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Abstract. This paper presents MergeMAC, a MAC that is particularly
suitable for environments with strict time requirements and extremely
limited bandwidth. MergeMAC computes the MAC by splitting the
message into two parts. We use a pseudorandom function (PRF) to map
messages to random bit strings and then merge them with a very efficient
keyless function. The advantage of this approach is that the outputs of
the PRF can be cached for frequently needed message parts. We demon-
strate the merits of MergeMAC for authenticating messages on the CAN
bus where bandwidth is extremely limited and caching can be used to
recover parts of the message counter instead of transmitting it. We rec-
ommend an instantiation of the merging function Merge and analyze
the security of our construction. Requirements for a merging function are
formally defined and the resulting EUF-CMA security of MergeMAC is
proven.
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1 Introduction

In constrained environments, such as embedded devices, wireless sensor net-
works, control systems and automated devices, the Internet of Things (IoT) in
general, and more particularly to save bandwidth in highly time constrained sce-
narios it is important to reduce the latency while still ensure that the throughput
of a communication channel does not fall below a critical threshold. A common
practice is to omit parts with low entropy in the communication of transmit-
ted messages when the communication overhead is more expensive than simply
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reconstructing the message by brute-force guessing the missing parts. As attacks
on IoT devices become more and more of a threat [Lan11,RSWO17], it is impor-
tant to ensure the authenticity of an entity and the integrity of transmitted mes-
sages. Message Authentication Codes (MAC) allow an receiver of a message to
verify the integrity of a received message and ensure that the sender has to be
an authenticated entity.

MergeMAC is a MAC function optimized exactly for the requirements of
communicating in extremely constrained environments and still ensuring strict
time requirements even with limited bandwidth. In our proposal, we omit parts
of the transmitted message with very little information content. The missing
information can then be reconstructed by the receiver by brute-forcing all pos-
sibilities as only the correct solution will be verified as the received MAC. Even
though the missing parts are not transmitted they are included in the MAC
computation. Our proposed construction achieves the strict timing constraints,
while still recalculating parts of the MAC, by splitting the MAC computation
into several parts, and further allowing fast recombination of intermediate values
into MACs. We will now introduce the scenario which prompted the development
of our solution.

Security Under Extreme Conditions. Modern cars rely on the Controller
Area Network (CAN) bus for car-internal communication between different com-
ponents, usually referred to in this context as electronic control units (ECUs).
The CAN bus connects everything - from critical systems like breaks or airbags
to convenience features like built-in navigation or entertainment systems. When
the bus was developed in the 1980’s, the connected world of today was still merely
science fiction. Security was not a concern. This started to change when hackers
first used the CAN bus as an entry point to steal a car, accessing it by taking
off a side mirror [KCR+10,CMK+11]. Nowadays, more and more components
with an interface to the CAN bus are also connected to the Internet. This allows
hackers to mount a powerful attack, by attacking the car from an online attack
surface. A remote attack on the complete fleet is the nightmare of every CTO in
the automotive industry. Consequentially, the call for more security grew louder
quickly. However, adding security to legacy systems is a complicated and error
prone process. The ramifications specifically for the CAN bus are summarized
as:

– High costs: The cost pressure is high. Many ECUs are simple microcon-
trollers and a security solution that adds significant costs is unlikely to be
adopted.

– Time constraints: Several components, such as breaks or airbags, are run-
ning under strict time constraints. This confines the latency a security solution
may introduce to the system.

– Limited bandwidth: The bandwidth on the CAN bus is limited. Hence a
security solution should need as little additional bandwidth as possible.

In this paper we describe an approach how to establish authenticated commu-
nication between ECUs on the CAN bus under these extreme conditions. Our
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construction allows for very efficient hardware implementations as we demon-
strate with the specific instantiation based on MergeMAC and Present or
Prince. It addresses bandwidth constraints by not transmitting low-entropy
parts of messages and recovering them at the receiver in an efficient way.

Message Authentication Codes. Message Authentication Codes (MACs) are
a popular standard technique to authenticate messages using a shared secret
key [ISO11,Dwo16]. Using a shared key and a message as input, a user can
compute a MAC tag and attach it to the message. The recipient can then verify
the authenticity of the message using the secret key. The most striking advantage
of MACs is their efficiency. MACs can be constructed directly from symmetric
block ciphers or from cryptographic hash functions and are hence much more
efficient than digital signatures, their asymmetric relatives. This also makes them
the tool of choice on constrained devices, like microcontrollers and lightweight
IoT devices. Therefore, they are the correct building blocks for our scenario.

