M) to B. B runs ct
(j)
id,k ←

Encrypt(mpk(j), id,mcoin) and returns ct(j)id,k to A. In addition, A is allowed
to submit two encryption queries with same instance index j (but the
index k will be different)1.

Guess. A outputs coin′ ∈ {0, 1} and it wins if coin′ = coin.

The advantage of A in wining the game is defined as AdvIND-ID-CPA
A,Π,(N,Qkey,Qenc)(κ) =

|Pr[coin′ = coin] − 1/2|, where Qkey and Qenc are the number of key generation
queries and encryption queries, respectively. We say that an IBE scheme Π is
secure if for all PPT adversary A, there is a negligible function negl(κ) such that
AdvIND-ID-CPA

A,Π,(N,Qkey,Qenc)(κ) ≤ negl(κ).

2.5 Almost Key-Homomorphic Pseudorandom Functions

Definition 4 (Pseudorandom Functions). Let κ be the security parameter.
A pseudorandom function PRF : K × X → Y is an efficiently computable, deter-
ministic function. Let Ω be the set of all functions from X to Y. We define the
advantage of an adversary A in attacking the PRF as

AdvPRF,A(κ) =
∣
∣
∣Pr[APRF(K,·)(1κ) = 1] − Pr[AF (·)(1κ) = 1]

∣
∣
∣

1 This refers to the strong/full adaptive MIMC security [17,24].
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where the probability is taken over a uniform choice of key K
$←− K and F

$←− Ω,
and the randomness of A. We say that PRF is secure if for all PPT adversaries
A, AdvPRF,A(κ) ≤ negl(κ) for some negligible function negl(κ).

Definition 5. A PRF PRF : K×X → Zq is ε-almost key-homomorphic if (K,�)
is a group, and for k1,k2 ∈ K, x ∈ X , we have

PRF(k1 � k2,x) = PRF(k1,x) + PRF(k2,x) + e

where e ∈ [0, ε].

Let Prefix:Zp → {0, 1}� where � ≤ log p be a deterministic function that takes
as input an element in Zq and outputs its binary prefix of length �.

Definition 6. We say a ε-almost key-homomorphic PRF has prefix correction
with respect to the function Prefix if

Prefix (PRF(k1 � k2,x)) = Prefix (PRF(k1,x) + PRF(k2,x))

holds with overwhelming probability. Particularly, we say ε-almost key-
homomorphic PRF PRF has most-significant-bit correction:

MSB (PRF(k1 � k2,x)) = MSB (PRF(k1,x) + PRF(k2,x))

with all but negligible probability where MSB : Zp → {0, 1} be a deterministic
function that takes as input an Zp-element and outputs its most significant bit.

To base our IBE scheme on lattice assumptions with a (almost) tight reduc-
tion, we can instantiate the PRF in our construction with the lattice-based
almost key-homomorphic PRF by Boneh et al. [10] (BLMR-PRF). Here we recall
the construction of BLMR-PRF. Let n,m, p, q be integers where m = nlog q�
and p|q. Let Zq-invertible matrices B0,B1 ∈ {0, 1}m×m be public parameter.
For an input x = x[1]x[2]...x[�] ∈ {0, 1}�, a secret key k ← Z

m
q , the BLMR-PRF

PRFBLMR : Zm
q × {0, 1}� → Z

m
p is defined as

PRFBLMR(k,x) =
⌊∏�

i=1
Bx[i] · k

⌋

p

(1)

where for any x ∈ Zq, the function x�p = (p/q) · x� mod p, and it naturally
extends to vectors by applying the function to each coordinate of the vector
individually. While the output space (of the original description) of BLMR-PRF
is Z

m
p , we can always output the first Zp coordinate as an input to the function

Prefix (and MSB). Assume 2|p, for x ∈ Zp, we define

MSB(x) = x�2 = (2/p) · x� mod 2

The 1-almost key-homomorphism of BLMR-PRF was proved in [10] (The-
orem 5.5). To make the BMLR-PRF have the most-significant-bit correction
property, we can set the parameter p slightly super-polynomial, e.g., p = nω(1)
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(and set up q accordingly), to make sure the noise always properly being
rounded off. This fact has already been mentioned in [10] in applying almost
key-homomorphic PRFs to obtain distributed PRFs.

