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Abstract. A typical resource constrained environment is restrained
in terms of availability of resources such as skilled personnel, equip-
ments, power and Internet connectivity. Designing privacy-based service-
oriented architectures therefore requires re-adapting existing solutions
to cope with the constraints of the environment. In this paper, we con-
sider the case of mobile crime-reporting systems that have emerged as
an effective and efficient data collection method in developing countries.
Analyzing the data, can be helpful in addressing crime but, law enforce-
ment agencies in resource-constrained contexts typically do not have the
expertise required to handle these tasks. A possible cost-effective strategy
is thus to outsource the data analytics operations to third-party service
providers. However, the sensitivity of the data makes privacy an impor-
tant consideration. In this paper we propose a two-pronged approach
to addressing the issue of privacy in outsourcing crime data in resource
constrained contexts. We build on this in the second step to propose a
streaming data anonymization algorithm to analyse reported data based
on occurrence rate rather than at a preset time on a static repository.
Results from our prototype implementation and usability tests indicate
that having a usable and covet crime-reporting application encourages
users to declare crime occurrences and anonymizing streaming data con-
tributes to faster crime resolution times.

1 Introduction

While organizations generate data that can contribute to improving performance
daily, many of these organizations do not have the in-house expertise required
to analyse the data. The lack of expertise is prominent in resource constrained
environments manifested in rural/remote developing world regions, for instance,
where constraints on resources such as access to computational power, reliable
electricity, and the Internet pose a further challenge. A cost-effective solution is to
outsource the data to a professional third-party data analytics service provider.
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A study [1] carried out in technologically resource-constrained environments
has revealed that collected crime data are usually not studied or analysed to
support crime resolution. A possible reason for this is the lack of the necessary
in-house expertise, both in terms of human capital and computational processing
power [5,15,24]. This deprives policy makers in these regions of the benefits that
could have been derived through data analytics. A possible solution to this is to
involve a third-party data analytics service provider [1,2]. However, because of
the sensitive nature of crime data it makes sense to ensure that the outsourced
data are protected from all unauthorized access including that of an honest-but-
curious data mining service provider. Therefore, this paper focuses on developing
a test bed framework to preserve privacy during real-time information sharing
using the crime domain as an application scenario. However, it is important to
stress that the ideas and approaches considered in this study are applicable to
other areas or domains as well.

2 Related Work

A naive approach to preserve privacy or anonymity in data is to exclude explicit
identifiers such as name and/or identification number. However linking attacks
aimed at data deanonymisation, can be provoked successfully by combining non-
explicit identifiers (such as date of birth, address and sex) with external or pub-
licly available data [3,25,26]. To illustrate how a linking attack can be provoked,
let us consider Fig. 1, which shows two compartments (or storage) that contains
data. The upper compartment contains a portion of a publicly available table
in which “name” is an explicit identifier attribute and the lower compartment
shows a portion of a data stream that has been sanitized to exclude explicit
identifiers (name) in order to disguise the identities of the individuals associ-
ated with the data. However, when a joining operation is performed on both
compartments using attributes common to both compartments, the supposedly
anonymized individual is re-identified successfully as Ade who lives at 10 Pope
Street and also revealing her sensitive information that she has been a victim of
rape.

According to Sweeney [18,19] 87% of the population in the United States were
uniquely identified by the combination of non-explicit identifiers such as gender,
zip code and date of birth from the 1990 census dataset using linking attack.
Therefore, Sweeney et al. came up with a better approach named k-anonymity
to anonymize data in a manner that linking attack is minimized.

K-anonymity ensures privacy is preserved by hiding each individual in a clus-
ter which contains at least k individuals such that an adversary finds it difficult
to get additional individual information, but rather information about a group
of k individuals [18,20]. To understand how k-anonymity works, let us assume an
attacker tries to identify a friend in a k-anonymized table, but the only informa-
tion he has is her birth date and gender. K-anonymity ensures that the adversary
finds it difficult to identify the individual by guaranteeing that at least k people
have the same date of birth and gender. Thus minimizing the rate of linking
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Fig. 1. Illustration of linking attack

attack to at least 1/k. K-anonymity algorithms can generally be grouped into
two categories, namely hierarchy-based generalization and hierarchy-free gener-
alization [3]. In the hierarchy-based generalization, data anonymization requires
a generalization tree as an input to aid in the anonymization process while in
the hierarchy-free generalization, generalization tree is not required as an input
rather the algorithm makes use of clustering concepts and some heuristics.

The evolution of k-anonymity has led to the birth of newer privacy models
to address its inherent limitation. Some of the popular and newer privacy mod-
els that extend k-anonymity are �-diversity and t-closeness [29,30]. The main
essence of �-diversity is to address homogeneity attack to which k-anonymity
is vulnerable and it does this by requiring that each cluster in a k-anonymized
table has at least � distinct sensitive values [29]. T-closeness further complements
�-diversity by ensuring that distribution of sensitive values in a cluster is similar
to that of the entire anonymized table [30].