Authentication. The CAN bus itself does not provide any message authenti-
cation mechanism. Every connected ECU can send arbitrary frames including a
forged sender identity. Our goal is to define an authentication mechanism that is
tailored towards the most common scenario: A sender (e.g. a sensor) addressing
one or more receivers. The sender includes a counter into each message to pre-
vent replay attacks and adds a MAC tag to each message sent. Receivers keep
track of the counter value. They will reject incoming messages with a counter
value not higher than the current one. Skipping messages is acceptable, i.e. the
counter value will always be updated to the last one received with a valid MAC
tag. The authentication mechanism we propose significantly reduces the attack
surface if it is used for all ECUs on the CAN bus. Moreover, the attack surface is
drastically reduced, as an attacker from the outside (e.g. by accessing the CAN
bus from the side mirrors) will not be able to impersonate an internal device.
Furthermore, an attacker from the inside (e.g. through a corrupted ECU) is
confined to the receivers that trust this ECU.

A Bandwidth Saving Technique. Bandwidth can be saved by only including
the n least significant bits of the counter in the messages, i.e. the counter is
divided into n low bits, called l and the remaining high bits called h. The sender
computes the MAC tag on the message as usual based on the complete counter
value. The receiver recovers the complete counter as follows: He takes the high
bits h from his local storage and combines them with the transmitted low bits l.
If the MAC verification is successful and the combined counter is greater than
the locally stored counter value, the message is accepted. Otherwise, the message
may still be valid if a wrap of the lower bits l has occurred on the sender side
leading to an incremented h. Consequentially, the receiver will try again with
h+1, h+2, . . . up to h+wmax for a parameter wmax of the maximum number of
wraps that are allowed to occur. We apply this idea to the counter only, but it
can be used more broadly to recover predictable information to save bandwidth.
With 8 bytes, payload sizes on the standard CAN bus are relatively short and
we will see that saving a few bytes on the counter saves us a complete additional
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frame in many cases. While this mechanism allows us to save bandwidth, it has
an impact on security. If the counter is transferred fully, the probability of the
adversary to guess a MAC tag correctly is 1/2� where � is the length of the tag,
this increases to wmax/2�. For wmax we recommend a value below 4 bits. An
attacker with the ability to suppress more than wmax messages can permanently
desynchronize the sender and receiver. Since such an attacker could just suppress
all messages achieving the same effect we consider it an implementation detail
to mitigate this attack.

Worst Case Run Times. While the technique just described allows us to omit
transferring parts of the message counter and reconstruct them with the MAC,
this comes at the cost of additional MAC computations. To be specific, wmax in
the worst case. Here, time constraints become a concern: There is an upper bound
on the time the processing of a message may take, i.e. wmax MAC calculations
to recover the counter must not take longer than tmax ms. Of course, with a
sufficiently powerful receiver, a standard MAC construction could be used and
either the receiver would have a sufficiently strong CPU or MAC computation
could be parallelized. However, the high cost pressure in the automobile sector
makes powerful receivers impossible.

Pre-compute and Merge. In this paper we present MergeMAC, a dedicated
MAC constructions for these constrained environments. One of the main features
of MergeMAC is that it is particularly well suited for the recovery of predictable
information, e.g., such as the most significant bits of the counter as described
above. The idea is, basically, to split the messages in two parts, the predictable
information that is not transferred and the payload part that actually is. Then
a pre-MAC is computed for both parts independently (see Fig. 1). For the pre-
dictable information, these pre-MACs can be pre-computed and cached - e.g.
this would be the pre-MACs for the current and the wmax − 1 counter values.
Two pre-MACs can then be merged into the final MAC. As the pre-MACs are
already PRF outputs, we can significantly relax the security requirements for the
merging function. This allows to speed this step up significantly, e.g. by roughly
70% in contrast to using a lightweight cipher for merging the PRF outputs. Our
merging function Merge is a round-reduced variant of Chaskey [MMVH+14].
MergeMAC has the following features:

– Our merge function Merge is derived from Chaskey and hence inherits its
features: First and foremost, it is a dedicated design for microcontrollers and
easy to implement in hardware.

– We define a construction for the merge function based on lightweight ciphers.
Other constructions based on more secures primitives are possible but we
focus on the lightweight scenario. On top, Merge is keyless allowing for very
efficient hardware implementation. We further detail this in Sect. 2.

