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Abstract

Tropical mangrove forests, seagrass beds, and coral reefs 
are among the most diverse and productive ecosystems on 
Earth. Their evolution in dynamic, and ever-changing 
environments means they have developed a capacity to 
withstand and recover (i.e., are resilient) from distur-
bances caused by anthropogenic activities and climatic 
perturbations. Their resilience can be attributed, in part, to 
a range of cross-ecosystem interactions whereby one eco-
system creates favorable conditions for the maintenance 
of its neighbors. However, in recent decades, expanding 
human populations have augmented anthropogenic activi-
ties and driven changes in global climate, resulting in 
increased frequencies and intensities of disturbances to 
these ecosystems. Many contemporary environments are 
failing to regenerate following these disturbances and 
consequently, large-scale degradation and losses of eco-
systems on the tropical seascape are being observed. This 
chapter reviews the wealth of available literature focused 

on the tropical marine seascape to investigate the degree 
of connectivity between its ecosystems and how cross-
ecosystem interactions may be impacted by ever-
increasing anthropogenic activities and human-induced 
climate change. Furthermore, it investigates how disrup-
tion and/or loss of these cross-ecosystem interactions may 
impact the success of neighboring ecosystems and conse-
quently, the highly-valued ecosystem services to which 
these ecosystems give rise. The findings from this review 
highlight the degree of connectivity between mangroves, 
seagrasses and coral reefs, and emphasizes the need for a 
holistic, seascape-wide research approach to successfully 
protect and preserve these critically important ecosystems 
and their associated services for future generations.

�Introduction

Within the tropical zone, cartographically defined as the area 
between the Tropics of Cancer and Capricorn (~23.5 °N and 
S) (Gnanadesikan and Stouffer 2006), three ecologically dis-
tinct marine ecosystems; mangroves forests, seagrass beds 
and coral reefs, can be found (Fig. 1). These ecosystems have 
long been known for; their rich biodiversity, with coral reefs 
alone hosting 25% of known marine species (McAllister 
1995; Plaisance et al. 2011), their high levels of gross pro-
ductivity (for coral reefs it is estimated at ca. 0.4–5.5 kg C 
m−2 year−1 (Douglas 2001)), which rival those of terrestrial 
ecosystems, and the array of ecosystem goods and services 
which they provide (Costanza et al. 1997). Across the land-
sea boundary, mangroves have an annual economic value of 
approximately US$ 200,000–900,000 per square kilometer 
(UNEP-WCMC 2006), and their extent is closely correlated 
to the success of adjacent fisheries (Manson et  al. 2005; 
Aburto-Oropeza et al. 2008). A step further into the ocean, 
nutrient cycling by seagrasses has been valued at US$ 
19,000 ha−1 year−1 (Costanza et al. 1997). Finally, in the most 
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offshore habitat, coral reefs provide coastal protection, sus-
tain fisheries, and drive tourism activities which are valued 
globally at US$ 30 billion per annum (Stone 2007; Khan and 
Larrosa 2008).

Although these ecosystems can thrive in isolation (Parrish 
1989), in regions where they occur together, the value of the 
services provided is enhanced. For example, each ecosystem 
alone provides a form of coastal protection (Koch et  al. 
2009), but together the three have been shown to supply 
more protection compared to any one ecosystem alone, or 
any combination of two ecosystems (Guannel et al. 2016). 
These services are, in part, the result of highly complex 
cross-ecosystem interactions occurring on physical, chemi-

cal and biological levels (Ogden 1980; Nagelkerken 2009; 
Gillis et al. 2014). Early research, such as the mangrove ‘out-
welling’ hypothesis proposed by Odum (1968), and Odum 
and Heald (1972) highlighted the importance of research 
beyond ecosystem boundaries. This hypothesis postulated 
that a fraction of organic matter, ~50%, produced by man-
groves is exported to the coastal ocean (Dittmar et al. 2006), 
where it is either stored as carbon in marine sediments 
(Jennerjahn and Ittekkot 2002), or provides essential habitat 
and food resources to adjacent ecosystems including coral 
reefs (Bouillon et al. 2008; Granek et al. 2009). Since then, a 
wealth of studies have investigated individual connectivity 
pathways between tropical marine ecosystems. Biologically, 

Fig. 1  Global distribution of coral, mangrove, and seagrass diversity. (Image created by Philippe Rekacewicz in May 2002 from data compiled 
by UNEP-WCMC, 2001. Reproduced from Jennerjahn 2012 with permission from Elsevier)
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mobile organisms transition between ecosystems to forage, 
spawn, as part of seasonal migrations, or through ontogenesis 
(Parrish 1989; Cocheret de la Morinière et al. 2002; Mumby 
2006). Water movement, including tidal regimes and cur-
rents further connect these systems by facilitating the 
exchange of organic matter, sediments, nutrients and pollut-
ants (Fig. 2) (Grober-Dunsmore et al. 2009).

Although we are just beginning to uncover and understand 
the extent of these connectivity pathways, in most cases they 
are involved in creating optimal conditions for the successful 
maintenance of neighboring ecosystems. Coral reefs dissi-
pate the energy of waves and currents, providing calm envi-
ronments for seagrass and mangroves, whilst they in return 
stabilize the sediment and trap nutrients, creating the oligo-
trophic waters in which coral reefs thrive (Kitheka 1997; 
McGlathery et al. 2007; Mumby et al. 2011). Inevitably, the 
success of one ecosystem is directly linked to the success of 
the others, meaning the response of one ecosystem to change 
could result in profound consequences for neighboring sys-
tems (Grober-Dunsmore et  al. 2009; Saunders et  al. 2014). 

Change is however, a natural attribute of global ecosystems 
(Alongi 2002), and tropical marine ecosystems have evolved 
under a regime of natural disturbances (Lamy et  al. 2015). 
Consequently, they have developed a capacity to withstand 
and recover (i.e., are resilient) from periodic disruptions to 
their ecological equilibrium or ‘steady-state’ and readily 
regenerate (Connell 1997). However, in recent decades, dis-
ruptions in the form of anthropogenic activities (i.e., pollution 
and exploitation), human-induced climate change (i.e., tem-
perature rise, ocean acidification, sea level rise, expansion of 
oxygen minimum zones, and severe weather events), and a 
combination of the two, have increased in intensity, duration, 
and extent (Vitousek et al. 1997). These disruptions pose sig-
nificant challenges to tropical marine ecosystems and their 
associated cross-ecosystem interactions.

A lack of empirical data for tropical environments, com-
pared to temperate regions, has resulted in conflicting predic-
tions regarding the impact of future anthropogenic and 
climatic perturbations on tropical marine ecosystems (Alongi 
2002). However, field studies have shown that many of these 

Fig. 2  Interdependencies of ecosystems along the tropical seascape. (Based on Moberg and Folke 1999; Heck et al. 2008; Berkström et al. 2012)
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contemporary ecosystems are failing to regenerate following 
disturbances (Bellwood et al. 2004). The global loss and frag-
mentation of mangrove forests equates to a loss of ecosystem 
services worth US$ 7.2 trillion year−1 (Costanza et al. 2014). 
Other studies have noted significant global declines in sea-
grass areas, at rates of 110 km2 year−1 since 1980, meaning at 
least 29% of their known areal extent has been lost (Green 
and Short 2003; Waycott et al. 2009; Short et al. 2014). In 
terms of coral reefs, estimates show ~19% of the world’s 
reefs have been lost (Wilkinson 2008), with 75% of present 
day reefs considered threatened when climatic and anthropo-
genic threats are combined (Burke et al. 2011), and 20% of 
these are expected to disappear within 20 years (Wilkinson 
2008). Furthermore, 55% of coral reef fisheries in 49 island 
countries are considered as unsustainable (Newton et  al. 
2007). Overfishing threatens reef health by causing trophic 
cascades  that may induce phase-shifts to macroalgal domi-
nated environments, which subsequently impacts adjacent 
ecosystems and cross-ecosystem interactions (Jackson et al. 
2001). Modelling studies compliment this research, revealing 
that impacts on one ecosystem can have profound impacts on 
neighboring ecosystems, and in turn, the ecosystem services 
they provide (Saunders et al. 2014).