Very recently, Libert et al. ([25], Theorem 7) showed that BLMR-PRF has
a (almost) tight reduction from non-uniform LWE (NLWE) problem (in the
sense that the security loss during the security reduction is independent of the
number of PRF queries being made) which in turn has a tight security reduction
to LWE problem with certain parameters ([10], Theorem 4.3). These results
together demonstrate that for input length �, BLMR-PRF is (almost) tightly
secure under the LWE assumption where the modulus-to-noise ratio is nΩ(�).

Similar to the Boyen-Li IBE scheme, using shallow depth almost key-
homomorphic PRFs (e.g., the ones can be implemented by NC1 circuits) will
allow us to use polynomial modulus for the IBE scheme (not the PRF itself).
BLMR-PRF satisfies this requirement. As it is mentioned in [25], the computa-
tion of BLMR-PRF can be divided into two phases, a matrices product followed
by rounding an inner-product. The matrices product

∏�
i=1 Bx[i] can be com-

puted publicly without knowing the secret key. So the actual circuit needed to
be evaluated is the “inner-product-then-rounding” circuit which is in NC1.

3 The Scheme

In our scheme, we require that the same identity is never used for requesting pri-
vate identity keys from different scheme instances. Such a requirement is natural
and essential for the security proof. It is done by appending a unique instance
identifier to users’ actual identities. A user with identity id′ uses the actual iden-
tity id = ID||id′ for the scheme instance whose identifier is ID.

Para(1κ). The public parameter generation algorithm does the following.

1. Choose a LWE hardness parameter n′, integer n ≥ n′, integer m = 2n log q +
ω(log n), LWE modulo q and integers γ, σ. Set message space M = {0, 1}λ

for some integer λ.
2. Select an almost key-homomorphic PRF PRF : {0, 1}t × {0, 1}� → {0, 1}r,

where r = ω(log κ), which has the most-significant-bit correction (as per
Definition 6). Set a depth d, NAND Boolean circuit CPRF{0, 1}t × {0, 1}� →
{0, 1} which outputs the most significant bits of the output stings of PRF.
That is CPRF computes MSB(PRF(·, ·)).

3. Let B = O(4d · m3/2) (as the bound given in Lemma 9), we choose s ≥√
5 · B · ω(

√
log 2m).

4. Randomly sample a universal hash function H : [−γ, γ]n → {0, 1}λ from a
family of universal hash functions H.

5. Output the global public parameters

pub = (n,m, q, γ, δ, λ,PRF, CPRF,H, s)

Setup(pub). On input pub, the setup algorithm does the following.
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1. Select a random key k ← {0, 1}t for PRF.
2. Run TrapGen(n,m, q) to generate a matrix A ∈ Z

n×m
q along with a trapdoor

TA ∈ Z
m×m.

3. Choose random matrices A0,A1,C1, ...,Ct ← Z
n×m
q .

4. Choose a unique system identifier ID, and output the master public key

mpk =
(
ID,A,A0,A1, {Ci}i∈[t]

)

and master secret key msk = (TA,k).

Encrypt(mpk, id,m). Let ID||id = id[1]...id[�] ∈ {0, 1}�, the algorithm encrypts
m ∈ {0, 1}λ as follows.