Contributions. Efficient Merging Function. We introduce the concept of
a merging function and present an efficient candidate based on Chaskey. We
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conduct a thorough cryptanalysis for this candidate and provide a performance
analysis using the SUPERCOP framework [Ber16].

Practical Application. We use our merging function to define the MAC scheme
MergeMAC. We analyze and compare different recommendations to instantiate
MAC with a 128-bit and a 64-bit version of our merging function. Overall, we
demonstrate the benefits of this construction for a practical proposal to secure
communication on the CAN bus.

A Security Definition for Merging Functions. We formally define security
requirements for merging functions. We show how our security definition can
be applied by proving the MergeMAC to be EUF-CMA secure based on the
assumption that Merge is a secure merging function and we have two secure
PRFs. Consequentially, we show generically that every secure merging function
can be used to instantiate MergeMAC.

Information Recovery with MACs. To the best of our knowledge this paper
is the first to introduce recovery of low-entropy information through a MAC to
save bandwidth.

Related Work. The most popular MAC schemes today are HMAC [BCK96,
Tur08] and CMAC [IK03,Dwo16]. Both cannot be parallelized and do not allow
for merging messages in the way outlined above. Bellare et al. [BGR95] first
discussed the possibility of parallelizing MAC calculations for increased effi-
ciency when introducing XMAC. Later Black and Rogaway [BR02] introduced
PMAC with the express goal of providing a parallelizable MAC construction.
Both approaches allow reusing partial results in a way that also allows merging
of pre-computed MACs for message parts. However, merging requires an addi-
tional keyed block cipher operation which is what we avoid with our lightweight
key-less merging function (see also the discussion in Sect. 5). In XMACR the
block cipher operation is needed as the randomness is fed to the block cipher. In
PMAC the final block cipher call always has to be performed, no matter if parts
of the message have been reused or not. In XMACC the counter has to be fed
to the block cipher. Considering that we will have several possible values for the
high bits of the counter and that the low bits will be included in the message
this also depends on sender input. One way to view our construction in relation
to these proposals is as a specific kind of merging function which can be made
more efficient than a generic constructions because the attacker has little control
over the inputs.

Outline. In Sect. 2 we present the construction for MergeMAC and introduce
the merging function Merge. In Sect. 3 we define the security requirements for a
merging function and prove that any merging function satisfying these require-
ments can be used to instantiate MergeMAC. Section 4 presents the results
of the cryptanalysis we conducted for our candidate of the merging function
from Sect. 2. In Sect. 5 we discuss the performance of our construction before we
conclude in Sect. 6.
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2 The MergeMAC Construction

In this Section, we define the MergeMAC construction in detail and give con-
crete parameters. MergeMAC uses two independent keys K1,K2 of k-bit each,
to process a message msg of arbitrary size into a tag tag of n bits. These keys
are used to instantiate the variable input length PRFs P1,P2 using any MAC
scheme that is a secure PRF as outlined in Sect. 3, for example AES-CMAC
or Chaskey. The message msg is split into two parts, the size of both parts is
flexible since we use variable input length PRFs. These parts are then combined
into the MAC using a function Merge which has relaxed security requirements
because it only operates on random and secret inputs. We suggest three rounds
of the permutation π as defined in Sect. 2.3 and combine the PRF outputs by
XORing them together as input to the permutation π. Furthermore, we also
XOR the outputs of the PRF to the output of the permutation π. Calling the
input parts ρ, ρ̃ this is a Davies-Meyer construction for ρ ⊕ ρ̃. MergeMAC is
illustrated in Fig. 1.

m m̃

P1 P2

Merge

tag

K1 K2

ρ ρ̃

ρ ρ̃

π

tag

Fig. 1. (Left): MergeMAC construction, (Right): Merge function.

2.1 Variations

Our construction allows for several design choices. It is possible to define vari-
ations of MergeMAC with different PRF instantiations or a different merg-
ing function. Since we are targeting constrained environments we suggest using
lightweight functions, specifically Present or Prince in CMAC mode and a
slightly adapted Chaskey round function, which will be described in more detail
in Sect. 2.3. If further optimizations are needed for applications with higher secu-
rity requirements different PRFs and merging function can be chosen. The only
constraints are that any used MACs have good PRF properties and that the
merging function Merge provides enough confusion to prevent an attacker from
combining previous results into MACs for unknown messages. We discuss suffi-
cient requirements for the proof in Sect. 3.
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2.2 Caching

The main design goal when constructing MergeMAC was to provide a way to
re-use calculations performed for similar messages to speed up MAC verification.
This was achieved and MergeMAC allows caching the outputs of both PRFs. If
a message msg′ = m′||m̃ is received the evaluation of ρ̃ = P2(m) can be omitted
by using a cached version of ρ̃. This is particularly beneficial for message parts
which are constant or have low entropy for example a recipient ID. Compared to
other constructions we can combine cached intermediate results without a full
evaluation of any PRF. Common cache-able constructions require that at least
one computationally intensive part must be repeated, usually a call to a block
cipher or compression function. We improve on this by making use of the fact
that the intermediate results are outputs of a PRF and a simpler computation
is therefore sufficient.