Despite the overwhelming evidence that loss and degrada-
tion of these vital marine ecosystems will have far reaching 
ecological and economic impacts, significant gaps in our 
knowledge regarding the interconnectivity between these eco-
systems remain (Duarte et al. 2008). Appealing to scientific 
research efforts, this review provides an overview of the 
impacts of augmenting anthropogenic activities, and human 
induced climate on the known interconnectivity pathways 
amongst tropical marine ecosystems, as opposed to each eco-
system in isolation. Sections “A Nutritious Ocean” and “An 
Empty Ocean” explore the response of cross-ecosystem inter-
actions and ecosystems services to anthropogenic activities in 
the form of eutrophication and exploitation successively, 
whilst sections “A Warmer Ocean” and “A Sour Ocean” inves-
tigate their responses to ocean warming and acidification con-
secutively. Understanding the threats facing interdependencies 
between these ecosystems is suggested to be an opportunity 
for science to prevent large-scale losses of these critical envi-
ronments in the face of disturbances in the years to come.

�A Nutritious Ocean

Mangroves, seagrasses, and coral reefs are located either on, 
or near land masses (Spalding et al. 2001; Green and Short 
2003), exposing them to local anthropogenic threats includ-
ing periodic fertilizer runoff and sewage discharge, which 
are delivered to coastal waters (Fabricius 2005; Burke et al. 
2011). This process, known as eutrophication, can stimulate 
phytoplankton blooms and algal growth in coastal ecosys-
tems (McGlathery et al. 2007), which can lead to anoxia and 

toxic sulphide production due to increased microbial activity 
degrading this additional biomass (Flindt et  al. 1999; 
Herbeck et al. 2014). These periodic enrichment events have 
become more prevalent within the last five decades, as annual 
global usage of nitrogen fertilizers has increased 14-fold, 
and is expected to increase even further (Matson et al. 1997; 
FAO 2016a).

Eutrophication can impact coastal ecosystems either 
directly, by affecting the fitness of organisms, or indirectly, 
by affecting processes within the ecosystem or altering the 
connectivity between ecosystems. In tropical regions, such 
as the Great Barrier Reef, seagrasses and mangroves are 
nutrient limited (Schaffelke et al. 2005). Therefore, the most 
common direct effect of nutrient enrichment is an increase in 
productivity and growth of these marine plants (Schaffelke 
et al. 2005), which alone is a positive effect. These ecosys-
tems can therefore buffer eutrophication to a certain extent, 
and protect the oligotrophic waters of their vulnerable neigh-
bors, coral reefs, from nutrient enrichment (Kitheka 1997; 
McGlathery et al. 2007). Indirect effects of eutrophication on 
marine plant communities are more commonplace, as excess 
nutrients also increase the productivity of other competing 
autotrophs, namely algae (Schaffelke and Klumpp 1998; 
McGlathery et  al. 2007). In mangroves, there is little evi-
dence of the direct effects of excess nutrients, however indi-
rect links to mangrove dieback and damage do exist. The 
dieback of Avicennia marina in southern Australia was indi-
rectly linked to eutrophication through the increased prolif-
eration of the green macroalgae, Ulva sp., which smothered 
and killed the aerial roots of established mangroves, as well 
as smothering and inhibiting the growth of mangrove seed-
lings (Fig. 3) (Schaffelke et al. 2005). As mangroves have a 
high nutrient uptake capacity, they are also at risk of taking 
up herbicides and heavy metals which run-off agricultural 
land together with the nutrients. The build-up of these toxic 
substance has also been linked to mangrove dieback and 
damage in downstream estuarine habitats (Schaffelke et al. 
2005).

Algal blooms may be even more detrimental for seagrasses 
as they are completely submerged in water and are  highly 
dependent on light availability and water quality (McGlathery 
2001). Light availability can be reduced by both biotic and 
abiotic factors. Biotic factors are primarily based on the abun-
dance of phytoplankton, epiphytic algae, and seaweed wracks 
(Fig.  3) (McGlathery 2001; Herbeck et  al. 2014; van 
Tussenbroek et  al. 2017), whilst abiotic factors include 
increased particle loads from sewage effluent which settle on 
seagrass leaves or attenuate light within the water column 
(Herbeck et al. 2014). The increase in algal biomass will be 
followed by faster decomposition rates (Flindt et al. 1999), 
and therefore increased sulphide production in the sediment 
(Herbeck et al. 2014) (Fig. 3). Sulphide is toxic for seagrasses 
and leads to a decrease in shoot density, rhizome extension, 
and growth (Díaz-Almela et  al. 2008; Herbeck et  al. 2014; 
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Maxwell et al. 2017). One way in which seagrasses counter-
act sulphide toxicity is by transporting oxygen from the leaves 
to the roots, thereby oxygenating the sediment (Borum et al. 
2005). However, oxygen production is highly dependent on 
photosynthesis and light availability, which will be decreased 
during algal bloom conditions. This negative feedback loop 
can ultimately result in increased losses of seagrass and sub-
sequent replacement by algae, which in turn stimulates fur-
ther seagrass loss through elevated decomposition rates 
(Maxwell et al. 2017).

In regards to the connectivity between seagrass meadows 
and other ecosystems, we can expect multiple disruptions of 
important processes. For example, there are more than 50 
records of seagrass shoots laying on the deep-sea floor 
(>1000 m), and there is evidence that seagrass detritus is an 
important subsidy to the deep-sea food web (Heck et  al. 
2008; Duarte and Krause-Jensen 2017). Seagrass has a rela-
tively slow decomposition time compared to macroalgae 

(degradation rate constants range from 0.001 to 0.018 d–1 in 
seagrass and from 0.02 to 0.26 d–1 for Ulva spp.), enabling 
seagrass detritus to reach the deep-sea floor (Flindt et  al. 
1999; Heck et al. 2008). Algae are also exported from sea-
grass communities, but they have more labile organic matter 
than seagrasses and decompose before reaching the seafloor 
(Flindt et al. 1999; Heck et al. 2008). This important organic 
matter subsidy will be lost as seagrasses areas decline or 
shift to macroalgal meadows (Fig. 3). Furthermore, continu-
ous, non-patchy seagrass beds with mangrove neighbors 
have a higher beta-diversity compared to patchy seagrass 
beds with greater distances to mangrove forests (Henderson 
et al. 2017). Proximity to mangroves is also positively related 
to parrotfish grazing of seagrass, which is crucial for the 
removal of epiphytes and leaf turnover (Swindells et  al. 
2017). We can expect that fragmentation, patchiness, and 
seagrass loss will further increase the distance to nearby 
mangroves and thereby affect these important ecosystem 

