
Privacy-Preserving Ridge Regression with
only Linearly-Homomorphic Encryption

Irene Giacomelli1(B), Somesh Jha1, Marc Joye2, C. David Page1,
and Kyonghwan Yoon1

1 University of Wisconsin-Madison, Madison, WI, USA
irene.giacomelli29@gmail.com

2 NXP Semiconductors, San Jose, CA, USA

Abstract. Linear regression with 2-norm regularization (i.e., ridge
regression) is an important statistical technique that models the rela-
tionship between some explanatory values and an outcome value using a
linear function. In many applications (e.g., predictive modeling in person-
alized health-care), these values represent sensitive data owned by several
different parties who are unwilling to share them. In this setting, training
a linear regression model becomes challenging and needs specific crypto-
graphic solutions. This problem was elegantly addressed by Nikolaenko
et al. in S&P (Oakland) 2013. They suggested a two-server system that
uses linearly-homomorphic encryption (LHE) and Yao’s two-party proto-
col (garbled circuits). In this work, we propose a novel system that can
train a ridge linear regression model using only LHE (i.e., without using
Yao’s protocol). This greatly improves the overall performance (both in
computation and communication) as Yao’s protocol was the main bot-
tleneck in the previous solution. The efficiency of the proposed system is
validated both on synthetically-generated and real-world datasets.

Keywords: Ridge regression · Linear regression · Privacy
Homomorphic encryption

1 Introduction

Linear regression is an important statistical tool that models the relationship
between some explanatory values (features) and an outcome value using a linear
function. Despite its simple definition, a linear regression model is very useful.
Indeed, it can be used to quantitatively relate the features and the outcome
(e.g., identify which features influence more directly the outcome) and for future
prediction (e.g., if a new vector of features with no known outcome is given, the
model can be used to make a prediction about it). Ridge regression is one of the
most widely-used forms of regression; see the survey in [21]. It lessens the over-
fitting of ordinary least squares regression without adding computational cost.
In practice, this is achieved giving preference to models with small Euclidean
norm. To enhance the efficacy of the learned model, prior experience in model
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 243–261, 2018.
https://doi.org/10.1007/978-3-319-93387-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_13&domain=pdf


244 I. Giacomelli et al.

training suggests using training data from a large and diverse set. Indeed, it is
known that having more data (more relevant features and/or more data points)
typically improves the ability to learn a reliable model. A simple way to obtain
such training dataset is to merge data contained in “data silos” collected by dif-
ferent entities. However, in many applications (e.g., personalized medicine [28])
the data points encode sensitive information and are collected by possibly mutu-
ally distrustful entities. Often, these entities will not (or cannot) share the pri-
vate data contained in their silos, making collaborative analysis on joint data
impossible.

Consider the following example: We would like to use a given linear regression
method in order to predict the weight of a baby at birth on the basis of some
ultrasound measurements made during the last month of pregnancy (e.g., head
circumference, femur length,. . . ). On one hand, in order to avoid computing a
biased model, we would like to run the selected learning algorithm on data points
collected in different hospitals in various locations. On the other hand, each hospi-
tal legally cannot share (in the clear) patients’ sensitive data (the measurements)
with other hospitals or with a third party (e.g., a cloud-computing server). This
real-life case exemplifies the challenge on which we focus on: training a linear
regression model on joint data that must be kept confidential and/or are owned
by multiple parties. Moreover, we want to run such collaborative analysis with-
out exposing an entity’s sensitive data to any other party in the system (i.e., no
entity in the system is trusted to handle the data in the clear).

Our paper takes up the above challenge and proposes an efficient solution
in the two-server model [16], commonly used by previous works on privacy-
preserving machine learning (e.g., see [12,22,23]), where no party needs to be
trusted to handle the data in the clear. In this setting, the computation of
the model from the merged data is outsourced to two non-colluding (but not
necessarily trusted) third-parties. After a first phase of collecting private data
in encrypted form from possibly many data-owners, the two third parties then
engage in a second phase for the computation of the model itself. The system is
designed in such a way that no extra information (beside that released by the
model itself) is revealed to these two parties if they do not collude (condition
that can, for example, be enforced by law). Our solution is based only on a sim-
ple cryptographic primitive that can be implemented via efficient constructions.
Indeed, our system is designed using just a linearly-homomorphic encryption
(LHE) scheme, that is, an encryption scheme that enables computing the sum of
encrypted messages. Previous solutions to the problem considered here are based
on multi-party computation protocols (e.g., secret-sharing based protocols like
BGW [6] or the 2-party protocol by Yao [29]) or on somewhat-homomorphic
encryption (i.e., encryption schemes that support a limited number of arith-
metic operations on encrypted messages). A hybrid approach that uses both
homomorphic encryption and Yao’s scheme was presented in [23]. In this work,
we present the first approach to privacy-preserving ridge regression that uses
only linearly-homomorphic encryption. We believe that this result is interesting
both from the theoretical and the practical points of view. Indeed our system



Privacy-Preserving Ridge Regression with only LHE 245

can be seen as a new black-box application of LHE and shows that this basic
crypto-primitive can be used alone to handle involved tasks (i.e., ridge regression
over distributed data). Furthermore, our system achieves practical performances
when implemented using a standard encryption scheme like Paillier’s cipher [24].
We show this via an evaluation of our system that uses synthetically-generated
and real-world data. Overall, our experiments demonstrate that, for many real
scenarios, LHE is all you need to privately yet efficiently train a ridge regression
model on distributed data. As an illustrative example, consider the following
existing medical scenario: the Warfarin dosing model. Warfarin is a popular
anticoagulant for which the International Warfarin Pharmacogenetics Consor-
tium proposed an accurate dosing model trained using linear regression on a
medical database that was the merge of the data silos collected by 21 research
groups. Using a commodity machine, our system can compute the same model
in less than 3 min with the guarantee of confidentiality for the data silos of each
research group involved.