1. Compute ACPRF,id = Eval(CPRF, {Ci}i∈[t], id[1]G, ..., id[�]G) ∈ Z
n×m
q .

2. Set Fid,μ = [A|Aμ − ACPRF,id] for μ = 0, 1.
3. Select x0,x1 ← [−γ, γ]n, e0, e1 ← [−σ, σ]2m. Output the ciphertext ctid =

(c0, c′
0, c1, c′

1) where
{
c0 = m ⊕ H(x0)
c′
0
� = x�

0 · Fid,0 + e�
0 mod q

;

{
c1 = m ⊕ H(x1)
c′
1
� = x�

1 · Fid,1 + e�
1 mod q

KeyGen(mpk,msk, id). On input mpk,msk and an identity id, the algorithm does
the following to generate a private key.

1. Compute μ = MSB(PRF(k, ID||id)) ∈ {0, 1}.
2. Compute ACPRF,id = Eval(CPRF, {Ci}i∈[t], id[1]G, ..., id[�]G) ∈ Z

n×m
q .

3. Set Fid,1−μ = [A|A1−μ − ACPRF,id] ∈ Z
n×2m
q .

4. Run SampleLeft([A|A1−μ − ACPRF,id],TA, s) to get trapdoor Tid ∈ Z
2m×2m

for Fid,1−μ.
5. Return skid = (1 − μ,Tid).

Decrypt(mpk, skid, ctid). On input ciphertext (c0, c′
0), (c1, c′

1), and private key
(1 − μ,Tid), the decryption algorithm does:

1. Compute Fid,1−μ = [A|A1−μ − ACPRF,id].
2. Compute m = c1−μ ⊕ H

(
Invert(Fid,1−μ,Tid, c′

1−μ)
)
.

Parameters. With s ≥ √
5 · B · ω(

√
log 2m), we ensure that the algorithm

SampleLeftcan be simulated by SampleRight in the security proof. We set
n ≥ (n′ + 2κ + λ

log q ) log q
log 2γ + 2κ

log q , σ ≥ 2Bβγnm for invoking Theorem 1. For
decryption correctness, we need

∥
∥e�

1−μ · Tid

∥
∥

∞ ≤ q/4. So we set q large enough
such that sσm ≤ q/4.

If the we instantiate PRF by BMLR-PRF (Eq. 1), we can set the circuit CPRF

compute the function MSB(·, ·�) where the first argument of the function is,
say, the first row of the identity-dependent matrix

∏�
i=1 Bid[i] and the second

argument is the secret key k. By doing that, the PRF computation is separated
into a publicly computable “heavy” part (matrix product) and a “light” part
(inner-product-then-rounding). With this change, for an identity id, KeyGen and
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Encrypt will first compute the bit string of the first row of
∏�

i=1 Bid[i], and run
Eval according to such string2. This makes CPRF in NC1 and we can set d =
c log(t + �), for some constant c > 0, such that q = poly(κ).

4 Security

Theorem 2. For any PPT adversary A against the IND-ID-CPA security of
above scheme Π with advantage AdvIND-ID-CPA

A,Π,(N,Qkey,Qenc)(κ), there exists PPT adver-
saries A1,A2 such that

AdvIND-ID-CPA
Π,A,(N,Qkey,Qenc)(κ) ≤ 3n · AdvLWEn′,q,χ

A1
(κ) + 2 · AdvPRFA2

(κ) + negl(κ) (2)

for some negligible error negl(κ).

We prove the above theorem through game-sequence technique. Let Si denote
the event that the IBE adversary A outputs coin′ = coin in Gamei. We first
define two simulation algorithms Sim.Setup and Sim.KeyGen. which are used only
for security proof. Without loss of generality, assume the adversary asks for N
instances of the IBE scheme.

Sim.Setup(pub, j). For generating parameters for j-th instance, the algorithm
does the following.

1. Choose a unique system identifier ID(j).
2. Select k(j) = k(j)[1]...k(j)[t] ← {0, 1}t for PRF.
3. Select a random matrix A(j) ∈ Z

n×m
q .

4. Select R(j)
A0

,R(j)
A1

,R(j)
C1

, ...,R(j)
Ct

← {−1, 1}m×m.