Fig. 3  Conceptual diagram detailing the possible consequences of 
eutrophication on each individual ecosystem as well as on the connec-
tivity between them. Effects are not isolated within each system, but 
changes in one system may cause changes in others, either directly 

(e.g., transport of seaweed biomass) or indirectly (e.g., loss of ecosys-
tem function such as nutrient retention or nursery  areas). (Based on 
Moberg and Folke 1999; Heck et al. 2008; Berkström et al. 2012)

For a World Without Boundaries: Connectivity Between Marine Tropical Ecosystems in Times of Change
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processes and diversity (Fig. 3). Furthermore, a recent study 
found that the prevalence of coral disease was 50% less on 
reefs with adjacent seagrass meadows, compared to reefs 
without (Lamb et al. 2017). Coral tissue mortality caused by 
bleaching and sedimentation was also significantly less on 
reefs with neighboring seagrass beds (Lamb et  al. 2017). 
This is due to the role seagrasses play in filtering our patho-
genic bacteria, and thus, in the face of continued sewage out-
flow in some regions, we can expect elevated bacterial and 
disease prevalence on neighboring coral reefs (Lamb et al. 
2017) (Fig. 3). However, in other regions, seagrass meadow 
functions are not as vulnerable or important to ecosystem 
connectivity. In Brazil, evidence shows that macroalgal beds 
serve as a better nursery area for juvenile fish than adjacent 
seagrass beds, and that these seagrass beds had much lower 
juvenile fish abundances compared similar beds in the Indo-
Pacific or Caribbean (Eggertsen et al. 2017). That being said, 
the negative effects of eutrophication across the rest of the 
world far outweigh this sole positive scenario.

Eutrophication of coral reefs environments, can promote 
phytoplankton blooms and thereby increase developmental 
success of the coral-consuming crown-of-thorns starfish 
(Acanthaster planci) larvae, which feed on phytoplankton 
(Fabricius et al. 2010; De’ath et al. 2012). Nutrient enrich-
ment can also, as previously mentioned, enhance the growth 
and productivity of macroalgae (Schaffelke and Klumpp 
1998). Once established on a coral reef, macroalgae may 
continue to proliferate if nutrients are available and herbiv-
ory is limited. Ultimately, this can result in a phase-shift 
(Lapointe 1997; McCook 1999) (Fig. 3). In the case of some 
South Pacific islands, the range and abundance of two native 
macroalgal species, Turbinaria ornata and Sargassum paci-
ficum, have increased noticeably throughout the reefs since 
the 1980’s (Payri and Naim 1982; Stewart 2008). These 
algae are primarily found on dead patches of corals on top of 
Porites heads, where they form dense aggregations (Stewart 
2006). High swells frequently remove these macroalgae 
from their substrate, resulting in masses of floating algae 
which aggregate in currents to form large compact seaweed 
wracks (Zubia et  al. 2015). These wracks are also seen as 
communities of drift algae such as Sargassum fluitans and 
Sargassum natans in the Caribbean. However, when excep-
tionally large blooms of these wracks reach nearby ecosys-
tems such as seagrasses, they eutrophicate them through 
decomposition, reduction of light availability, increased 
hypoxia/anoxia, and reduction of pH (van Tussenbroek et al. 
2017) (Fig.  3). We can therefore expect that these wracks 
stimulate algal growth inside the meadows, leading to sea-
grass loss, and inhibiting seagrass recovery (van Tussenbroek 
et al. 2017).

To summarize the effects of eutrophication on ecosystems 
within the tropical seascape, the effects on mangroves are not 
well documented, probably because they have a large capac-

ity to absorb nutrients and are not dependent on water clarity 
to survive. Seagrass meadows can also buffer nutrient enrich-
ment, but may be more vulnerable than mangroves as they are 
completely submerged and their survival depends on light 
availability. The greatest impacts of eutrophication are seen 
on coral reefs, which are the most vulnerable to excess nutri-
ents, but may not be as exposed when seagrass meadows and 
mangrove forest are in the vicinity. With a loss of ecosystem 
functions in these ecosystems as a result of nutrient enrich-
ment, we can expect that they will no longer be able to pro-
vide important services for each other, such as; nursery 
grounds, habitats, feeding grounds for mobile fauna, nutrient 
and sediment retention, and export of biomass (Fig. 3).

Nutrients and herbivory are two well-connected concepts 
in marine ecosystems, and in most cases, phase-shifts are not 
attributed to one or the other but rather a combination of the 
two (Adam et al. 2015). That is, eutrophication by itself is 
rarely the only reason why a system experiences algal 
blooms, as it is also highly dependent on grazing pressure 
from consumers (Hughes 1994). The health of these ecosys-
tems is therefore not only dependent on what we add to them, 
but also what we remove, through the harvesting mangroves, 
corals, fish, and invertebrates.

�An Empty Ocean

Human existence is directly and indirectly dependent on 
marine ecosystems (Halpern et al. 2008). In the tropics, mil-
lions of people rely directly on marine ecosystems to harvest 
food (e.g., fishes, clams, crabs) and raw materials (e.g., tim-
ber, curio artefacts, medicinal products), either for subsis-
tence purposes, or for their livelihood (Hoegh-Guldberg 
2014). As a consequence, these ecosystems are experiencing 
accelerating losses of biodiversity with largely unknown 
consequences (Worm et al. 2006). With over 1.3 billion peo-
ple residing along tropical coastlines, primarily in develop-
ing countries (Sale et al. 2014), it is important to understand 
the impacts of harvesting activities within the tropical sea-
scape, and its subsequent consequences for ecosystem ser-
vices upon which so many people rely. This section will 
investigate the impact of mangrove harvesting for raw mate-
rials and the impact of fishing on the functioning and con-
nectivity amongst tropical marine ecosystems.

Mangrove use by humans has a long history, extending 
back over 7000  years (Spalding et  al. 2010; Tomlinson 
2016), as a diverse array of goods can be harvested from 
them, including; tannins, honey, medicinal products, thatch, 
timber, and firewood (Hamilton and Snedaker 1984; Ellison 
1994; Kathiresan and Bingham 2001; Spalding et al. 2010). 
The physical properties of mangroves differ amongst spe-
cies; Rhizophora is most widely harvested due to its hard, 
dense, easily-splitting wood which makes it an ideal material 
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for poles, firewood, and more recently wood-chips (for con-
version to rayon), whilst Xylocarpus is more suitable for fur-
niture/carving, and Aviennia is considered too soft to have 
any real harvesting value (Ewel et al. 1998). As a result of 
expanding human populations in recent decades, anthropo-
genic activities and our exploitation of these ecosystems has 
resulted in large-scale degradation and destruction of man-
groves forests (Kathiresan and Bingham 2001; Spalding 
et  al. 2010). Monospecific stands are exceptionally threat-
ened by harvesting (Ewel et  al. 1998), and when coupled 
with forest clearance to make way for development, vast 
areas of mangrove are being removed. It is estimated that one 
quarter of original mangrove cover (>200,000 km2), has been 
lost due to human activities, at a rate of 0.66–2% per annum 
(Duke et  al. 2007; Spalding et  al. 2010). This exceeds the 
loss rates reported for other threatened ecosystems (Stone 
2007; Kathiresan 2008). For instance, of coral reefs, 10% 
have already been lost (Wilkinson 1992) and rainforests are 
lost at a rate of 0.8% per  annum (Valiela et  al. 2001). 
Consequently, mangroves are considered critically endan-
gered or approaching extinction in 26 of the 120 countries in 
which they exist (Kathiresan 2008). Clearance and fragmen-
tation of mangroves is of global concern due to its impact on 
ecosystem services like coastal protection, sediment trap-
ping, nutrient cycling, and loss of habitats for commercially 
important species.