2.3 The Merging Function F

Efficiently combining the outputs of the two PRFs in a secure manner is a chal-
lenging task. The natural building block for this situation would be a hash
function. An ideal hash function would completely hide the PRF outputs from
any adversary making them inaccessible from the top by the property of the
PRFs and inaccessible from the bottom by the property of the hash function. It
would also perfectly mix the two input parts preventing any attacks based on
recombining individual parts of previous messages. Unfortunately hash functions
or even just compression functions usually require several repetitions of a round
function and are not efficient enough.

Our proposal Merge for such a function tackles the problem with a con-
struction similar to the Lai-Massey construction [LM91] which has been used
in block ciphers like Idea [LMM91]. The purpose of our Merge-function is to
provide enough mixing of the inputs of our Merge-function so that it is com-
putationally infeasible to find a pre-image of Merge or to combine outputs for
different PRFs into new MACs.

We use a modified version of the π function of Chaskey, with a reduced word
size of 16 bits to match the 64-bit block size of Present or Prince used for
the PRF. The permutation π is based on modular additions, rotations and XOR
functions (ARX). The advantages of ARX-based designs are high performance,
compact implementations and the possibility of constant-time implementations,
preventing timing side channel attacks. The rotation constants in our permu-
tation are chosen to be optimal for microcontrollers which often only allows
efficient rotations/shifts by one or two bits, and byte-permutations by 8-bits.

3 Proof of Security

In this Section, we show that given the function Merge satisfies easily achieved
requirements and secure PRFs, our scheme is a provably secure MAC. According
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Fig. 2. One round of the permutation π that is used within our merging function
Merge.

to Daemen and Rijmen [DR05] a MAC is considered secure if it is impossible
to recover the key faster than exhaustive enumeration and impossible to forge a
MAC with higher success probability than random guessing. We are not espe-
cially concerned about key recovery since it implies forgery and we want the
chances of forgery to be sufficiently small to make the difference irrelevant.

We use the following experiment to define a forgery, according to Bellare et
al. [BGR95]:

Definition 1 (EUF-CMA). The existential unforgability under chosen message
experiment EUF-CMA consists of three algorithms

– The Setup() algorithm randomly generates a key k. It must be called first.
– The MAC(msg) algorithm will return a valid MAC for any message msg from

the message space {0, 1}∗.
– The verification algorithm, Verify(msg, tag), will return Valid if tag is valid

for msg and Invalid otherwise.

The result of the experiment is Broken, and the adversary wins, if a pair
(msg, tag) verifies correctly and MAC(msg) has not been called, otherwise the
result is Unbroken. An adversary which makes qm distinct calls to MAC, qv dis-
tinct calls to Verify, runs in time t and wins the game with probability at least ε
is called a (t, qm, qv, ε),-adversary.

Definition 2. A MAC is considered (t, qm, qv, ε)-secure if there is no
(t, qm, qv, ε)-adversary.

3.1 Random Input Indistinguishability

We define a property, called Random Input Indistinguishability, which is easy to
achieve in practice and which allows us to prove that our construction is a secure
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MAC. For simple analysis we use an unkeyed primitive similar to a hash func-
tion for the Merge function. The usual security definitions for hash functions are
collision resistance, second preimage resistance and preimage resistance. They
are extensively discussed by Rogaway and Shrimpton [RS04]. Random Input
Indistinguishability is even weaker than preimage resistance. Intuitively the def-
inition is based on the following reasoning: Assuming that the PRFs are secure
the only way for an adversary to learn anything about the intermediate values
which are inputs to Merge is by inverting Merge. However finding any preim-
age to Merge(x, y) is not sufficient, instead an adversary would have to find the
original x and y. Finding any other preimage is not useful since the adversary
cannot find a suitable message to generate those values as long as the PRFs are
secure. The only other way to mount an attack would be to find an operation
that can be performed on known outputs to transform them into some other out-
put, effectively calculating Merge(P1(m),P2(m̃)) for known m and m̃ but in a
new combination. We formalize our requirements for Merge using the following
Random Input Indistinguishability experiment RIIF:

Definition 3 (RIIF). The experiment consists of the following five algorithms

– The Setup() algorithm picks five uniformly random values: a bit b and
X,Y,U, V ∈ {0, 1}N where N is the bit length of our output which is the
same as for the used PRFs. It must be called first.