Related Work. The question of privacy-preserving machine learning was intro-
duced in 2000 by two pioneering works [1,20]. Later on, privacy-preserving linear
regression was considered in a number of different works (e.g., [2,8,10,15,17–
19,25]). In 2013, Nikolaenko et al. [23] introduced the scenario we consider in this
paper: privacy-preserving linear regression protocol in the two-server model. The
solution in [23] considers ridge regression on a horizontally-partitioned dataset
in which each party has some of the data points that form the training set (e.g.,
two or more hospitals, each of which collects the same medical data on differ-
ent sets of patients). Their solution is based on LHE and Yao’s protocol. The
latter is a two-party protocol that allows the evaluation of a circuit C on a pair
of inputs (a, b) such that one party knows only a and the other party knows
only b. At the end of the protocol, the value C(a, b) is revealed but no party
learns extra information beyond what is revealed by this value. In [23], the ridge
regression model is computed using Yao’s protocol to compute the solution of a
linear system of the form Aw = b where the entries of matrix A and vector b
are encrypted (and must be kept private). The solution w∗ is the model. The
circuit C is the one that solves a linear system computing the Cholesky decompo-
sition of the coefficient matrix. Recently, in [12], the system presented in [23] was
extended to vertically-partitioned datasets in which the features in the training
dataset are distributed among different parties (e.g., two or more hospitals, each
of which collects different medical data on the same set of patients). Gascón et
al. [12] achieve this result using multiparty-computation techniques to allow the
data-owners to distribute shares of the merged datasets to the two parties active
in the second phase. Moreover, Gascón et al. also improve the running time of
the second phase of the protocol presented in [23] by designing a new conjugate
gradient descent algorithm that is used as circuit C in the place of Cholesky
decomposition. This approach was subsequently further improved by Mohassel
and Zhang [22] using mini-batch stochastic gradient descent, and extended to
logistic regression and neural networks on arbitrarily partitioned datasets.



246 I. Giacomelli et al.

Our Contribution. Our paper follows this line of work and presents a novel sys-
tem for ridge regression in the two-server model. For the first phase, we extend
the approach used by Nikolaenko et al. to datasets that are arbitrarily parti-
tioned using the techniques of labeled-homomorphic encryption [4] to support
multiplications among pairs of ciphertexts encrypted via an LHE scheme. In this
way we show that a solution based only on LHE can handle scenarios more com-
plicated than the horizontally-partitioned case. For the second phase, we avoid
Yao’s protocol by designing an ad-hoc two-party protocol that solves Aw = b
using only the linear homomorphic property of the underlying encryption scheme.
This allows to boost the overall performance and, in particular, to considerably
reduce the communication overhead.1 As a highlight, if we horizontally partition
(into ten equal-sized parts) a dataset of 10 millions instances and 20 features, our
privacy-preserving regression method runs in under 2 min2 and produces a com-
munication overhead of 1.3 MB. The system presented in [23] needs more than
50 min and 270 MB exchanged data to perform a similar computation.3 Finally,
we notice that gradient descent based solutions (e.g., [12,22]) use iterative algo-
rithms and present the problem of estimating the number of iterations t. Either t
is fixed to a high value that ensures finding a good approximation of the model,
which incurs higher complexity for the protocol; either t is chosen adaptively
based on the dataset, which can be infeasible in the privacy-preserving setting.
Our solution for solving Aw = b does not present this problem.

2 Background

Linear Regression. A linear regression learning algorithm is a procedure that
on input n points {(x 1, y1), . . . , (xn, yn)} (where x i ∈ R

d and yi ∈ R) outputs
a vector w∗ ∈ R

d such that w∗ᵀ
x i ≈ yi for all i = 1, . . . , n. One common

way to compute such a model w∗ is to use the squared-loss function and the
associated empirical error function (mean squared error): fX,y (w) = ‖Xw−y‖22.
Here X ∈ R

n×d is the matrix with the vector x
ᵀ
i as ith row and y ∈ R

n is
the vector with the value yi as ith component. We assume that X is always
full-rank (i.e., rk(X) = d). Specifically, w∗ is computed by minimizing a linear
combination of the aforementioned error function and a regularization term, that
is, w∗ ∈ argminw∈Rd fX,y (w) + λR(w) where λ ≥ 0 is fixed. The regularization
term is added to avoid over-fitting the training dataset and to bias toward simpler
models. In practice, one of the most common regularization terms is the 2-norm
(R(w) = ‖w‖22), which generates a model with overall smaller components. In
this case (called ridge regression), the model w∗ is computed by minimizing the
function Fridge(w) = ‖Xw −y‖22 +λ‖w‖22. Since, ∇Fridge(w) = 2X

ᵀ(Xw −y)+
2λw , we have that w∗ is computed solving the linear system

Aw = b (1)

1 Size of the messages exchanged among the parties running the system.
2 Timing on a 2.6 GHz 8GB RAM machine running Linux 16.04; 80-bit security.
3 Timing on a 1.9 GHz 64GB RAM machine running Linux 12.04; 80-bit security.



Privacy-Preserving Ridge Regression with only LHE 247

where A = X
ᵀ
X + λI (symmetric d × d matrix) and b = X

ᵀ
y (vector of d com-

ponents). Notice that since X is full-rank, A is positive definite and therefore
det(A) > 0 (in particular A is invertible).

Cryptographic Tools. To design our privacy-preserving system, we utilize
homomorphic encryption. Let (M,+) be a finite group. A linearly-homomorphic
encryption (LHE) scheme for messages in M is defined by three algorithms:

1. The key-generation algorithm Gen takes as input the security parameter κ
and outputs a matching pair of secret and public keys, (sk , pk) ← Gen(κ).

2. The encryption algorithm Enc is a randomized algorithm that uses the public
key pk to transform a message m from M (plaintext space) into a ciphertext,
c ← Encpk (m).

3. The decryption algorithm Dec is a deterministic function that uses the secret
key sk to recover the original plaintext from a ciphertext c.

The standard security property (semantic security) says that it is infeasible
for any computationally bounded algorithm to gain extra information about
a plaintext when given only its ciphertext and the public key pk . Moreover, we
have the homomorphic property: Let C be the set of all possible ciphertexts,
then there exists an operation � on C such that for any a-tuple of cipher-
texts c1 ← Encpk (m1), . . . , ca ← Encpk (ma) (a positive integer), it holds that
Pr[Decsk (c1 �· · ·� ca) = m1 + · · ·+ma] = 1. This implies that, if c = Encpk (m),
Decsk (cMult(a, c)) = am, where cMult(a, c) = c � · · · � c (a times).

In some cases being able to perform only linear operations on encrypted
messages is not sufficient. For example, when considering arbitrarily partitioned
datasets, we will need to be able to compute the encryption of the product
of two messages given the encryptions of the individual messages. An LHE
scheme cannot directly handle such an operation. On the other hand, a gen-
eral solution to the problem of computing on encrypted data can be obtained
via the use of fully-homomorphic encryption [13]. Since full fledged construc-
tions of fully-homomorphic encryption are still inefficient, more efficient solutions
have been designed for evaluating low-degree polynomials over encrypted data
functionalities (somewhat-homomorphic encryption). In a recent work, Barbosa
et al. [4] introduce the concept of labeled-homomorphic encryption (labHE); this
new primitive significantly accelerates homomorphic computation over encrypted
data when the function that is being computed is known to the party that
decrypts the result. Since in this paper we consider that the machine-learning
algorithm and the data distribution among the participants is publicly known,
the previous assumption is satisfied and we can make use of labHE. In particu-
lar, Barbosa et al. show how to design an homomorphic encryption scheme that
supports the evaluation of degree-two polynomials using only an LHE and a
pseudo-random function. The new scheme is public-key and works in the multi-
user setting: two or more users encrypt different messages, an encryption of the
evaluation of a degree-two polynomial on these messages can be constructed by
any party having access to the public key and the ciphertexts. Then the party



248 I. Giacomelli et al.

holding the secret key can decrypt and reveal the result of the evaluation (the
polynomial is public, the correspondence user-ciphertext is known). We briefly
recall here their construction [4, Sect. 5] in the case that the polynomial is eval-
uated on messages encrypted only by two different users.