Mangroves provide coastal protection by mitigating the 
impact of tidal surges and waves caused by hurricanes and 
tsunamis (Duke et al. 2007). Estimates show that per kilome-
ter of mangrove width, surges reduce in height by 5–50 cm, 
and surface wind waves reduce by up to 75% (McIvor et al. 
2012). During the super cyclone, which hit Orissa (India) in 
1999, mangroves significantly reduced the number of deaths 
and damage to property (Badola and Hussain 2005). 
Evidence from the Indian Ocean tsunami in December 2004 
showed that villages in India with mangrove buffers were 
damaged to a lesser extent compared to nearby villages with 
no mangroves (Kathiresan and Rajendran 2005; Vermaat and 
Thampanya 2006). The degree of protection provided by 
mangroves is attributed to several factors: forest width and 
slope, tree and root density, and tree height (Alongi 2002). 
Yet in many regions, clear-cutting and felling of mangroves 
significantly reduces the forest width as well as tree and root 
densities, and consequently lessenes the buffering capacity 
of mangrove ecosystems to the threats posed by hurricanes 
and tsunamis (Ellison 1994; Kathiresan and Bingham 2001; 
Spalding et al. 2010). This buffering capacity is cited as one 
of the most severely undervalued ecosystem services pro-
vided by mangroves (Barbier et  al. 2011). More recently, 
studies have shown that the value of this service is aug-
mented at sites where other foreshore ecosystems (i.e., sea-
grasses and coral reefs) are present. Guannel et  al. (2016) 
concluded that mangroves in combination with a second 

foreshore ecosystem attenuate significantly more wave 
energy compared to any one ecosystem alone.

Sediment trapping and nutrient cycling pathways further 
connect mangroves to adjacent ecosystems (Ewel et  al. 
1998). Riverine transport and terrestrial runoff are important 
pathways to coastal environments and provide loads rich in 
sediments, nutrients, organic matter, and at times, pollutants, 
to coastal environments (Ramos et al. 2004). These terrestri-
ally derived components are caught and slowed by the com-
plex aerial root structure of mangroves, and become 
immobilized and sequestered within mangrove systems 
before they reach the clear, nutrient-limited waters of often 
adjacent seagrass and coral reefs (Morell and Corredor 1993; 
Valiela and Cole 2002). On Pohnpei (Federal States of 
Micronesia), reduction of forest width to make way for a 
road, led to the death of the remaining downstream man-
groves which could not withstand the increased sediment 
loads that buried lenticels on pneumatophores, prop roots 
and young stems (Ewel et al. 1998). In regions where sea-
grass beds and coral reefs neighbor mangroves, loss and deg-
radation of the mangrove forest due to harvesting activities 
can be seen to reduce sediment and nutrient trapping capaci-
ties, thus increasing the risk of sedimentation and eutrophi-
cation (see section “A Nutritious Ocean” for a review) in 
neighboring ecosystems. Despite several mentions of the 
important role mangroves play in protecting adjacent sys-
tems from sedimentation (Morell and Corredor 1993; Valiela 
and Cole 2002; Schaffelke et al. 2005), limited case studies 
exist showing the impact of mangrove harvesting on sedi-
mentation of adjacent ecosystems.

In terms of carbon, mangroves have a dual capacity as 
both a sink of atmospheric CO2, and a source of oceanic car-
bon (Singh et al. 2005; Duke et al. 2007). Their high levels of 
productivity, which reached 26.70 t ha−1 year−1 for Rizophora 
apiculata in Thailand (Christensen 1978), shows that their 
role in atmospheric CO2 assimilation to build biomass is of 
considerable importance (Spalding et al. 2010). However, it 
is hypothesized that net primary production of mangroves 
may be in excess of the carbon utilized in the system, conse-
quently an estimated 20–30% is ‘outwelled’ to adjacent eco-
systems (Bouillon et  al. 2008; Granek et  al. 2009), 
corresponding well to the 50% organic matter export esti-
mate proposed by Dittmar et al. (2006). Although accurate 
quantification of the mangrove carbon budget remains lim-
ited (Bouillon et al. 2008; Alongi 2009), research has shown 
that clearing of mangroves could result in carbon emissions 
of up to 112–392 Mg ha-1 (Donato et al. 2011). These emis-
sions would significantly influence global CO2 concentra-
tions, which in turn drive climate change (see sections “A 
Warmer Ocean” and “A Sour Ocean” for reviews). Although 
their impact on carbon export to the coastal ocean remains 
unknown (Donato et al. 2011), what is known is that altera-
tions to these fluxes could impact habitats and food resources 
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for organisms which depend upon them, e.g., marine fishes 
and invertebrates.

Marine organisms including fishes and invertebrates have 
long been consumed by humans, with the earliest evidence 
extending back some 140,000 years to South Africa where 
shellfish and shallow-water fishes were consumed (Marean 
et  al. 2007). Yet the development of fishing equipment is 
believed to have arisen 40,000  years later, based upon the 
oldest known fishing hooks found in East Timor (O’Connor 
et al. 2011). Since then, the evolution of fishing gears and 
vessels have supported a transition from small-scale subsis-
tence fishing to modern-day commercial fishing, making 
seafood one of the most traded food commodities worldwide 
(FAO 2016b). Fishing is now considered to be the most 
widespread, unsustainable human impact on the oceans 
(Pauly et al. 2002; Halpern et al. 2008; Ricard et al. 2012), 
with 31.4% of fish stocks estimated to be fished at biologi-
cally unsustainable levels and therefore overfished in 
2016 (FAO 2016b). More recently, the Food and Agricultural 
Organization of the United Nations (FAO) estimated that 
89% of global fish stocks are exploited or overexploited 
(Zhou 2017).

On tropical coasts, fishing occurs at both subsistence and 
commercial levels, and targets an array of vertebrate (i.e., 
fishes such as snapper, parrotfish and grouper), and inverte-
brate (e.g., penaeid shrimp and mud crab) species. Many of 
these target species are considered ‘mobile links’ (Moberg 
and Folke 1999) due to the roles they play in connecting eco-
systems across the tropical seascape through diel, seasonal 
and/or ontogenetic migrations (Parrish 1989; Cocheret de la 
Morinière et al. 2002; Mumby 2006). The larvae of the grey 
snapper (Lutjanus griseus) migrate towards their nursery 
area among the mangroves where they develop into juve-
niles, which later migrate to seagrass beds, and finally to 
coral reefs as adults, where they reproduce and the cycle 
repeats (Fig.  4) (Luo et  al. 2009). Penaeid prawns also 
undergo a number of habitat shifts during their development, 
with the eggs released by adults on offshore waters undergo-
ing two post-larval stages before they migrate to mangrove 
areas as juveniles. Late stage juveniles then move towards 
alternative habitats such as seagrasses before they transfer to 
their offshore adult habitat (Fig.  5) (Robertson and Duke 
1987). Several studies have indicated that the abundance and 
diversity of fish communities in particular, are higher in 
regions where three tropical ecosystems were in close prox-
imity, compared to those where they were a significant dis-
tance apart (Unsworth et  al. 2008). The transition of 
organisms is not only a biological link between tropical eco-
systems, it also results in a substantial transfer of organic 
matter, nutrients, and energy across ecosystems (Deegan 
1993). It can therefore be postulated that the exploitation of 
certain species, would have knock-on effects for connectiv-
ity pathways among tropical marine ecosystems.