An equally fast-growing data preservation technique is differential pri-
vacy. Differential privacy achieves anonymization by altering the data (i.e.
unanonymized data) with the addition of mathematical “noise” [13]. In other
words, differential privacy preserves privacy through the “difference” between
the data supplied and the noise added to it. Interestingly, recent research [16,17]
has shown that the use of t-closeness with k-anonymity can yield similar privacy
result as those of differential privacy. In this research we focus on k-anonymity
and its complementary techniques because of the simplicity [29], effectiveness
[19] and high utility [31] offered, especially when compared to an evolving
counterpart such as differential privacy. In addition, recent research [31,32] has
shown that differential privacy is achieved as long as a dataset is anonymized
using k-anonymity and t-closeness. Therefore this paper focuses on the use of
k-anonymity, �-diversity and t-closeness to achieve anonymization.

The adaptation of k-anonymity & its complementaries to data stream (real-
time data) has led current research to integrate the concept of a buffering (or
sliding window) mechanism and delay constraint into data stream anonymization
[3,4,22,25–27]. The buffer is designed to hold a portion of the data stream at
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every instant of time, after which an anonymization algorithm can be applied to
data in the buffer. Delay constraints is required to put a check on each tuple so
that it does not stay in the buffer beyond a pre-defined deadline. Inspite of this,
many of the existing algorithms adapted for anonymization of data streams face
the following challenges:

– First, buffering according to delay constraints, can result in certain records
being held in the buffer for long periods [3,8,10]. When such records are time-
sensitive or need to be processed in real time, occurrence of delay usually
results in high levels of information loss. Since a key requirement of a good
anonymization scheme is high data utility, high levels of information loss due
to expired tuples or dropped (or suppressed/unanonymizable) records are
undesirable.

– Second, building on the first problem, we note that many of the existing
data stream anonymization schemes based on k-anonymity and its derivatives
do not take distribution of future data streams into consideration during
anonymization [4]. An implication of this is that a record that is likely to
offer better anonymization at a lower rate of information loss in a future
sliding window or data stream can be anonymized with such a future sliding
window rather than the current sliding window or data stream. Therefore,
there is a need to have a model that can predict the best sliding window or
stream with which a record should be anonymized.

Therefore, the focus in this paper is to present a data-stream anonymization
framework that addresses the aforementioned challenges inherent in existing
framework. More detailed literature review can be found in [14].

3 Data Stream Anonymization Framework

Figure 2 presents an overview of our Data Stream Anonymization Framework
using the crime domain as an application scenario. Users make crime reports
electronically and the reports are anonymized in real time at the anonymization
layer. The results from the anonymization layer are transferred to third party
for data mining process at the application layer.

3.1 Users Layer: Crime Reporting Layer

As noted in previous sections, this research considers the crime domain as an
application scenario for achieving data stream anonymization. However, the ideas
in this research extend to any other domain that requires real-time anonymiza-
tion of sensitive data. Thus, to enable us to create an application that allow
people to report crime in a secured and covert way, we converted the existing
paper-based crime reporting system of a University Campus Setting in South
Africa into a digitized Crime Reporting System. We chose to use mobile device
as platform for crime reporting because the use of mobile devices provides a
good security platform for crime report [11,23].
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Fig. 2. System overview

In order to ensure that our mobile crime reporting system is acceptable and
usable in real-life we applied an iterative user-centered design methodology. To
this effect we interviewed different key stakeholders within law enforcement agen-
cies and crime victims. We had different iterations in our design until we came up
with a final prototype acceptable to all stakeholders. Figure 3 presents the screen-
shots of our final prototype. More details about the research on the development
and deployment of the crime reporting application,CryHelp, can be found in [5].

3.2 Anonymization Layer: Data Stream Anonymization

In our proposed crime reporting application scenario, data arrives in form of
streams and contains information that is analyzed for statistical or data mining
predictions. These data are temporarily stored in a buffer in order for anonymiza-
tion to take place. A buffer is used to hold portions of the continuous data stream
based on delay constraints that specify the duration for which tuples can remain
in the buffer just before anonymization takes place. As illustrated in Fig. 4, the
buffer optimizer uses time-based sliding window and Poisson probability to mon-
itor the data in the buffer, ensuring that tuples are anonymised before the expiry
time threshold is reached while Fig. 5 illustrates the data anonymizer which uses
k-anonymity, �-diversity and t-closeness for data privacy preservation. We opted
for Poisson distribution because it is concerned with the number of success that
occurs within a given unit of measure. This property of the Poisson distribution
makes viewing the arrival rate of the reported crime data as a series of events
occurring within a fixed time interval at an average rate that is independent of
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Fig. 3. Screenshot of our crime reporting application

Fig. 4. Details of anonymization layer: buffer optimizer

occurrence of the time of the last event [6]. Only one parameter needs to be
known, the rate at which the events occur which in our case is the rate at which
crime reporting occurs.