– The Query1(a) algorithm, given any input a ∈ {0, 1}N returns Merge(a, Y ).
– The Query2(a) algorithm, given any input a ∈ {0, 1}N returns Merge(X, a).
– The adversary can request the challenge at any time during the game. For b =

0 Challenge() will return Merge(X,Y ) for b = 1 it will return Merge(U, V ).
– Eventually the adversary outputs a bit b′ by calling Guess(b′).

The adversary wins the game if b′ = b.

We parameterize an adversary A by the total amount of queries he makes q, its
running time t and its probability to win ε. Our adversary therefore becomes a
(t, q, ε)-adversary. Merge is (t, q, ε)-secure if (t, q, ε)-adversaries do not exist.

3.2 Reduction

In this Section, we prove the security of our scheme using two assumptions. First,
the used PRFs are (t, q, εP )-secure, i.e. an adversary making q queries to the PRF
and taking at most time t cannot distinguish the PRF from a random function
with probability at least ε. Second, the function Merge is (t, q, ε)-secure which
we will use to bound any adversary in the EUF-CMA experiment.
Our first game is G0 = EUF-CMA, G1 is the same construction but whenever P1

is used we replace the output with a random value. We use the notation Rnd(·)
to denominate such random oracle values and define ri = Rnd(mi) and r̃i =
Rnd(m̃i) for brevity. Let A be a (t, qm, qv, ε0)-adversary for G0 and assuming
that P1 is (t, qv + qm, εP )-secure it follows that there must be a (t, qm, qv, ε1)-
adversary for G1 where

ε0 < ε1 + εP .
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Game G2 proceeds similarly for P2 giving us a (t, qm, qv, ε2)-adversary such that

ε0 < ε2 + 2εP .

We now continue with a hybrid game, successively replacing Merge(ri, r̃i) with
Merge evaluated on new random values. Eventually all the adversary gets is
Merge evaluated on independent random values and security follows. We show
an example of the initial game G2 in Fig. 3 and give the general definition of the
game Gl+2(l ∈ N>0) next.

Fig. 3. Game G2

Definition 4 (Game Gl+2). The game Gl+2 consists of three algorithms

– The Setup() algorithm randomly picks a key k. It must be called first.
– The result of the MAC algorithm call MAC(mi||m̃i), for a message msg =

mi||m̃i, depends on i:
• For i ≤ l it will return Merge(Rnd(mi||m̃i)). Here we slightly abuse

notation and let Rnd return two values.
• For i > l it will return Merge(ri, r̃i) just like G2.

– The verification algorithm, Verify(msg, tag), will compute the MAC like MAC
does and compare the result to tag.

Going from game Gl+1 to Gl+2 we remove all occurrences of Merge(rl, r̃l)
and replace them with Merge evaluated at new random inputs Merge(Rnd
(ml||m̃l)). We now define a simulator for these two games and show that a dis-
tinguisher for Gl+2 and Gl+3 wins the Random Input Indistinguishability game
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against Merge. To simplify, we assume that the messages in queries l and l +1
are different. Since queries are deterministic, if a msg is repeated we simply give
the same answer as the for the first query.

Definition 5 (Simulator). The simulator for games Gl+1 and Gl+2 consists of
three algorithms

– The Setup() algorithm simply calls Setup() for the Random Input Indistin-
guishability game.

– The result of the MAC algorithm MAC(msg), depends on i:
• For i < l it returns Merge(Rnd(mi||m̃i)).
• For i = l it returns the result of a call to Challenge() for the Random

Input Indistinguishability game.
• For i > l the result depends on the input message msgi = mi||m̃i:

* If mi = ml, m̃i �= m̃l it returns the result of a call to Query1(m̃l)
for the Random Input Indistinguishability game.
* If mi �= ml, m̃i = m̃l it returns the result of a call to Query2(ml)
for the Random Input Indistinguishability game.
* If mi �= ml, m̃i �= m̃l it returns Merge(ri, r̃i) just like G2.
* If mi = ml, m̃i = m̃l this value has been queried before and the
same result is used again.