Gulf menhaden (Brevoortia patronus), small euryhaline 
clupeid fish found in the waters of the Gulf of Mexico, play 
an important role in exporting nutrients and energy between 
estuaries and offshore waters (Deegan 1993). They feed on 
phytoplankton and detritus and are in turn an important prey 
item for larger predatory fishes. They also support the second 
largest commercial fishery (by weight) in North America 
(Vaughan et al. 2007). When combined, their ecological and 
economic values mean this species, along with other 
Brevoortia species have been described as “the most impor-
tant fish in the sea” (Franklin 2007). Although not currently 
considered overfished, exploitation of this species correlates 
to reduced production of larger pelagic fishes, and may lead 
to considerable effects on the trophic structure of ecosystems 
in the Gulf of Mexico (Robinson et  al. 2015). Further 
research is essential to understand the impact of harvesting 
B. patronus on nutrient and energy export to adjacent sys-
tems. However, it can be seen that the exploitation of organ-
isms with key ecological roles could have adverse effects on 
resource transfer among ecosystems and trophic levels. This 
theory could be applied to multiple exploited organisms tran-
sitioning between tropical ecosystems, however, research 
into the ecological roles of many of these organisms remains, 
at present, uninvestigated, thus the impact of their exploita-
tion unknown.

One organism, whose role is known, and of vital impor-
tance to the health of coral reefs is the Caribbean rainbow 
parrotfish (Scarus guacamaia). Adults of this species play a 
pivotal role in regulating algal cover on reefs, and conse-
quently preventing phase-shifts (Heenan and Williams 
2013). There is evidence that the success of this species is 
dependent on the success of nearby mangroves. The juve-
niles of S. guacamaia are dependent on mangroves as nurs-
ery areas, and in Belizean coral reefs it was found that the 
density of adult parrotfish was significantly higher in 
mangrove-rich regions compared to mangrove-scarce regions 
(Mumby et al. 2004). Similar findings were made in Aruba, 
where recruitment of juvenile parrotfish from mangroves to 
coral reefs was dependent on the maximum distance (10 km) 
between these two habitats. S. guacamaia were therefore not 
be able to be recruited to coral reefs situated at a greater dis-
tance from mangroves (Dorenbosch et al. 2006). Coral reefs 
with adjacent mangrove nurseries exhibit increased parrot-
fish grazing (Mumby et al. 2007), and are consequently con-
sidered more resilient to perturbations. However, parrotfish 
are highly sensitive to exploitation, and several species 
including S. guacamaia are currently classified by the 
International Union for the Conservation of Nature as ‘near 
threatened’. Exploited populations can only maintain 5% of 
a reef in a permanently grazed state compared to 40% in 
unexploited populations (Mumby 2006), which has implica-
tions concerning increased algal proliferation and its effect 
on adjacent ecosystems (see section “A Nutritious Ocean” 
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for a review). Bozec et  al. (2016) discussed the trade-off 
between fisheries harvest and the resilience of coral reefs 
concluding that reefs will only remain resilient if <10% of 
parrotfish (>30  cm  in length) are harvested. Highlighting 

harvesting once more, the clear-cutting and fragmentation of 
mangroves reduces nursery areas, and increases the migra-
tion distance to reefs and thereby further threatening parrot-
fish populations. In the Caribbean, the combination of 

Fig. 4  The grey snapper uses many habitats throughout its life. Open water, mangroves, seagrass and coral reefs are important for the growth and 
survival during different stages of this fish. Art by Ryan Kleiner. (Reproduced from www.piscoweb.org, with permission from Kristen Milligan)

Fig. 5  The lifecycle of a 
penaeid prawn involves 
several habitats within the 
tropical seascape. 
(Reproduced from www.
csiropedia.csiro.au, with 
permission from Pamela 
Tyres)
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historical overexploitation of parrotfish and mangrove defor-
estation synergistically reduced herbivory and secondary 
production (Mumby et al. 2004). This highlights once again 
that research into the effect of exploitation on connectivity 
between tropical ecosystems is limited, and that there is a 
need for seascape-wide and cross-disciplinary research in 
the tropics.

�A Warmer Ocean

Anthropogenic activities have had demonstrated localized 
impacts in tropical marine ecosystems, however, 
anthropogenic-induced stress in the form of global climate 
change is having impacts on these ecosystems on a global 
scale. Climate change occurs in several forms, but one of the 
most studied is the increase of atmospheric and oceanic tem-
peratures. These temperature elevations can be attributed to 
the post-industrialization increase in atmospheric carbon 
dioxide (CO2), a greenhouse gas, which is responsible for 
trapping the Earth’s outgoing radiation within the atmo-
sphere, and consequently allowing the planet to warm. By 
the end of the century, global surface temperature is esti-
mated to have increased by 4 °C (IPCC 2013). The ocean has 
been heating up by absorbing 90% of incoming solar radia-
tion since 1971 (Riser et al. 2016). This temperature increase 
is not the only impact of global warming, a number of indi-
rect impacts are also expected including; the melting of gla-
ciers and ice sheets resulting in sea level rise, increased 
precipitation resulting in elevated terrestrial runoff, and 
increased frequency and intensity of storms (Knutson et al. 
2010; Trenberth 2011; Godoy and De Lacerda 2015).

At present, the distribution of some mangroves and sea-
grass species is confined by minimum and maximum air and 
sea temperatures (Short et al. 2007; Bjork et al. 2008; Ward 
et al. 2016). For the mangroves and seagrass systems not liv-
ing towards the edge of their tolerance limits, an increase in 
temperature could initially result in positive responses 
(Alongi 2015). However, once their tolerance limits are sur-
passed the consequences are severe. A decrease in productiv-
ity and growth leads to a shift in community composition, 
favoring those better adapted to cope with the elevated tem-
peratures which could ultimately lead to the disappearance 
of mangrove and seagrasses species with low thermal toler-
ances (Pernetta 1993; Short et al. 2011). Furthermore, tem-
perature increase has been shown to cause changes in 
reproduction patterns and altered metabolism (Short and 
Neckles 1999; Gilman et al. 2008; Yeragi and Yeragi 2014; 
Arunparasath and Gomathinayagam 2015). These examples 
highlight the direct consequences of elevated atmospheric 
and oceanic temperatures, however, some of the most threat-
ening impacts come from the collateral impacts of climate 
change.