5. Set A(j)
0 = A(j)R(j)

A0
, A(j)

1 = A(j)R(j)
A1

+ G, and C(j)
i = A(j)R(j)

Ci
+ k(j)[i]G

for i ∈ [t].
6. Output mpk(j) =

(
ID(j),A(j),A(j)

0 ,A(j)
1 , {C(j)

i }i∈[t]

)
and msk(j) =

(
R(j)

A0
,R(j)

A1
, {R(j)

Ci
}i∈[t]

)
.

Sim.KeyGen(mpk(j),msk(j), id) On input id ∈ {0, 1}�, the algorithm does:

1. For ID(j)||id = id[1], ..., id[�], compute the Z
n×m
q -matrix

A(j)
CPRF,id

= Eval(CPRF, {C(j)
i }i∈[t], id[1]G, ..., id[�]G)

= A(j)R(j)
CPRF,id

+ MSB(PRF(k(j), id))G

= A(j)R(j)
CPRF,id

+ μG

2 In this case we need to set parameter t to be the length of such string.
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2. Set the Z
n×2m
q -matrix

F(j)
id,1−μ =

[
A(j)|A(j)

1−μ − A(j)
CPRF,id

]

=
[
A(j)|A(j)(R(j)

A1−μ
− R(j)

CPRF,id
) + (1 − 2μ)G)

]

=
[
A(j)|A(j)R(j)

1−μ + (1 − 2μ)G
]

3. Run SampleRight(A(j),R(j)
1−μ, 1−2μ,G, s) to get a trapdoor T(j)

id for F(j)
id,1−μ.

4. Return sk
(j)
id = (1 − μ,Tid).

The first game Game 0 is the same as the real IND-ID-CPA security game.
Game 1 is the same as Game 1 except it runs Sim.Setup and Sim.KeyGen instead
of Setup and KeyGen.

Lemma 11. Game 0 and Game 1 are statistically indistinguishable, i.e., there
exist a negligible function negl(λ) such that |Pr[S0] − Pr[S1]| ≤ negl(λ).

Proof. For j-th instance, the differences between Game 0 and Game 1 are:

1. In Game 0, A(j) is generated by TrapGen. By Lemma 5 it has a distribution
that is statistically close to uniform distribution on Z

n×m
q . On the other hand,

A(j) is sampled uniformly at random in Game 1.
2. By Lemma 2, matrices A0,A0, {Ci}i∈[t] in Game 1 are statistically close

to uniform distribution on Z
n×m
q . In Game 0 those matrices are sampled

uniformly from Z
n×m
q .

3. In Game 0, the decryption key T(j)
id is sampled by SampleLeft with the trap-

door of A(j). In Game 1, T(j)
id is sampled by SampleRight with the gadget

matrix G and knowledge of the low-norm matrix R(j)
1−μ. By Lemmas 7 and 8,

for sufficiently large s (e.g., s ≥ √
5s1(R

(j)
1−μ) · ω(

√
log 2m)), T(j)

id generated
in Game 0 and Game 1 are statistically close.

We therefore conclude that Game 0 and Game 1 are statistically close up to
some error negl(λ).

Game 2 is the same as Game 1 except that the public matrices {A(j)}j∈[N ]

for N scheme instances are generated as LWE samples. More specifically, one
firstly samples C ← Z

n′×n
q . For constructing A(j), it samples B(j) ← Z

n′×m
q , and

F(j) ← χm×n and sets A(j) = C ·B(j) +F(j) mod q. Here C serves as the secret
of LWE instances for all A(j). It is easy to see that under the LWE assumption,
Game 2 and Game 3 are computationally indistinguishable. So we have the
following lemma in which the factor n accounts for a n-step hybrid argument
for reducing the LWE problem with matrix secret C to the LWE problem with
single vector secret defined in Definition 33.
3 Recall that the LWE problem is hard for arbitrary number of samples.
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Lemma 12. |Pr[S2] − Pr[S1]| ≤ n · AdvLWEn′,q,χ

A1
(λ) for some adversary A1.