– The verification algorithm, Verify(msg, tag), will compute the MAC like MAC
does and compare the result to tag.

This implicitly maps X = rl, Y = r̃l in the Random Input Indistinguishability
game. For i < l the simulator behaves like both Gl+1 and Gl+2. For i = l it
returns Challenge() from the Random Input Indistinguishability game. If b = 0
this will be Merge(X,Y ) which implicitly maps to Merge(rl, r̃l). For b = 1
it will be Merge(U, V ) which is just Merge evaluated at new random val-
ues just like Merge(Rnd(mi||m̃i)) in Gl+2. For i > l the simulator uses the
query algorithms for the Random Input Indistinguishability game to uphold the
implicit mapping and return Merge(X, r̃i) if ri is reused or Merge(ri, Y ) if
r̃i is reused. Given a completely different input message it will behave just like
G2 and also like both games by returning Merge(ri, r̃i). If game Gl+1 requires
qm, qv queries to the simulator then at most qm+qv queries to Merge are made.
Assuming that we have a (t, qm, qv, εl+1)-adversary for Gl+1 and that Merge is
(t, qm + qv, εMerge)-secure, we have a (t, qm, qv, εl+2)-adversary for Gl+2 with

εl+1 < εl+2 + εMerge.

If the initial game contained qm MAC queries and qv verify queries all the answers
will have been replaced after qm+qv steps. So for Gqm+qv+2 the adversary receives
no useful information anymore.
At this point the probability of an adversary to create a valid message-tag-pair
amounts to guessing the tag. We have

εqm+qv+2 < 2−N (qm + qv).
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It follows that

ε0 < 2−N (qm + qv) + εMerge(qm + qv) + 2εP .

This bounds all adversaries against G0 since we started with an arbitrary one.

4 Cryptanalysis

In this Section, we give an overview of the security related cryptographic proper-
ties of our construction. First, we discuss the security of the two initial PRFs in
MergeMAC. Second, we discuss relevant attacks for the recommended merging
function Merge in detail. The goal of the second analysis is to methodogically
provide evidence that Merge satisfies Random Input Indistinguishability.

Table 1. Security claims according to the underlying primitives

Underlying BC Block size Key size Existential
forgery resistance

Present 64 80 2−64

Present 64 128 2−64

Prince 64 128 2−64

4.1 Security of the PRFs

The security of the two initial PRFs in MergeMAC depends on the underly-
ing block ciphers used in CMAC mode. Table 1 gives an overview of the secu-
rity claims related to the recommended MAC functions and their underlying
primitives.

Birthday Attacks. While standard block ciphers, like AES have a block size
of 128-bits, a majority of lightweight block ciphers have a block size of 64-
bits. Bhargavan and Leurent [BL16] showed in their Sweet32 attack, that many
lightweight block ciphers with 64-bit block size can be practically attacked when
used in a mode like CBC. Consequently, the amount of data blocks that are
processed by the initial PRFs of our construction must be limited appropriately.

Forgeries by Reordering of Messages. An adversary is capable of creating
a simple forgery attack, as the first operation in the merging function Merge is
an XOR of its two inputs. The adversary just has to reorder the output tags of
the PRFs as the XOR operation is commutative. Such a simple forgery attack
can be prevented by using independent keys for both PRFs.
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4.2 Security of the Merge Function

We chose a round-reduced and slightly adapted version of the permutation π
from Chaskey with initial and final XORs for our Merge function. We now
provide a detailed security analysis of relevant attacks on this function.

Meet-in-the-Middle Attacks. Meet-in-the-middle attacks (MITM) were
introduced by Diffie and Hellman [DH77] in 1977 and showed that the secu-
rity of double DES with two independent 56-bit keys is not as expected 112-bits,
but still 56-bits. In their simplest form, MITM attacks can be described as fol-
lows: The goal is to attack a cipher E which is composed of two subciphers
E = E′

K1
◦ E′′

K2
with keys K1,K2 and decryption function D = D′′

K2
◦ D′

K1
. The

adversary uses a plaintext/ciphertext pair (P,C) and computes E′′
K2

(P ) under
the set of all possible key values for K2 and stores the results in a table. For the
corresponding ciphertexts, the adversary computes v = D′

K1
(C) for each value

of K1. If v is in the table, the adversary has a key candidate (K1,K2) which can
be verified with further plaintext/ciphertext pairs.

This has a time complexity of 2#K1 + 2#K2 and a memory complexity of
2min{#K1,#K2} compared to exhaustive key search with a time complexity of
2#K1+#K2 and constant memory complexity.