If sea level rises due to glacial melting, it will not only 
result in changes to flooding duration and frequency, but also 
of salinity. Although mangroves are sensitive to such changes 
(Friess et al. 2012; Ward et al. 2016), they also exhibit excep-
tional resilience through their ability to actively modify their 
environment and migrate both inland and seawards (Fig. 6) 
(Krauss et al. 2014; Ward et al. 2016). Roots of mangrove 
trees trap sediment, allowing it to settle in the surrounding 
area. However, the ability of mangrove forests to respond to 
sea level rise will depend on sediment type and, importantly, 
the rate of sediment accretion (Ward et al. 2016). If sedimen-
tation rates remain higher than the rate of sea level rise, then 
mangrove forests will respond by raising the seafloor and 
progressively moving inland (Alongi 2008; Godoy and De 
Lacerda 2015; Lovelock et al. 2015). By contrast, if sea level 
rise exceeds the sedimentation rate, then the forest will 
drown (Godoy and De Lacerda 2015; Ward et al. 2016).

The exceptional migratory capabilities of mangroves have 
enabled some forests to, contrary to what one might expect, 
have a positive response to climate change scenarios. Due to 
changes in global temperature regimes, mangroves are 
expanding their inland and poleward limits. The decreases in 
cold and arid conditions are enabling mangrove expansion 
into new territories (Godoy and De Lacerda 2015). Whilst 
the polar shift of mangrove forests essentially represents a 
re-distribution but potential survival of the ecosystem as a 
whole, inland migration may have severe impacts on other 
ecosystems, such as seagrass meadows, begging the ques-
tion: will the survival of mangrove vegetation come at the 
cost of other ecosystems, or will these ecosystems also adapt 
by migrating?

Although also having distributional limits defined by sea 
and air temperatures, seagrass meadows can be seen as more 
sensitive than mangroves due to the fact they are exposed to 
elevated temperatures during the day, and can be subject to 
desiccation during low tides and consequently high ultravio-
let and photosynthetically active radiation (Dawson and 
Dennison 1996; Durako and Kunzelman 2002; Campbell 
et al. 2007). Whilst direct impacts of temperature increase on 
seagrasses are similar to mangroves, changes in the carbon 
balance have been observed as an additional consequence. 
Carbon balances, particularly in the substrate, are affected by 
the increase in photosynthesis, which initially has benefits, 
but also disadvantages as the increased labile carbon (a 
product of photosynthesis), is transferred to the substrate, 
and in turn may alter microbial communities important for 
the maintenance of soil nutrients (Cotner et al. 2004; Koch 
et al. 2007). Thus, increasing water temperature in seagrass 
meadows directly affects nutrient composition not only of 
the sediment, but also the water column.

However, similarly to mangroves, the collateral impacts 
of global warming will also have substantial impacts on sea-
grass meadows. Light, nutrients, and turbidity, which influ-
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ence biochemical processes of seagrasses, will be altered due 
to changes in the atmosphere. Increased precipitation and sea 
level rise will result in changes in nutrient fluxes, sedimenta-
tion and salinity (Lee et al. 2007). Smothering of seagrasses 
due to sedimentation (potentially due to the loss of neighbor-
ing mangrove systems) and elevated sea levels, further limits 
sunlight to the meadows and consequently decreases their 

productivity. Furthermore, climate change may also affect 
the frequency and strength of tropical storms, which carry 
their own set of consequences for seagrass meadows 
(Trenberth 2005), including sediment movement burying the 
seagrasses and increased turbulence caused by strong storms, 
that can last for long after the storm has passed could uproot 
and completely flatten the meadow (Bjork et al. 2008).

Fig. 6  Sea level rise generalized responses of mangroves. (a) Stable 
sea level where mangrove margins remain the same. (b) Sea level falls 
leading to a seaward shift of margins. (c) Sea level rises, no landward 
obstruction and high sedimentation rate allows margins to move 

inwards. (d) Sea level rises, but landward obstruction and/or lack in 
sedimentation rate prevent migration of mangroves resulting in eroding 
margins and eventual loss. (Reproduced from Gilman et al. 2006 with 
permission from Eric Gilman)
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Coral reefs act as natural barriers protecting the coastline 
from currents, waves and storms by dissipating their force 
and hence overall destructive impact (Moberg and Folke 
1999). Calcite skeletons allow coral reefs to be robust struc-
tures that can withstand strong currents. However, studies 
have shown that increasing temperature, along with ocean 
acidification, are causing changes in skeletal growth and 
robustness (Tambutté et al. 2015). To understand how, one 
must first look at the physiology of corals.

Symbiodinium (i.e., dinoflagellates) residing in coral tis-
sue provide the majority of the coral hosts’ energy demands, 
allowing them to successfully thrive in oligotrophic waters 
(Yellowlees et al. 2008; Baker et al. 2015). The distribution 
of coral reefs is heavily limited by sea temperature, where 
the sensitivity to temperature stress depends on the physio-
logical tolerance limits of both endosymbiotic partners 
(Putnam et al. 2012). When temperatures exceed tolerance 
limits, the most common response is the expulsion of symbi-
onts from the tissue of the coral hosts, an event known as 
coral bleaching. The response to the loss of symbionts and 
their photosynthetic by-products, the largest energy source 
of corals, is a decline in coral productivity and skeletal 
growth (Langdon and Atkinson 2005; Pandolfi et al. 2011). 
Without Symbiodinium, corals can only survive for a limited 
time before the onset of tissue necrosis and ultimately their 
death. Hope for the survival of the reef exists in two forms; 
some species of symbionts are more thermotolerant than oth-
ers, and if temperatures return to base-level the coral can 
recover by re-establishing symbiosis with Symbiodinium.

Some species of corals with different symbiont associa-
tions have managed to inhabit areas with extreme tempera-
tures, highlighting their temperature resilient capacity (van 
Oppen et al. 2015). These symbionts have been accredited 
with a particularly important role in the overall thermal toler-
ance of corals, where temperature adapted symbiont clades 
can reduce the overall bleaching response (Berkelmans and 
van Oppen 2006; Sampayo et al. 2008; Howells et al. 2016). 
In recent years, advances in technology have made it possi-
ble to uncover some of the underlying mechanisms allowing 
for thermotolerance of corals and their symbionts, which 
potentially play important roles in their adaptation and accli-
matization potential (Richier et  al. 2008; DeSalvo et  al. 
2010; Kvitt et al. 2011; Bellantuono et al. 2012; Kenkel et al. 
2013). By understanding these mechanisms it is hoped that 
we can aid corals in future response and survival, in light of 
global warming (Magris et al. 2015; van Oppen et al. 2015). 
Thus, it can be seen that temperature drastically impacts the 
survival of corals and if temperatures continue to increase as 
predicted, corals will struggle to recover from bleaching 
events and subsequently large-scale losses of coral reefs will 
be observed.

Whilst the direct effects of elevated temperatures on cor-
als are frightening enough, they extend, as with seagrass and 

mangroves, into related atmospheric changes. Increased pre-
cipitation and sea level rise have two primary impacts, a 
decrease in salinity and alteration of nutrient fluxes. In the 
case of salinity, a decrease may actually directly influence 
thermotolerance of corals, whereas, recent studies have indi-
cated that more saline environments could increase coral 
holobiont temperature resilience (Gegner et al. 2017). Whilst 
not directly impacting thermotolerance, eutrophication of 
the water column (as the result of declines in seagrass and 
mangroves areas) can cause imbalances in coral-symbiont 
relationships and ultimately leads to the breakdown of sym-
biosis (D’Angelo and Wiedenmann 2014). If the symbiotic 
relationship is already compromised by imbalances in nutri-
ent exchange between the two partners, it is less likely to 
withstand additional temperature stress. Consequently, if 
corals undergo repeated long-term bleaching, calcification 
rates will be continuously affected. Since calcification is a 
costly process that requires a lot of energy, the lack of suffi-
cient nutrients, due to symbiont absence, not only reduces 
growth but also increases the porosity of the skeleton 
(Tambutté et  al. 2015). As storm frequency and intensity 
increase, coral skeletons will be less resilient to withstand 
turbulent waters, potentially leading to fractures and breaks, 
effectively destroying the reef. Thus, the existence of coral 
reefs is currently threatened not only by temperature increase, 
but also by most associated atmospheric changes which 
accompany global warming.