Let (Gen,Enc,Dec) be an LHE scheme with security parameter κ and message
space M. Assume that a multiplication operation is given in M; i.e., (M,+, ·)
is a finite ring. Let also F : {0, 1}s × L → M be a pseudo-random function with
seed space {0, 1}s (s = poly(κ)) and label space L. Define:

– labGen(κ): On input κ, it runs Gen(κ) and outputs (sk , pk).
– localGen(pk): For each user i and with the public key as input, it samples

a random seed σi in {0, 1}s and computes pk i = Encpk
(
σi

)
where σi is an

encoding of σi as an element of M. It outputs (σi, pk i).
– labEncpk (σi,m, τ): On input a message m ∈ M with label τ ∈ L from the user

i, it computes b = F (σi, τ) and outputs the labeled ciphertext c = (a, c) ∈
M × C with a = m − b in M and c = Encpk (b).

– labMult(c, c′): On input two labeled ciphertexts, c = (a, c) and c′ = (a′, c′),
it computes a “multiplication” ciphertext d = labMult(c, c′) as d = Encpk (a ·
a′) � cMult(a, c′) � cMult(a′, c).
Observe that Decsk (d) = m · m′ − b · b′. Moreover, notice that given two or
more multiplication ciphertexts d1, . . . , dn, they can be “added” using the
operation of the underlying LHE scheme: d1 � · · · � dn. Assume that user i
and user j have both encrypted n messages, m1, . . . , mn and m′

1, . . . , m
′
n,

respectively. Let c̃ ∈ C be the ciphertext obtained as

n⊙

t=1

labMult
(
labEncpk (σi,mt, τt), labEncpk (σj ,m

′
t, τ

′
t)

)
.

– labDecsk (pk i, pk j , c̃): On input c̃, it first recovers σi and σj from Decsk (pk i)
and Decsk (pk j). Next, it computes bt = F (σi, τt) and b′

t = F (σj , τ
′
t) for all

t = 1, . . . , n. Finally, it computes b̃ =
∑n

t=1 bt · b′
t and m̃ = Decsk (c̃) − b̃. It is

easy to verify that m̃ =
∑n

t=1 mt · m′
t.

Data Representation. In order to use the cryptographic tools described in the
former section, we need to represent the real values that form the input datasets
as elements in the finite set M (the message space). Without loss of generality,
we assume that M = ZN for some big integer N and that the entries of X and y
are numbers from the real interval [−δ, δ] (with δ > 0)4 with at most � digits in
their fractional part. In this case, the conversion from real values to elements in
M can be easily done by rescaling all the entries of X and y and then mapping
the integers in ZN using the modular operation. For this reason, from now on we
consider that the entries of X and y are integers from 0 to N − 1. This implies
that we consider the matrix A and the vector b having positive integer entries5

4 In other words, δ = max{‖X‖∞, ‖y‖∞} for the original X and y .
5 We assume that λ ∈ R has at most 2� digits in the fractional part.



Privacy-Preserving Ridge Regression with only LHE 249

and, finally, that we assume that the model w∗ is a vector in Q
d. Notice that for

the integer representation of A and b it holds that ‖A‖∞, ‖b‖∞ ≤ 102�(nδ2 +λ).
Therefore, if 102�(nδ2 + λ) ≤ N−1

2 , then A and b are embedded in ZN without
overflow for their entries. However, if the linear system (1) is now solved over ZN ,
then clearly the entries of the solution are given as modular residues of ZN and
may be different from the entries of the desired model w∗ in Q

d. In order to solve
this problem and recover the model in Q

d from the model computed over ZN , we
can apply the rational reconstruction technique component-wise. With rational
reconstruction [11,27] we mean the application of the Lagrange-Gauss algorithm
to recover a rational t = r/s from its representation in ZN as t′ = r s−1 mod N ,
for N big enough (see (4) in Sect. 4).

3 Threat Model and System Overview

We consider the setting where the training dataset is not available in the clear
to the entity that wants to train the ridge regression model. Instead, the latter
can access encrypted copies of the data and, for this reason, needs the help of
the party handling the cryptographic keys in order to learn the desired model.
More precisely, protocols in this paper are designed for the following parties:

– The Data-Owners: There are m data-owners DO1, . . . ,DOm; each data-owner
DOi has a private dataset Di and is willing to share it only if encrypted.

– The Machine-Learning Engine (MLE): This is the party that wants to run a
linear regression algorithm on the dataset D obtained by merging the local
datasets D1, . . . ,Dm, but has access only to the encrypted copies of them. For
this reason, MLE needs the help of the Crypto Service Provider.

– The Crypto Service Provider (CSP) takes care of initializing the encryption
scheme used in the system and interacts with MLE to help it in achieving its
task (computing the linear regression model). CSP manages the cryptographic
keys and is the only entity capable of decrypting.

We assume that MLE and CSP do not collude and that all the parties involved
are honest-but-curious. That is, they always follow the instructions of the pro-
tocol but try to learn extra information about the dataset from the messages
received during the execution of the protocol (i.e., passive security). Moreover,
we assume that for each pair of parties involved in the protocol there exists a
private and authenticated peer-to-peer channel. In particular, communications
between any two players cannot be eavesdropped.

The goal is to ensure that MLE obtains the model while both MLE and
CSP do not learn any other information about the private datasets Di beyond
what is revealed by the model itself. Even in the case that one of the two servers
(MLE or CSP) colludes with some of the data-owners, they should learn no extra
information about the data held by the honest data-owners. In order to achieve
this goal we design a system that can be seen as multi-party protocol run by
the m + 2 parties mentioned before and specified by a sequence of steps. This
system (described in Sect. 4) has the following two-phase architecture:



250 I. Giacomelli et al.

Phase 1 (merging the local datasets): CSP generates the key pair (sk , pk),
stores sk and makes pk public; each DOi sends to MLE specific ciphertexts
computed using pk and the values in Di. MLE uses the ciphertexts received
and the homomorphic property of the underling encryption scheme in order
to obtain encryptions of A and b (coefficient matrix and vector in (1)).