Game 3 is the same as Game 2 except that it answers the encryption
query in a slightly different way. Concretely, for encryption query (k, j, id,m0,m1)
where k ∈ [Qenc], j ∈ [N ], id ∈ ID and m0,m1 ∈ M, encryption (of
message mcoin) is done by normal encryption algorithm except the cipher-
text component c

(j)
μ is chosen uniformly at random from {0, 1}λ, where μ =

MSB(PRF(k(j), ID(j)||id)). We have the following lemma.

Lemma 13. Game 2 and Game 3 are statistically indistinguishable, i.e., there
exists a negligible error negl(κ) such that |Pr[S3] − Pr[S2]| ≤ negl(κ).

Proof. First of all, we have μ = MSB(PRF(k(j), ID(j)||id)) ∈ {0, 1}. By the con-
struction of encryption algorithm, we have

F(j)
id,μ = [A(j)|A(j)

μ − A(j)
CPRF,id

]

= [A(j)|(A(j)R(j)
Aμ

+ μG) − (A(j)R(j)
CPRF,id

+ MSB(PRF(k(j), ID(j)||id))G)]

= [A(j)|A(j)(R(j)
Aμ

− R(j)
CPRF,id

)]

= [A(j)|A(j)Rμ
(j)]

So for the ciphertext components (c′(j)
μ , cμ

(j)), we have

c′(j)
μ,k

�
= x(j)

μ,k

� · F(j)
id,μ + e(j)

μ,k

�
; c(j)

μ,k = mcoin ⊕ H(x(j)
μ,k)

where x(j)
μ,k, e

(j)
μ,k are chosen randomly and freshly for each ciphertext query with

index k.4 Recall A(j) = C · B(j) + F(j) where B(j) ∈ Z
n′×m
q is randomly chosen

and m = 2n log q + ω(log q). By Lemma 2, B(j)R(j)
μ is statistically close to

uniform (given F(j)R(j)
μ ) by itself, as required by Theorem 1. Since here we

consider the left entropy of randomly and independently chosen x(j)
μ,k, we can

still apply Theorem 1 even though B(j)R(j)
μ is not statistically uniform given

F(j)
id′,μ from another encryption query with id′ �= id. By Theorem 1 we get

H∞
(
xμ,k

(j)|c′(j)
μ,k

)
≥ H∞

(
x(j)

μ,k

)
− (n′ + 2κ) log q

≥ n log(2γ) − (n′ + 2κ) log q

≥ λ + 2κ

By Lemma 1, we have

Δ
(
(H,H(x(j)

μ,k)), (H, ρ
(j)
k )

)
≤ 2−κ = negl(κ)

for uniformly random string ρ
(j)
k ← {0, 1}λ. This makes c(j)

μ,k uniformly random
and independent of mcoin.
4 This is why our scheme achieves strong/full adaptive MIMC security.
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Game 4 is the same as Game 3 except that it uses Sim.Setup to generate
the public parameters. In particular, A(j) is sampled uniform at random. Look-
ing ahead, this step allows us to run Setup (instead of Sim.Setup) in the next
game where we are able to have trapdoor for the matrix A(j). A straightforward
reduction gives us the following lemma.

Lemma 14. |Pr[S4] − Pr[S3]| ≤ n · AdvLWEn′,q,χ

A1
(κ) for some adversary A1.

Game 5 is the same as Game 4 except that it runs algorithms Setup and
KeyGen instead of the simulation algorithms. Similar to Lemma 11, we have

Lemma 15. Game 4 and Game 5 are statistically indistinguishable, i.e.
|Pr[S5] − Pr[S4]| ≤ negl(κ) for some negligible function negl(κ).

Game 6 is the same as Game 5 except that the simulator samples the bit
value μ uniformly instead of computing it by PRF as in Game 5. The simulator
also keeps the record of tuples (j, id, μ). For a private key generation query or
encryption query on instance j and identity id that has been made before, the
simulator simply finds the recorded μ and uses it for further operations. We
prove the following lemma.