We can clearly see that the existence of mangroves, sea-
grass and coral reefs is currently threatened not only by tem-
perature increase, but also by many associated changes in 
abiotic factors. However, the extent to which certain changes 
affect the ecosystem depends wholly on the system in ques-
tion, as some are more resilient to certain abiotic stressors 
than others (Guannel et al. 2016). Sea level rise has shown 
contrasting impacts on mangrove, seagrasses and coral reefs, 
whereby seagrass showed the most resilience over longer 
periods of time (Albert et al. 2017). On the other hand, tem-
perature increase of the water column is having the most det-
rimental effects on corals whose algal partners can escape 
suboptimal conditions, whilst the animal and its skeleton are 
left behind. Although mangroves, seagrass and coral reefs 
may respond differently to temperature and associated 
changes, the end point appears to be a decline in all three 
either through migration to new locations or permanent loss. 
As each ecosystem provides a service to help mitigate global 
warming impacts, the slow disappearance of one could 
increase the stress experienced by its neighbors. This is par-
ticularly important in terms of increased storm intensities 
and frequencies which have the potential to significantly 
impact sedimentation and nutrient enrichment, especially in 
regions where losses of ecosystems and their associated buff-
ering, trapping, and absorbing capacities have occurred 
(Golbuu et al. 2003; Unsworth et al. 2012). Another global 
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stressor that is tightly linked to temperature is ocean acidifi-
cation. If temperature itself will have such extensive effects 
on tropical marine ecosystems, then the combination with 
ocean acidification will be unfathomable.

�A Sour Ocean

Within the literature, ocean acidification has been closely 
coupled with the rise in atmospheric and oceanic tempera-
tures, with all three being attributed primarily to rising levels 
of CO2 in the Earth’s atmosphere (Caldeira and Wickett 
2003; Hoegh-Guldberg and Bruno 2010). CO2 is not only a 
key player in climate change due to its ability to trap heat, 
but also a vital component of biological mechanisms (e.g., 
photosynthesis), which are important in sustaining life. The 
oceans play an important role in the global carbon cycle, act-
ing as a ‘carbon sink’ by taking up about one third of CO2 
from the atmosphere and transporting it around the globe (Le 
Quéré et  al. 2013). The acidification of our oceans alters 
ocean chemistry, which poses significant challenges to these 
already threatened tropical marine ecosystems (Kroeker 
et al. 2010; Gaylord et al. 2015).

Since the industrial revolution our, on average, slightly 
alkaline ocean, with a pH of 8.2, has experienced a decrease 
in pH of 0.1 units, which represents a 30% increase in acid-
ity. The pH is predicted to drop a further 0.3 units by the end 
of the century (IPCC 2013). The trajectory towards an ocean 
with a lower pH will have both positive and negative conse-
quences for marine organisms (Garrard et al. 2014). This was 
demonstrated by research conducted near oceanic vents, 
which emit large quantities of CO2 and consequently create 
areas of seabed with a lower than usual pH (Frankignoulle 
and Distèche 1984; Hall-Spencer et al. 2008; Fabricius et al. 
2011; Scartazza et  al. 2017). However, research on ocean 
acidification primarily focuses on the impacts to calcifying 
organisms such as corals, molluscs, echinoderms, crusta-
ceans, coccolithophores, foraminifera, pteropods, and some 
species of algae. Increasing atmospheric CO2 alters the dis-
solved inorganic carbon distribution in seawater, reducing its 
pH and with it the availability of carbonate ions (CO3

2−) 
(Cohen and Holcomb 2009; Findlay et  al. 2010). This 
impacts the energy-costly process of calcification as the rate 
at which calcifying organisms produce calcium carbonate 
(CaCO3), is slowed to a point where rates of erosion exceed 
those of skeletal accretion (Cohen and Holcomb 2009; 
Gerber et al. 2014). In terms of non-calcifying species, acidi-
fication is believed to disturb acid–based (metabolic) physi-
ology and impact their survival, growth, and reproduction 
(Fabry et al. 2008; Kroeker et al. 2010). Research into the 
response of non-calcifying organisms including jellyfish, 
fish, fleshy algae, and seagrasses to acidification is becoming 

more commonplace, yet, in the case of mangroves, the 
impacts remain vastly understudied (Guinotte and Fabry 
2008; Kroeker et al. 2010).

Calcifying species appear to be the ‘losers’ in the case of 
a more acidic ocean, and exhibit a range of negative 
responses, especially when acidification is combined with 
other stressors (Hoegh-Guldberg et al. 2007; Fabricius et al. 
2011). For coral calcification, studies have indicated that the 
extracellular calcifying medium is maintained at a higher pH 
than that of the surrounding seawater in order to facilitate 
CaCO3 precipitation (McCulloch et al. 2012). However, how 
changes in seawater pH would affect this internal biological 
control is currently unknown. More recently, studies have 
revealed that instead of decreasing their growth rate, corals 
are acclimatizing by decreasing their skeletal density and 
increasing their porosity (Tambutté et  al. 2015). Although 
this morphological plasticity ensures slower, but continuous 
growth of the colony, it weakens the overall reef structure, 
making it more susceptible to damage resulting from anthro-
pogenic or climatic perturbations (Hoegh-Guldberg et  al. 
2007). This weakening of skeletons also affects reef-building 
gastropods of the family Vermetidae, which provide coastal 
protection to neighboring ecosystems such as mangroves and 
seagrasses (Milazzo et  al. 2014). The decreased reef resil-
ience can be attributed to reduced structural complexity and 
coral species diversity (Anthony et al. 2011; Fabricius et al. 
2011). A pH of 7.7 has been shown to cease reef develop-
ment due to a shift in coral species dominance, away from 
structural corals (branching, foliose, and tabulate growth 
forms) towards massive growth forms such as Porites corals 
(Fabricius et al. 2011). These reductions in reef complexity 
can in turn impact the biodiversity of reef-associated species 
as well as trophic interactions, and other ecosystem pro-
cesses (Raven et al. 2005; Kleypas et al. 2006).