Applying a meet-in-the-middle attack to our construction, would require
an adversary to find a pre-image of the tag by inverting the Merge func-
tion. We show that finding a pre-image of Merge is as hard as exhaustively
guessing the internal state after the initial PRFs in Sect. 4.2. Moreover, as
MergeMAC does not implement an inverse function for the merging function
Merge, we also limit more advanced meet-in-the-middle attacks such as partial
matching/sieve-in-the-middle attacks [BR11], splice and cut attacks [AS09] and
biclique attacks [KRS12].

State Recovery Attacks. The goal of state recovery attacks is to recover
internal state of a cipher or parts thereof. Those attacks are especially powerful
against stream ciphers [MK08], as they may allow an adversary to predict the
remaining key stream. Recovering the internal state in a MAC scheme could
potentially lead to forgery attacks.

In MergeMAC, recovering the internal state before the merging function
Merge would require guessing one of the PRF outputs, while keeping the other
one constant. An adversary can also try to exploit the two XOR operations in
the beginning and end of Merge. However, the π function provides full diffusion
after 3 rounds canceling any correlation between the input and output of π.

Differential Attacks. Differential Cryptanalysis [BS91] is one of the most pow-
erful cryptanalytic techniques. Leurent [Leu16] applied a partitioning technique
on Chaskey, breaking 7 out of 8 rounds. We searched for differential trails of
our π-function using the automated tool CryptoSMT [Ste15]. The tool is based
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Table 2. Differential trails for 3 of the π function.

# Rounds Δin(v0, v1, v2, v3) → Δout(v0, v1, v2, v3) Probability

1 (0000, 0000, 8000, 0000) 1
(8000, 0080, 0080, 8001)

2 (1040, 1000, 2000, 2000) 2−5

(8001, 0080, 0080, 8002)
3 (4010, 0010, 0020, 0020) 2−14

(0201, 0A22, 0800, 0302)

on the constraint solver STP and the SAT solver CryptoMiniSat. Table 2 shows
the results for three rounds of the π functions.

However, one can deduce that the reduced-round π-functions are not dif-
ferential secure. Nevertheless, to successfully mount a differential attack on
MergeMAC an adversary needs access to differential pairs at the input and
output of Merge. Since the outputs of the PRFs are unknown an adversary
does not have access to such pairs.

Internal Collisions. An internal collision is defined as any input difference
Δin that maps to a zero output difference Δout = 0. An adversary could use the
information from internal collisions to set up a forgery attack by constructing
message pairs that fulfill the input difference Δin that when colliding lead to the
same tag. We experimentally verified that there are no internal collision in the
merging function Merge with our differential search tool CryptoSMT. Hence,
we defined a zero difference after a selected number of rounds and checked if we
can find any possible input differences that would lead to this all zero difference.
We tested our π-function for up to five rounds and concluded that there are no
internal collisions in our Merge-function.

Rotational Cryptanalysis. Rotational cryptanalysis [KN10] is a generic
cryptanalytic attack against ARX ciphers. Let us consider a pair (x, x ≪ r),
consisting of plaintext x and a rotated plaintext x by r positions. Then, the
pair (x, x ≪ r) forms a rotational pair. Rotational cryptanalysis exploits that a
rotational pair remains steady through binary operations like XOR and rotation.
In MergeMAC the inputs for merging function Merge are uniformly random
and unknown thereby preventing rotational attacks.

Slide Attacks. Slide attacks were introduced by Biryukov and Wagner [BW99]
in 1999 and later extended to advanced slide attacks [BW00]. Both can be used
against ciphers with identical round functions. Accordingly, the number of rounds
for a cipher is irrelevant against slide attacks. In our construction, each round
of the permutation π in our merging function Merge is identical and therefore
vulnerable to slide attacks. However, as we XOR the inputs of the merging
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function Merge before and after the permutation π, an adversary will not be
able to exploit a slide attack as she would still be required to invert the XOR
operation. Therefore, slide attacks do not pose a threat to our construction.