Lemma 16. |Pr[S6] − Pr[S5]| ≤ AdvPRFA2
(κ) for some adversary A2 against PRF.

Proof. We build a simulator A2 who uses a PRF challenger to simulate Game 5
or Game 6. A2 flips a fair coin coin ∈ {0, 1} and follows Para(1κ) to generate all
the parameters of pub except the almost key-homomorphic PRF PRF. Instead,
A2 receives PRF from its challenger.

A2 chooses N random PRF keys {k̃(j)}j∈[N ]. Then it runs Setup to generate
{mpk(j),msk(j)}j∈[N ] except the PRF keys. Notice that mpk(j) has exactly the
same distribution as in the real scheme. A2 answers the following two types of
query.

1. For a key generation query (j, id), A2 first sends ID(j)||id to its challenger and
receives back y. It sets μ = MSB

(
y + PRF(k̃(j), ID(j)||id)

)
and runs steps 2

to step 5 of KeyGen to generates the private identity key.
2. For an encryption query (k, j, id,m0,m1), A2 first sends ID(j)||id to its chal-

lenger, receives back y, and sets μ = MSB(y + PRF(k̃(j), ID(j)||id)). It then
runs Encrypt to generate ciphertext on message mcoin based on the bit value
μ, except it samples the component c

(j)
μ,k randomly.

If y = PRF(k∗, ID(j)||id) for some key k∗, i.e., A2 interacts with PRF, we have

μ = MSB(y + PRF(k̃(j), ID(j)||id))
= MSB(PRF(k∗, ID(j)||id) + PRF(k̃(j), ID(j)||id))
= MSB(PRF(k∗ � k̃(j), ID(j)||id))
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This shows that A2 simulates Game 5 with random PRF key k(j) = k∗ + k̃(j).
On the other hand, if y = F (ID(j)||id) for some random function F : {0, 1}� →
{0, 1}r, as F (·) is never takes the same input, μ is uniformly random from the
adversary’s view. In this case, A2 simulates Game 6. Therefore we have Pr[S6]−
Pr[S5] ≤ AdvPRFA2

(κ).

Let (c(j)
0,k, c′(j)

0,k, c(j)
1,k, c′(j)

1,k) be the challenge ciphertext generated for answering
the k-th encryption query (k, j, id,m0,m1). Recall that in Game 6, depending
on the bit value μ = MSB(PRF(k(j), id)), cμ

(j) is chosen randomly. Game 7 is
the same as Game 6 except that it chooses c1−μ,k

(j) randomly and computes
other components honestly. Since μ is random, we have the following lemma.

Lemma 17. Game 6 and Game 7 are identical, i.e., Pr[S6] = Pr[S7].

Game 8 is the same as Game 7 except that for encryption and key gen-
eration queries on j-th instance and identity id, the bit value μ is computed
as μ = MSB(PRF(k(j), ID(j)||id)). Similar to Lemma 16, we have the following
lemma for which we omit the proof as it is identical to the proof of Lemma 16.

Lemma 18. |Pr[S7] − Pr[S8]| ≤ AdvPRFA2
(κ) for some adversary A2 against PRF.

Game 9 is the same as Game 8 except that the simulation algorithms
Sim,Setup and Sim.KeyGen are invoked instead of Setup and KeyGen. Notice
that this difference is exactly the difference between Game 0 and Game 1. So
we have the following lemma which can be proved using the proof of Lemma 11.

Lemma 19. Game 8 and Game 9 are statistically indistinguishable, i.e., there
exist a negligible function negl(κ) such that |Pr[S9] − Pr[S8]| ≤ negl(κ).

In the next game Game 10, instead of sampling the public matrices
{A(j)}j∈[N ] for N instances randomly, we again generate them by LWE samples
as in Game 2, i.e., A(j) = C · B(j) + F(j) mod q. This change is not noticeable
for efficient adversary under LWE assumption which can be stated by the lemma
below.