For non-calcifying marine consumers, elevated oceanic 
CO2 and the accompanying change in pH will have negative 
effects as it will require additional energy for metabolic 
acid–based regulation (Pörtner 2008). Ocean acidification 
slows larval development in fishes, molluscs and echino-
derms (Kurihara 2008; Miller et al. 2009; Dupont et al. 2010; 
Talmage and Gobler 2010; Dineshram et al. 2013; Gazeau 
et al. 2013). The early life stages of fish are impacted by a 
reduction of their oxygen consumption capacity and hence 
their activity, along with olfactory cues for predation, 
settlement, and reproduction (Munday et al. 2009). However, 
these highly mobile organisms have developed intra- or 
extracellular pH regulatory mechanisms that may aid them to 
be more resilient to ocean acidification (Kroeker et al. 2010). 
An additional option for fishes to escape a more acidic envi-
ronment is finding refuge in seagrass meadows (Hendriks 
et  al. 2014), and potentially mangrove roots (Chakraborty 
et al. 2013).
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Primary producers including seagrasses and macroalgae 
appear to be the winners in the face of elevated oceanic CO2 
concentrations and lower seawater pH. Increased CO2 con-
centrations in seawater are a resource for these primary pro-
ducers (Palacios and Zimmerman 2007; Fabricius et  al. 
2011; Hepburn et  al. 2011) which allow them to enhance 
their productivity and growth (Harley et al. 2012; Koch et al. 
2013). Seagrasses are known to alter the carbonate chemistry 
in the water column, which is of particular importance in 
regions where they neighbor coral reef environments 
(Dorenbosch et  al. 2005; Hendriks et  al. 2014). In the 
Mediterranean, Posidonia oceanica diurnally modify the 
water column pH by as much as 0.2–0.7 units through pho-
tosynthesis and respiration (Frankignoulle and Distèche 
1984; Invers et al. 1997; Hall-Spencer et al. 2008; Scartazza 
et al. 2017), and a similar process is also exhibited by mac-
roalgae dominated reef-tops (Russell et  al. 2009). 
Additionally, ocean acidification results in decreased carbon 
to nitrogen (C:N) ratios in P. oceanica tissues, which 
increases shoot density, leaf proteins, and asparagine accu-
mulation in the rhizomes (Scartazza et al. 2017). This in turn 
provides a positive contribution to associated food-webs 
given the nutritional quality of organic matter available for 
herbivores and consequently an increase in the grazing rate is 
observed (Kroeker et al. 2010; Arnold et al. 2012; Rossoll 
et al. 2012; Scartazza et al. 2017). However, the spatial scale 
of these processes, ranging from millimeters to entire water 
layers, must be kept in mind when extrapolating their impacts 
to an ecosystem extent (Hendriks et al. 2015).

This enhanced productivity of seagrass meadows is likely 
to contribute to enhanced productivity in neighboring coral 
reef ecosystems on the tropical seascape. Modelling studies 
suggests that calcification on coral reefs with seagrass neigh-
bors may be up to 18% greater compared to reefs without 
neighboring seagrasses (Unsworth et al. 2012). Their role in 
enhancing calcification rates will continue and possibly even 
increase (Zimmerman et al. 1997), allowing coral and inver-
tebrate communities to persist (Unsworth et al. 2012; Garrard 
et al. 2014). The term connectivity is primarily used in the 
context of ocean acidification to discuss the disruption to 
organismal reproduction, dispersal and hence, the connectiv-
ity of populations in a more acidic ocean (Cowen et al. 2006; 
Gerber et al. 2014). Ocean acidification appears to exhibit an 
especially strong capacity to drive ecological change and 
hence its impacts are not straight forward in the bigger pic-
ture (Gaylord et al. 2015). The coupled responses create a 
complex interplay among the physiological susceptibility of 
organisms to ocean acidification, the availability of resources, 
and the intensity of competition (Gaylord et  al. 2015). 
Models suggest that a decreasing ocean pH will impose addi-
tional physiological stresses to the global distribution of spe-
cies, narrowing the breadth of the thermal performance curve 
(Pörtner 2008). Ocean acidification effects would lead to 

smaller overall ranges, and ranges for which equatorward 
boundaries shift more dramatically towards poleward ones 
(Gaylord et al. 2015). How species will respond within the 
context of their communities is yet to be investigated. 
However, it is almost certain that many of the most striking 
consequences of acidification will arise through altered 
biotic interactions (Fabricius et  al. 2011; Falkenberg et  al. 
2013; Kroeker et al. 2013; McCormick et al. 2013).

In summary, primary producers like seagrass beds are a 
crucial buffer zone of potential stressors for the calcifying 
fauna of coral reefs, with which interactions seem to be key 
for the resilience of many different species and even ecosys-
tems in the face of environmental perturbations. With this in 
mind a more interconnected approach needs to be taken into 
consideration for tropical ecology under ocean acidification 
(Fabry et al. 2008; Garrard et al. 2014). Similar to Gaylord 
et al. (2015) and their argumentation that ocean acidification 
needs to be seen not only in the individual but ecosystem 
context, we argue that ecosystems need to be investigated in 
a connected manner. It is unequivocal that this issue requires 
global human action (Kennedy et al. 2013).

�Summary

The evolution of mangroves, seagrasses, and coral reefs in 
ever-changing environments has allowed them to form 
highly-adapted, and for the most part, resilient ecosystems. 
This resilience, however, is often facilitated by their connec-
tivity to adjacent ecosystems. But within one generation, 
anthropogenic activities and human-induced climate change 
have exerted such pressures on these connectivity pathways 
that a decline in ecosystem resilience and services has been 
observed. Consequently, places on Earth previously consid-
ered refugia for a range of species may cease to exist. Perhaps 
one of the most significant examples of these combined 
stressors on tropical marine ecosystems occurred in the Red 
Sea, where in the 1960s 98% of its coasts were considered to 
be “in practically virgin condition” (Ormond 1987). 
However, rapid development in this area, as a result of expan-
sion in petroleum-based economies, meant the ‘virgin’ status 
of many regions was lost (Gladstone 2008). Over 75% of 
mangrove forests were degraded by activities including fell-
ing, cutting, sewage, root burial or overgrazing by camels 
(Gladstone 2008), and coral reefs, especially those by 
industrializing areas were impacted by dredging, sewage, 
and tourism (Gladstone 2008). Further to these threats, 
industrial trawling depleted economically important species 
(Gladstone 2008).

The underlying cause of many of these activities, both in 
the Red Sea and around the globe are: expanding popula-
tions, rapid urbanization, and weak governance, coupled 
with a lack of baseline information on tropical marine eco-
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systems, limited awareness of the consequences of human 
activities, and, most importantly, a lack of perspective 
regarding the connectivity among ecosystems on the tropical 
seascape (Duda and Sherman 2002). This review has high-
lighted the scale and importance of connectivity between 
tropical marine ecosystems, and investigated the impact of 
select anthropogenic activities and climatic perturbations on 
their associated connectivity pathways and ecosystem ser-
vices. Only by progressing our understanding of these envi-
ronments can the impact of human activities and changes in 
environmental conditions on nature be better elucidated. It is 
concluded that in order to effectively protect and preserve 
these critically important ecosystems and their associated 
services for future generations, we can no longer consider 
each ecosystem as a separate entity, and instead a holistic, 
seascape-wide approach is paramount. This means, the 
static, ‘boundary-based’ norm of scientific thinking must be 
overcome, and instead a more flexible, inter-ecosystem and 
interdisciplinary approach employed, which may, in turn, 
lead to strategies, which balance environmental change 
whilst allowing human subsistence to be ensured.
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�Appendix

This article is related to the YOUMARES 8 conference ses-
sion no. 14: “Tropical Aquatic Ecosystems Across Time, 
Space and Disciplines”. The original Call for Abstracts and 
the abstracts of the presentations within this session can be 
found in the appendix “Conference Sessions and Abstracts”, 
chapter “8 Tropical Aquatic Ecosystems Across Time, Space 
and Disciplines”, of this book.
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