Rebound Attacks. Rebound attacks were introduced by Mendel et al.
[MRST09] and are an important technique for differential cryptanalysis of hash
functions. While standard rebound attacks are only applicable to AES-like com-
pression functions Khovratovich et al. [KNR10] applied rotational cryptanalysis
with rebound attacks to the SHA-3 finalist Skein with its Threefish compres-
sion function. The general idea behind the attack is to split the compression
function in three parts E = Efw ◦ Ein ◦ Ebw. In the inbound phase, Ein parts of
a differential characteristic that are difficult to satisfy probabilistically are cov-
ered with a match-in-the-middle approach. In the outbound phases, the solutions
from the inbound phases are propagated outwards in both directions, while it
is checked if the characteristic holds. Rebound attacks are no threat to Merge,
as the adversary needs to be able to verify the differentials which is impossible
because the input values are unknown. Moreover, even if an adversary uses an
outbound phase over the initial PRFs, the selection of our MAC function pre-
cludes the existence of any high probability differential trails that an adversary
could use to succeed.

Fixed Points. The permutation in Chaskey, which is structurally the same as
our permutation π, has one fixed point. Since it only contains modular additions
XOR and bit wise rotations the all zero input leads to π(0) = 0. Fixed points
can be used in a differentiability attack as shown by Maurer et al. [MRH04].

For our construction, this would mean that if an adversary can construct a
message leading to an internal all zero state 0 before the application of Merge,
then the tag would also be 0. However, constructing an all zero-state as input to
Merge, means constructing matching PRF outputs. Since each output occurs
uniformly at random an adversary will not be able to find such a plaintext with
a complexity better than 264.

Algebraic Attacks. Higher-order cryptanalysis and zero-sum distinguisher
were introduced by Lai in 1994 [Lai94] and first applied to block ciphers by Knud-
sen in 1995 [Knu95]. In 2009, Dinur and Shamir introduced Cube attacks [DS09].
All of those algebraic attacks exploit a low algebraic degree of a block cipher
to attack it. In our merging function Merge, the only non-linear operation is
a modular addition. This modular addition ensures that the algebraic degree
grows sufficiently for each output bit. Furthermore, as each input to the merging
function Merge is first processed by the underlying block cipher of the PRFs,
we can ensure that the degree of the input bits are already sufficiently large (i.e.
the degree is n − 1, where n is the block size of the block cipher of the PRFs).
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5 Performance

We benchmarked both Chaskey and our function Merge using SUPER-
COP [Ber16] on an Intel i7-4600U CPU running at 2.10 GHz. While this is not a
platform requiring lightweight cryptography we are only interested in comparing
relative timings for which it is sufficient. We give the median of required cycles
for Chaskey for several input sizes in Table 3. As is to be expected, our sim-
plified version is faster than Chaskey on even the shortest messages since we
only apply the round function three times. The median of the required cycles for
Merge was 38 which, compared to the second row of Table 3, is close to 3 out
of 8 rounds. The difference becomes more pronounced for longer messages. To
consider the overhead of our construction let t1, t2 be the time required for P1

and P2 and let tMerge be the time required by the merging function. So in the
least favorable comparison, when the entire message would fit into one block,
our construction requires time t1+ t2+ tMerge where simply using P1 as a MAC
would only require t1. Using our performance values for Chaskey this would
be an overhead of 132%. However, since P1 and P2 can execute in parallel this
immediately comes down to only 32%. For a message size of over 16 bytes, so at
least two blocks, and leveraging parallel execution our construction is already as
fast as the simple MAC. In the ideal case when both message parts are known
and the PRF outputs are cached our construction is three times faster. Note
that in the case of Chaskey the overhead required by our merging function is
less than the overhead required for creating the padding for messages as shown
in the first line of Table 3.

Table 3. Required cycles for hashing with Chaskey

Input size Median cycles

0 153

16 111

32 147

64 216

128 354

256 639

512 1182

1024 2259

2048 4461

4096 8835

For the CAN bus application this means that in the case of a correct counter
our construction will at most have an overhead of 32%. In case of an incor-
rect counter trying additional values only costs one third of a normal MAC
evaluation. In the worst case, if the counter has wrapped many times, our con-
struction would require only one third of the time.
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6 Conclusions

We presented MergeMAC, a MAC construction specifically tailored to accom-
plish authenticated communication in very constrained environments with lim-
ited bandwidth and the need to satisfy strict time constraints. The construction
is based on a merging function for which we conducted a thorough cryptanal-
ysis and provided performance figures. We demonstrated the applicability of
MergeMAC for authenticating messages on the CAN bus. In case of different
security requirements it is perfectly possible to instantiate this MAC construc-
tion with different PRFs like AES-CMAC and a suitable merging function.

One of the questions left for future work is whether there are more efficient
merging functions that still meet the security requirements as defined in Sect. 3.
The merging function Merge we defined merges two pre-MACs into the final
MAC. For other use cases it is possible to canonically increase the number of
pre-MACs.
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