Phase 2 (computing the model): MLE uses the ciphertexts Encpk (A) and
Encpk (b) and private random values in order to obtain encryptions of new
values that we call “masked data”; these encryptions are sent to the CSP; the
latter decrypts and runs a given algorithm on the masked data. The output
of this computation (“masked model”) is a vector w̃ that is sent back from
the CSP to the MLE. The latter computes the output w∗ from w̃ .

Informally, we say that the system is correct if the model computed by the MLE
is equal to the model computed by the learning algorithm in the clear using D
as training data. And we say that the system is private if the distribution of
the masked data sent by the MLE to the CSP is independent of the distribution
of the local inputs. Thus, no information about D1, . . . ,Dm is revealed by the
messages exchanged during Phase 2.

As we will see in Sect. 4, the specific design of the protocol realizing Phase
1 depends on the distributed setting: horizontally- or arbitrarily-partitioned
datasets. However, in both cases, the data-owners input encryptions of local
values and the MLE gets the encryptions of A and b. The CSP simply takes
care of initializing the cryptographic primitive and generates the relative keys.
Phase 2 is realized by an interactive protocol between the MLE and the CSP.
CSP takes on input the encryptions of A and b from the MLE and returns the
solution of the system Aw = b following this pattern (we refer to this as the

“masking trick”):

– The MLE samples a random invertible matrix6 R ∈ GL(d,M) and a random
vector r ∈ M and it uses the linear homomorphic property of the underlying
encryption scheme to compute C ′ = Encpk (AR) and d ′ = Encpk (b + Ar).
The values C = AR and d = b + Ar are the “masked data.” We slightly
abuse notation here; Encpk (·) is applied component-wise in the computation
of C and of d ′.

– The CSP decrypts C ′ and d ′ and computes w̃ = C−1d . The vector w̃ is the
“masked model” sent back to the MLE.

– The MLE computes the desired model as w∗ = Rw̃ − r . Indeed, it is easy to
verify that Rw̃ − r = R(AR)−1(b + Ar) − r = A−1b.

Informally, the security of the encryption scheme assures privacy against an
honest-but-curious MLE. On the other hand, if R and r are sampled uniformly
at random, then the distribution of the masked data is independent of A and
b. This guarantees privacy against an honest-but-curious CSP. Similar masking
tricks have been previously used in different settings. In [3], a similar method is

6 GL(d, M) denotes the general linear group of degree d over the ring M; namely, the
group of d × d invertible matrices with entries from M.



Privacy-Preserving Ridge Regression with only LHE 251

used to design a secret-shared based MPC protocol for the evaluation of general
functions. In this work, we tailor the masking trick for the goal of solving the
linear system Aw = b gaining in efficiency. In [26], masking with random values
is used to outsource a large-scale linear system to an untrusted “cloud server”.
They assume that the coefficient matrix A and vector b of the linear system
are known to a “cloud customer” seeking the solution w . In this work, A and
b are encrypted and the masking is applied “inside the encryption”; to make
the masking trick, which works in Q, compatible with the encryption and the
modular arithmetic used for it, we make use of rational reconstruction.7

Notice that the two-server model allows for different implementations in prac-
tice. If we consider applications in which the majority of data-owners are willing
to help to run collaborative analysis but don’t want to (or cannot) spend to much
resources to execute it, then the role of MLE and CSP can be taken by two semi-
trusted8 third-parties (e.g., two independent research institutions). This setting
offers the practical advantage that the involvement of all data-owners is minimal.
Otherwise, since CSP and MLE are only required to be non-colluding, their role
can be taken by two disjoint subsets of data-owners (e.g., for m ≥ 2, we can
have DO1 and DO2 playing the role of MLE and CSP, respectively). In this case,
no third-parties are required to implement the system.

4 Protocols Description

In this section we describe how to implement Phase 1 and Phase 2. Let (Gen,Enc,
Dec) be an LHE scheme with security parameter κ and message space M = ZN .

4.1 Phase 1: Merging the Dataset

Horizontally-Partitioned Setting. Assume that the dataset represented by the
matrix X and the vector y is horizontally-partitioned in m datasets. That is,
the data-owner DOk holds

Dk =
{
(xnk−1+1, ynk−1+1), . . . , (xnk

, ynk
)
}

, (2)

for k = 1, . . . , m (0 = n0 < n1 < · · · < nm = n). In this case, as already noticed
in [23], defining Ak =

∑nk

i=nk−1+1 x ix
ᵀ
i and bk =

∑nk

i=nk−1+1 yix i, we have that
A =

∑m
k=1 Ak + λI and b =

∑m
k=1 bi. In Protocol Π1,hor, each data-owner DOk

computes and sends to MLE encryptions of the entries of Ak and bk; then MLE
computes encryptions of the entries of A and b using the above formulas and
the operation � (details in Protocol 1).

7 Notice that the system presented in [26] fails because no techniques are used to make
the arithmetic over Q compatible with the modular arithmetic used by the underling
LHE (i.e., Paillier’s scheme). See [7] for more details on this.

8 That is, trusted to be non-colluding.



252 I. Giacomelli et al.

Protocol 1. Π1,hor: Phase 1 in the horizontally-partitioned setting.

– Parties: CSP, MLE, and DOk with input Dk (as defined in (2)) for all k = 1, . . . , m.
– Output : MLE gets A′ and b ′ (i.e., encryptions of A and b, respectively).

Step 1 : (key-generation) CSP runs (sk , pk) ← Gen(κ) and makes pk public, while it
keeps sk secret.

Step 2 : (local computation) For all k = 1, . . . , m, DOk computes Ak =
∑

i x ix
ᵀ
i and

bk =
∑

i yix i with nk−1 + 1 ≤ i ≤ nk; next, DOk encrypts them, A′
k[i, j] =

Encpk (Ak[i, j]), b ′
k[i] = Encpk (bk[i]) for all i, j = 1, . . . , d and j ≥ i; finally,

DOk sends all A′
k and b ′

k to MLE.
Step 3 : (datasets merge) For all i, j = 1, . . . , d and j ≥ i, MLE computes

A′[i, j] =

{(⊙m
k=1 A′

k[i, i]
) � Encpk (λ) if j = i

⊙m
k=1 A′

k[i, j] if j > i
, b ′[i] =

m⊙

k=1

b ′
k[i].