Lemma 20. |Pr[S10] − Pr[S9]| ≤ n · AdvLWEn′,q,χ

A1
(κ) for some adversary A1.

Game 11 is the same as Game 10 except that for any encryption query
(k, j, id,m0,m1), the ciphertext component c(j)

μ,k are chosen randomly, where
μ = PRF(k(j), ID(j)||id). Notice that we have already switched the ciphertext
component c(j)

1−μ,k to random since Game 7. So in Game 11, both c0,k
(j) and

c1,k
(j) (which were used to mask the message mcoin) are random, meaning that

the challenge ciphertexts replied to encryption queries are random and indepen-
dent of the messages chosen by the adversary. So the adversary has no advantage
in wining Game 11. The proof of the following lemma is omitted as it is the
same as the proof of Lemma 13.
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Lemma 21. Game 10 is statistically close to Game 11, and in Game 11, no
adversary has any advantage in guessing the bit coin, i.e., |Pr[S11] − Pr[S10]| ≤
negl(κ) for some statistically error negl(κ) and Pr[S11] = 1/2.

To sum up, we have:

AdvIND-ID-CPA
Π,A,(N,Qkey,Qenc)(κ) = |Pr[S1] − 1/2|

= |Pr[S1] − Pr[S11]|
≤

∑10

i=0
|Pr[Si] − Pr[Si+1]|

= 3n · AdvLWEn′,q,χ

A1
+ 2 · AdvPRFA2

(κ) + negl(κ)

for some function negl(κ) which stands for the negligible statistical error in the
reduction. The security loss is independent of the number of instances N , the
number of encryption queries Qenc and the number of key generation queries
Qkey.

5 Discussion and Conclusion

For generality, we reduce the security of the IBE scheme to the LWE problem
LWEn′,q,χ and the security of the PRF as shown by Theorem 2. To make the
whole IBE scheme (almost) tightly secure, we need (almost) tightly secure PRFs.
The instantiation of PRF also affects the LWE problem LWEn′,q,χ quantitatively
by the depth d of the circuit CPRF. For example, employing an almost tightly
secure (based on the LWE problem) BLMR-PRF [10] allows us to use a poly-
nomial modulo q. Meanwhile, the computational assumption we make for the
PRF affects the final assumption that we need to make for the IBE scheme. The
(almost) tight security proof of the BLMR-PRF requires an LWE assumption
with modulus-to-noise ratio nΩ(�) (� is the PRF input length) which is quan-
titatively stronger than the LWE problem LWEn′,q,χ we use for the LWE lossy
mode. This means the IBE scheme needs a strong LWE assumption on which
the BLMR-PRF is based. However any future improvement in (lattice-based)
key-homomorphic PRFs will directly improve the efficiency and security of our
scheme without weakening the underlying assumption.

Under a suitable BLMR-PRF instantiation, our IBE scheme, based on
a strong LWE assumption (sub-exponential modulus-to-noise ratio), achieves
almost tight security in the strong MIMC setting. Under the same assump-
tion, the Boyen-Li IBE scheme from [11] (using almost tightly secure PRFs
from [5,10]) only had an almost tight security reduction in the SISC set-
ting. The (strong) LWE assumption that we use is believed to be hard and
has been widely used in other contexts, including fully-homomorphic encryp-
tion [14], attribute-based/predicate encryption [9,21,22] and lattice-based con-
strained PRFs [13,15]. How to obtain an (almost) tightly secure IBE scheme in
the MIMC setting was not known before, even with such a strong LWE assump-
tion. By applying the standard BCHK transformation [8] with tightly secure



552 X. Boyen and Q. Li

one-time signature schemes (e.g., [7]), our IBE scheme leads to the first almost
tightly CCA2 secure public-key encryption scheme from lattices in the multi-
instance and multi-ciphertext setting [23].

Our work motivates two future directions: to improve efficiency and key sizes;
and to design tightly secure key-homomorphic PRFs from weaker assumptions.
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