Arbitrarily-Partitioned Setting. Assume that each DOk holds some elements of
X and y . That is, DOk holds

Dk =
{
X[i, j] = x i[j] | (i, j) ∈ Dk

} ∪ {
y [i] = yi | (i, 0) ∈ Dk

}
, (3)

where Dk ⊆ {1, . . . , n} × {0, 1, . . . , d}. Assume that each data-owner sends
encryptions of the elements it knows to MLE. Then, in order to compute encryp-
tions of the entries of A and b, MLE needs to multiply two ciphertexts. Indeed,
we have b[i] =

∑n
t=1 x t[i]y [t] and A[i, j] =

∑n
t=1 x t[i]x t[j] if j = i, otherwise

A[i, i] =
∑n

t=1 x t[i]x t[i] + λ. To allow this, we use labeled-homomorphic encryp-
tion. As we recalled in Sect. 2, the latter can be constructed on top of any LHE
scheme and it enhances the underlying scheme with the multiplication command
labMult. In particular, after having received labeled-encryptions of the input from
the data-owners,9 MLE can compute the encryptions of the entries of A and b
using formulas of the form

⊙n
t=1 labMult

(
labEnc(x t[i]), labEnc(x t[j])

)
. Remem-

ber that the output of the command labMult used to compute the encryption of
the product of two messages, m1 and m2, is in fact an encryption of m1m2−b1b2
where b1, b2 are two random values used to compute the labeled-encryptions of
the values m1 and m2. For this reason, at the end of the procedure described
before, MLE obtains encryptions of A−B and b −c, instead of encryption of A
and b, where B and c depend on the random values used to encrypt the entries
of the local datasets using the labeled-homomorphic scheme. The matrix B and
the vector c can be reconstructed by the party handling the decryption key (i.e.,
CSP). The decryption procedure of the labeled-homomorphic scheme, labDec,
accounts for this. However, in the application we consider here (training a ridge

9 If x t[i] and x t[j] are both held by one DOk, then the former can send Encpk (x t[i]x t[j])
to MLE, who updates the formulas in Step 3 of Π1,arb accordingly.



Privacy-Preserving Ridge Regression with only LHE 253

Protocol 2. Π1,arb: Phase 1 in the arbitrarily-partitioned setting.

– Parties: CSP, MLE, and DOk with input Dk (as defined in (3)) for all k = 1, . . . , m.
– Output : MLE gets A′ and b ′ (i.e., encryptions of A and b, respectively).

Step 1 : (key-generation) CSP runs (sk , pk) ← labGen(κ) and makes pk public, while
it keeps sk secret. For k = 1, . . . , m, DOk runs (σk, pkk) ← localGen(pk) and
makes pkk public, while it keeps σk secret.

(setup) For k = 1, . . . , m, CSP recovers σk from Decsk (pkk) and computes
bij = F (σk, (i, j)) with (i, j) ∈ Dk. For i, j = 1, . . . , d and j ≥ i, CSP computes
B′[i, j] = Encpk (

∑n
t=1 btibtj) and c′[i] = Encpk (

∑n
t=1 btibt0). These are sent to

MLE.
Step 2 : (local computation) For k = 1, . . . , m, DOk computes labeled-encryptions of

the known entries of X and y . That is, for all (i, j) ∈ Dk, DOk computes
cij = (aij , cij) = labEncpk (σk, x i[j], (i, j)) when j > 0 and ci0 = (ai0, ci0) =
labEncpk (σk, y [i], (i, 0)).
For all k = 1, . . . , m, DOk sends all labeled-ciphertexts cij to MLE.

Step 3 : (datasets merge) For all i, j = 1, . . . , d and j ≥ i, MLE computes

A′[i, j] =

{(⊙n
t=1 labMult(cti, cti)

) � B′[i, i] � Encpk (λ) if j = i
(⊙n

t=1 labMult(cti, ctj)
) � B′[i, j] if j > i

,

b ′[i] =

(
n⊙

t=1

labMult(cti, ct0)

)

� c′[i].

regression model) it is necessary that at the end of Phase 1 the MLE has proper
encryptions for A and b. Indeed, only in this case we can proceed to Phase 2 and
use the masking trick (using the masking trick with labeled-encryptions of A and
b doesn’t work). For this reason, we need to add one round of communication
where CSP sends to MLE encryptions of the entries of B and c. This can be
done before the beginning of the actual computation (Step 1 of Phase 1) since
B and c do not depend on the actual data used to train the regression model.
In this way, the MLE can finally gets encryptions of A and b. Protocol Π1,arb

in Protocol 2 describes this in detail.

4.2 Phase 2: Computing the Model

At the end of Phase 1, MLE knows component-wise encryption of the matrix A
and the vector b (both with entries represented in ZN , the message space of the
LHE scheme used in Phase 1). Recall that the final goal of our system is comput-
ing w∗ ∈ Q

d solution of (1). In order to do this in a privacy-preserving manner,
in Phase 2 we implement the masking trick described in Sect. 3 and compute w̃∗

that solves (1) in ZN . Then we use rational reconstruction to find w∗. All the
details of this are reported in Protocol Π2 (Protocol 3). The correctness is easy to



254 I. Giacomelli et al.

Protocol 3. Π2: Phase 2.

– Parties: CSP knows sk , MLE knows A′ = Encpk (A) and b ′ = Encpk (b).
– Output : MLE gets w∗.

Step 1 : (data masking) MLE samples R ← GL(d,ZN ) and r ← Z
d
N and computes

C′[i, j] =
⊙d

k=1 cMult(R[k, j], A′[i, k])

d ′[i] = b ′[i] � (⊙d
k=1 cMult(r [k], A′[i, k])

)

for all i, j = 1, . . . , d; next, MLE sends C′ and d ′ to CSP.
Step 2 : (masked model computation) CSP first decrypts C′ and d ′ obtaining C and

d (C[i, j] = Decsk (C
′[i, j]), d [i] = Decsk (d

′[i]) for all i, j = 1, . . . , d); then it
computes w̃ ≡ C−1d mod N and sends it w̃ to MLE.

Step 3 : (model reconstruction) MLE computes w̃∗ ≡ Rw̃ − r mod N and uses ratio-
nal reconstruction on each component of w̃∗ to compute w∗ ∈ Q

d.

verify, indeed we have Rw̃ −r ≡ R(AR)−1(b+Ar)−r ≡ A−1b (mod N). Secu-
rity is also straightforward: Protocol Π2 is secure against a honest-but-curious
CSP because the values seen by it (the masked data AR mod N and b + Ar
mod N) have a distribution that is unrelated with the input datasets. Moreover,
Protocol Π2 is secure against a honest-but-curious MLE because of the security
of the underlying encryption scheme. Indeed, the MLE sees only an encrypted
version of A and b. See [14, Appendix A.6] for the formal security proof.

In some applications, a desirable property is that the model is delivered only
to the data-owners. If the role of MLE and CSP is taken by third-parties, this
can be achieved using a standard tool like threshold encryption [9]. In this case,
the key generation step of Phase 1 is enhanced with the sharing of sk (i.e., CSP
knows sk and each DOi knows a share for sk). Then, Step 2 of Protocol Π2 is
modified in such a way that CSP sends to MLE the value Encpk (w̃), instead of
the vector w̃ in the clear. MLE computes Encpk (w̃∗) and broadcasts it to all
data-owners. Finally, the DOi collaborates to jointly decrypt and compute w∗.

Choice of Parameters. In the last step of Π2 we use rational reconstruction
to recover the components of w∗ ∈ Q

d from the solution of Aw = b computed
in ZN . According to [11,27] if a rational t = r/s with −R ≤ r ≤ R, 0 < s ≤ S
and gcd(s,N) = 1 is represented as t′ = rs−1 mod N in ZN , then the Lagrange-
Gauss algorithm uniquely recovers r and s provided that 2RS < N . Since w∗ =
A−1 b = 1

det(A) adj(A)b ∈ Q
d, in order to choose N that satisfies the condition

stated before, we need to bound the det(A) and the entries of the vector adj(A)b.
Let α = max{‖A‖∞, ‖b‖∞}, using the Hadamard’s inequality, we have that 0 <

det(A) ≤ αd (A is a positive definite matrix) and ‖ adj(A)b‖∞ ≤ d(d − 1)
d−1
2 αd.



Privacy-Preserving Ridge Regression with only LHE 255

Using the same assumptions of Sect. 2 on the entries of X and y (that is, the
entries of X and y are real number in [−δ, δ] with at most � digits in the fractional
part), we have that α ≤ 102�(nδ2 + λ). It follows that the condition 2RS < N is
fulfilled when

2d(d − 1)
d−1
2 104�d (nδ2 + λ)2d < N. (4)

50 100 150 200 250

100

300

500

700

d

n = 105

n = 107

n = 109

Fig. 1. Communication overhead in
MB of Π2 (δ = 1, 80-bit security, � = 3,
Paillier’s scheme, λ = 0).

Communication Complexity. The
messages sent during Protocol Π1,hor and
Protocol Π2 contain Θ(d2) elements from
ZN , while the ones in Protocol Π1,arb

contain Θ(dn) elements. This implies a
communication cost of O(d3 log(nd)) bits
for Π1,hor and Π2, and of O((nd2 +
d3) log(nd)) bits for Π1,arb (details in [14,
Appendix A.3]). In particular, our app-
roach significantly improves the commu-
nication complexity compared to the pre-
vious solutions that use Yao’s scheme [12,
23]. Indeed, the latter requires CSP send-
ing the garbled representation of a boolean circuit of millions of gates (see [23,
Fig. 5] and [12, Fig. 7]) to MLE. In [23] the authors show that the garbled repre-
sentation of one gate is a lookup table of around 30 bytes (80-bit security). This
means that a privacy-preserving system based on Yao’s scheme, only for send-
ing the garbled circuit and without considering the other steps needs at least
hundreds of megabytes. On the other hand, even for large values of n and d,
the communication complexity of Π2 is much smaller than 100 MB (see Fig. 1).
For example, in the horizontally-partitioned setting [23] uses same techniques we
deploy in Π1,hor and Yao’s protocol. In particular, [23] reports that the garbled
representation of the circuit that solves (1) with d = 20 using Cholesky decom-
position (24-bit integer representation) has size 270 MB. On the other hand,
for a dataset with 10 millions instances and d = 20, the overall overhead10 of
Π1,hor+Π2 is less than 1.3 MB. In the arbitrarily-partitioned setting, the commu-
nication overheard of our system is dominated by the cost of Phase 1 (Protocol
Π1,arb) because of its linear dependency on the number of instances n. However,
this seems to be the case also in other approaches. For example, in [12], a secure
inner-product protocol based on additive secret-sharing and Beaver’s triples [5]
is used to compute the inner product of the columns of the matrix X vertically-
partitioned among two or more users. The complexity of this approach for Phase
1 is Θ(nd2 log(n)) bits (comparable with the complexity of Π1,arb). In Phase 2,
[12] use Yao’s protocol and conjugate gradient descent (CGD) algorithm to solve
(1). They do not report the concrete size of the circuit, but they show the num-
ber of gates. For d = 100 and 5 iterations of the CGD, more than 108 gates
are used: this gives an overhead of at least 3 GB only for sending the garbled
10 In this section, for our system we assume � = 3 and Paillier’s scheme with 80-bit

security as underlying LHE.



256 I. Giacomelli et al.

circuit during Phase 2 (assuming a garbled gate is 30 bytes). On the other hand,
the overall overhead of Π1,arb + Π2 when d = 100 for a dataset of 5 thousands
instances is less than 1.3 GB.

The SecureML paper [22] uses only additive secret-sharing and Beaver’s
triples to design a system that assumes an arbitrary partitioning of the dataset.
When the pre-processing needed for the triples is implemented via LHE, the lin-
ear regression training system proposed in [22] has complexity Θ(nd + n). Thus,
in terms of communication complexity, [22] performs better than our solution in
the arbitrarily-partitioned case. Our system, however, is preferable if the training
dataset is horizontally-partitioned and n � d (e.g., n = Θ(d2.5)). For example,
if d = 100 and n = 105 the system in [22] has an overheard of 200 MB for the
pre-processing phase only (see [22, Table II]), while the total cost of Π1,hor + Π2

is less than 120 MB.

5 Implementation

In this section we describe our implementation case study of the system described
in Sect. 4. Our goal is to evaluate the effect of the public parameters on the sys-
tem’s accuracy and efficiency, and to test our system on real-world datasets. In
particular, the experiments we run are designed to answer the following ques-
tions:

1. Evaluating accuracy : How does the system parameter � (number of digits
in the fractional part of the input data) influence the accuracy of the out-
put model w∗? Recall that we assume that the values in X and y are real
number with at most � digits in the fractional part. In practice, this means
that each user must truncate all the entries in the local dataset after the
�th digit in the fractional part. This is done before inputting the values in
the privacy-preserving system. On the other hand, in the standard machine
learning-setting this requirement is not necessary, and the model is computed
using floating point arithmetic on values with more than � digits in the frac-
tional part. For this reason, the model w∗, which is trained using our privacy-
preserving system, can differ from the model w̄∗ learned in the clear (same
regularization parameter λ is used). To evaluate this difference we use

RMSE =
∣
∣
∣
∣
MSE(w∗) − MSE(w̄∗)

MSE(w̄∗)

∣
∣
∣
∣

where MSE is the mean squared error of the model computed on a test dataset
(this is a common measure of model accuracy in the machine learning setting).
The value RMSE tells the loss in accuracy caused by using the vector w∗

instead of w̄∗ as model.
2. Evaluating running-time: How do the data parameters n and d influence in

practice the running time of each step in our privacy-preserving system? In [14,
Appendix A.3], we report the number of different elementary operations (e.g.,
encryptions, modular additions, etc.) for each step in the system, while in
this section we report the total running time of each step.



Privacy-Preserving Ridge Regression with only LHE 257

3. Evaluating efficiency in practice: How does our system behave when is run
on real-world data? In particular, we run our system on datasets down-
loaded from the UCI repository,11 which is commonly used for evaluating
new machine-learning algorithms in the standard setting (i.e., with no pri-
vacy guarantees).

1 3 5 7
10−8

10−5

10−2

�

HP
VP

Fig. 2. Error rate RMSE (log scale)
in function of � (n = 103, d = 10).

Setup. We implemented our system using
Paillier’s scheme with message space M =
ZN . In order to assure a security level of at
least 100 bits,12 decrease the running time
and the communication overhead, and sat-
isfy (4), we choose N such that log2(N) =
max{2048, �β� + 1} where β is the logarithm
in base 2 of the left-hand side of (4). We
wrote our software in Python 3 5.2 using
the phe 1.3 library13 to for Paillier encryp-
tion/decryption and operations on cipher-
texts, and the gmpy2 library14 for arithmetic operations with large integers.
Gaussian elimination was used to compute determinants and linear systems.

To test the system composed by Π1,hor + Π2, we run experiments in the
horizontally-partitioned (HP) setting, splitting n data points evenly among 10
data-owners. To test the system Π1,arb+Π2, we run experiments in the vertically-
partitioned (VP) setting, where we assume that d features are evenly split among
3 data-owners and DO3 also has y .

Numerical Results. All experiments were run on a machine with the following
specifics. OS: Scientific Linux 7.4, CPU: 40 core (Intel(R) Xeon(R) CPU E5-2660
v2 2.20 GHz), Memory: 500 GB. All the timings are reported in seconds, all the
values are averaged on 5 repetitions of the same experiment.

To answer Question 1, we measure the RMSE for different values of � for
synthetically-generated data in both the HP and VP settings (see Fig. 2). With
the increasing of �, regardless of the values of n and d, the value of RMSE decreases
very rapidly, while the efficiency degrades. Indeed, because of (4), the value of �
has effect on the bit-length of the plaintexts and ciphertexts. For this reason, we
recommend to choose � equal to a small integer (e.g., � = 3). This choice allows
to have a negligible error rate (e.g., RMSE of order 10−4) without degrading the
system efficiency.

To answer Question 2 and assess the effect of parameters n and d on our
system’s performance, we report in Table 1 the running time of each step of
the system when it is run on synthetic data. The advantage of this approach is

11 https://archive.ics.uci.edu/ml/datasets.html.
12 According to NIST standard, an RSA modulus of 2048 bits gives 112-bit security.
13 http://python-paillier.readthedocs.io.
14 https://pypi.python.org/pypi/gmpy2.

https://archive.ics.uci.edu/ml/datasets.html
http://python-paillier.readthedocs.io
https://pypi.python.org/pypi/gmpy2


258 I. Giacomelli et al.

Table 1. Running times (secs) for synthetic data in the HP and VP settings (� = 3).

n d log2(N) RMSE Phase 1 Phase 2

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

HP setting 1000 10 2048 7.21E−05 0.21 1.10 0.03 1.21 0.56 0.04

20 2048 1.54E−04 0.32 3.88 0.12 7.96 2.15 0.14

30 2048 1.58E−04 0.18 8.34 0.26 24.76 4.80 0.29

40 2504 2.01E−04 0.38 26.13 0.62 100.94 14.72 0.67

10000 10 2048 5.45E−05 0.16 1.11 0.03 1.21 0.57 0.04

20 2048 1.29E−04 0.09 3.93 0.12 7.99 2.14 0.15

30 2072 1.90E−04 0.36 8.83 0.26 25.96 5.17 0.32

40 2768 1.84E−04 0.39 29.81 0.72 120.43 19.34 0.86

100000 10 2048 1.05E−04 0.13 1.17 0.03 1.22 0.57 0.05

20 2048 1.08E−04 0.20 4.13 0.12 7.99 2.15 0.16

30 2270 1.38E−04 0.23 11.65 0.31 33.19 6.26 0.40

40 3034 1.76E−04 0.61 38.38 0.86 151.37 24.82 1.08

VP setting 1000 10 2048 1.50E−04 1.41 62.06 135.09 1.22 0.56 0.04

15 2048 8.90E−05 2.52 90.36 220.32 3.51 1.22 0.08

20 2048 1.78E−04 4.08 118.73 327.48 8.10 2.16 0.14

2000 10 2048 1.08E−04 1.92 124.35 276.13 1.23 0.59 0.04

15 2048 6.64E−05 3.54 181.09 443.78 3.56 1.31 0.09

20 2048 1.67E−04 5.62 236.54 653.06 8.03 2.17 0.14

3000 10 2048 6.46E−05 2.31 185.89 402.53 1.21 0.57 0.04

15 2048 1.06E−04 4.38 270.12 659.67 3.52 1.22 0.08

20 2048 1.36E−04 7.00 355.12 979.89 8.12 2.14 0.14

that we can run experiments for a wide range of parameters values. For Step
2 in Phase 1 (Protocol Π1,hor in the HP setting, Protocol Π1,arb in the VP
setting) we report the average running time for one data-owner. In Protocol
Π1,hor, Step 2 is the most expensive one. Here, the data-owner DOk computes
the d×d matrix Ak and encrypts its entries. In our setting (n data points evenly
split among the ten data-owners), this costs Θ(nd2) arithmetic operations on
plaintext values and Θ(d2) encryptions for one data-owner. We verified that the
costs of the encryptions is dominant for all values of n considered here.15 In Step 3
of Π1,hor, the MLE computes the encryption of A and b using approximately
Θ(d2) ciphertexts additions (i.e., multiplications modulo N), which turns out
to be fast. In Π1,arb, Step 3 is the most expensive step, here the MLE performs
Θ(nd2) ciphertexts operation to compute Encpk (A) and Encpk (b). In particular,
the running time of Π1,arb is more influenced by the value of n than that of Π1,hor

and Π2. Finally, for Π2 the results in Table 1 show that Step 1 requires longer
time compared to the other two steps because of the Θ(d3) operations done on
ciphertexts. Step 2 and 3 require Θ(d2) decryptions and Θ(d2) operations on
plaintexts and therefore are faster (e.g., less then 27 s for both the steps for a
dataset of one hundred thousands instances with 40 features).

15 For larger values of n and d, using Damg̊ard and Jurik’s scheme instead of
Paillier’s scheme reduces the running time of operations on ciphertexts. See [14,
Appendix A.5].



Privacy-Preserving Ridge Regression with only LHE 259

Table 2. Running times (secs) for UCI datasets in the HP and VP settings.

Dataset n d � log2(N) RMSE Phase 1 Phase 2

Time kB Time kB

HP Air 6252 13 1 2048 4.15E−09 1.99 53.24 3.65 96.51

Beijing 37582 14 2 2048 5.29E−07 2.37 60.93 4.26 110.10

Boston 456 13 4 2048 2.34E−06 2.00 53.24 3.76 96.51

Energy 17762 25 3 2724 5.63E−07 12.99 238.26 37.73 451

Forest 466 12 3 2048 3.57E−09 1.66 46.08 2.81 82.94

Student 356 30 1 2048 4.63E−07 9.36 253.44 30.40 483.84

Wine 4409 11 4 2048 2.62E−05 1.71 39.42 2.38 70.40

VP Boston 456 13 4 2048 2.34E−06 123.76 1.5 103 3.73 96.51

Forest 466 12 3 2048 3.57E−09 115.04 1.4 103 2.92 82.94

Student 356 30 1 2048 4.63E−07 297.52 2.7 103 30.54 483.84

To answer Question 3 and show the practicality of our system we report in
Table 2 the total running time and communication overhead for seven different
UCI datasets (references in [14, Appendix A.4]). Some of these datasets were
used also in [12,23]. For example, [23] reports a running time of 45 s and a
communication overhead of 83 MB (69 MB, resp.) for the Phase 2 of their system
run on the dataset “forest” (“wine”, resp.) ([23, Table I]). Our protocol Π2 for
the same datasets takes about 3 s with less then 83 kB sent. Phase 2 of the
system presented in [12] runs on the dataset “student” in 19 s ([12, Table 3]) and
we estimate an overhead of 3 GB (20 CGD iterations). Protocol Π2 on the same
dataset runs in about 40 s with 484 kB of overhead.

Acknowledgments. This work was partially supported by the Clinical and Trans-
lational Science Award (CTSA) program, through the NIH National Center for
Advancing Translational Sciences (NCATS) grant UL1TR002373, and by the NIH
BD2K Initiative grant U54 AI117924.

References

1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: 2000 ACM SIGMOD
International Conference on Management of Data, pp. 439–450. ACM Press (2000)

2. Aono, Y., Hayashi, T., Phong, L.T., Wang, L.: Fast and secure linear regression and
biometric authentication with security update. Cryptology ePrint Archive, Report
2015/692 (2015)

3. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Eighth Annual ACM Symposium on Principles
of Distributed Computing, pp. 201–209. ACM Press (1989)

4. Barbosa, M., Catalano, D., Fiore, D.: Labeled homomorphic encryption: scalable
and privacy-preserving processing of outsourced data. In: Foley, S.N., Gollmann, D.,
Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 146–166. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 10

https://doi.org/10.1007/978-3-319-66402-6_10


260 I. Giacomelli et al.

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: 20th Annual ACM Sym-
posium on Theory of Computing, STOC, pp. 1–10. ACM Press (1988)

7. Cao, Z., Liu, L.: Comment on “harnessing the cloud for securely outsourcing large-
scale systems of linear equations”. IEEE Trans. Parallel Distrib. Syst. 27(5), 1551–
1552 (2016)

8. Cock, M.D., Dowsley, R., Nascimento, A.C.A., Newman, S.C.: Fast, privacy pre-
serving linear regression over distributed datasets based on pre-distributed data.
In: 8th ACM Workshop on Artificial Intelligence and Security, pp. 3–14. ACM
Press (2015)

9. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44586-2 9

10. Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis:
linear regression and classification. In: Fourth SIAM International Conference on
Data Mining, pp. 222–233. SIAM (2004)

11. Fouque, P.-A., Stern, J., Wackers, G.-J.: CryptoComputing with rationals. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36504-4 10

12. Gascón, A., Schoppmann, P., Balle, B., Raykova, M., Doerner, J., Zahur, S.,
Evans, D.: Privacy-preserving distributed linear regression on high-dimensional
data. PoPETS 2017(4), 248–267 (2017)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st Annual
ACM Symposium on Theory of Computing, STOC, pp. 169–178. ACM Press (2009)

14. Giacomelli, I., Jha, S., Joye, M., Page, C.D., Yoon, K.: Privacy-preserving ridge
regression with only linearly-homomorphic encryption. Cryptology ePrint Archive,
Report 2017/979 (2017)

15. Hall, R., Fienberg, S.E., Nardi, Y.: Secure multiple linear regression based on
homomorphic encryption. J. Off. Stat. 27(4), 669–691 (2011)

16. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
Cryptology ePrint Archive, Report 2011/272 (2011)

17. Karr, A.F., Lin, X., Sanil, A.P., Reiter, J.P.: Regression on distributed databases
via secure multi-party computation. In: 2004 Annual National Conference on Dig-
ital Government Research, pp. 108:1–108:2 (2004)

18. Karr, A.F., Lin, X., Sanil, A.P., Reiter, J.P.: Secure regression on distributed
databases. J. Comput. Graph. Stat. 14(2), 263–279 (2005)

19. Karr, A.F., Lin, X., Sanil, A.P., Reiter, J.P.: Privacy-preserving analysis of verti-
cally partitioned data using secure matrix products. J. Off. Stat. 25(1), 125–138
(2009)

20. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 3

21. McDonald, G.C.: Ridge regression. Wiley Interdiscip. Rev.: Comput. Stat. 1(1),
93–100 (2009)

22. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy, pp. 19–38.
IEEE Computer Society (2017)

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-36504-4_10
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3


Privacy-Preserving Ridge Regression with only LHE 261

23. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Sym-
posium on Security and Privacy, pp. 334–348. IEEE Computer Society (2013)

24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

25. Sanil, A.P., Karr, A.F., Lin, X., Reiter, J.P.: Privacy preserving regression mod-
elling via distributed computation. In: Tenth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 677–682. ACM Press (2004)

26. Wang, C., Ren, K., Wang, J., Wang, Q.: Harnessing the cloud for securely out-
sourcing large-scale systems of linear equations. IEEE Trans. Parallel Distrib. Syst.
24(6), 1172–1181 (2013)

27. Wang, P.S., Guy, M.J.T., Davenport, J.H.: P -adic reconstruction of rational num-
bers. ACM SIGSAM Bull. 16(2), 2–3 (1982)

28. The International Warfarin Pharmacogenetics Consortium: Estimation of the War-
farin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360(8), 753–
764 (2009)

29. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science, FOCS, pp. 162–167. IEEE Computer Society
(1986)

https://doi.org/10.1007/3-540-48910-X_16

	Privacy-Preserving Ridge Regression with only Linearly-Homomorphic Encryption
	1 Introduction
	2 Background
	3 Threat Model and System Overview
	4 Protocols Description
	4.1 Phase 1: Merging the Dataset
	4.2 Phase 2: Computing the Model

	5 Implementation
	References