4 Adaptive Buffer Re-sizing Scheme

As illustrated in Fig. 6, a “sliding window (buffer)”, swi, is a subset of the data
stream, DS, where DS = {sw1, sw2, sw3, . . . , swm} implies that the data stream
consists of m sliding windows. The sliding windows obey a total ordering such
that for i < j, swi precedes swj . Each sliding window, swi only exists for a
specific period of time T and consists of a finite and varying number of records,
n, so that swi = R0, . . . , Rn−1.

Our adaptive buffer sizing scheme as illustrated in Fig. 7 is categorized into
6 phases and detailed explanation about how each of these phases work is in our
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Fig. 5. Details of anonymization layer: data anonymizer

Fig. 6. Overview of dynamic buffer sizing process

earlier publication [12]. We summarize these details as follows. First we begin
by setting the size of the buffer to some initial threshold value. Given the time-
sensitivity of the data, we set the size of the sliding window, swi, to a value,
T . T is a time value that is bounded by a lower bound value, tl, and an upper
bound value, tu. The anonymization algorithm is applied to the data that was
collected in the sliding window swi during the period T . So, essentially swi = T .
All records that are not anonymizable from the data collected in swi are either
included in a subsequent sliding window, say swi+1 or incorporated into already
anonymized clusters of data that are similar in content wise.

In order to determine whether or not an unanonymizable record can be
included in a subsequent sliding window, say swi+1, we compute its expiry time
TE and compare its values to the bounds for acceptable sliding window sizes
[tl, tu]. We compute TE as follows:

TE = swi − TS − TA (1)

where TE is the time to expiry of a record , TS is the time for which the record
was stored in swi, and TA is the time required to anonymize the data in swi.
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Fig. 7. Phases of adaptive buffer re-sizing scheme

Starting with the unanonymizable record, Ri, that has the lowest TE and
whose value falls within the acceptable bound, [tl, tu], we check for other
unanonymizable records, n, that belong to the same data anonymization group
as Ri. We then proceed to find the rate of arrival, λ, of data in that anonymiza-
tion group. We compute the arrival rate of records required to anonymize Ri

within time TE as follows:
λ =

n
sw1

× TE (2)

The expected arrival rate, λ, is used to determine the probability of arrival of
at least the number of records needed to guarantee that delaying anonymizing the
unanonymizable record, Ri, to the next sliding window swi+1 will not adversely
increase information loss. We next determine the minimum number of records,
m, required to guarantee anonymization of Ri in the next sliding window, swi+1.
When the decision is to include the Ri into the next sliding window swi+1, we
need to then compute the optimal size for swi+1 in order to minimize information
loss from record expiry. We achieve this by finding the probability that m records
will actually arrive in the data stream within time, TE , in order to anonymize the
unanonymizable record, Ri. We use Eq. 3 to compute the probability of having
i = 0 . . . m records arrive in the stream within TE

f (swi+1, λ) = Pr (i = 0 . . . n) =
λie−λ

i!
(3)

where λ is the expected arrival rate, e is the base of the natural logarithm (i.e.
e = 2.71828) and i is the number of records under observation.

Therefore the probability of having greater that m or more records arrive in
the stream within time TE is

1 −
m−1∑

i=0

pr (4)

where pr is the probability outcome of Eq. 3.
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If the result of Eq. 4 is greater than a preset probability threshold, δ, we
set the size of the subsequent sliding window, swi+1, to the expiry time of the
unanonymizable record under consideration. We then mark the unanonymiz-
able record for inclusion in the subsequent sliding window along with other
unanonymizable records that have their TE within bounds for acceptable slid-
ing window sizes [tl, tu]. In the event that the probability of all unanonymizable
records is less than the preset probability threshold, we set the subsequent sliding
window size to a random number within the time bound, [tl, tu]. More detailed
explanation of the adaptive buffer scheme can be found in our previous work [12].

5 Experiments and Results

This section presents the implementation and results of the crime-reporting
Application, CryApp, and the adaptive buffering scheme algorithm.

5.1 CryHelp Application Evaluation

In order to evaluate the usability of our mobile crime reporting application,
CryHelp, we developed a questionnaire. The questionnaire was based on IBM
CSUQ [23]. The advantage of the IBM CSUQ [23] is that it allows questionnaires
to be divided into scores and specific categories. These categories are: System
Overall, System Usefulness, Information Quality and Interface Quality. These
categories allow evaluation of each individual component of the system to gauge
which aspects perform well or poorly on average. These results directly address
the issue of whether a mobile device can be used to effectively and securely send
a crime report.

Fig. 8. The chart of the questionnaire score breakdown, with standard deviation 0.05
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Figure 8 shows the result of each component of the system. From the figure, it
can be seen that overall the system was well received with an overall system score
of 77.06%, this suggests the users found the system very usable with a standard
deviation of 0.05 for contributing scores System Use, Information Quality and
Interface Quality. It is not surprising to find that the interface quality (78.33%),
though marginally, is the most appreciated aspect of the system as the design
process was centered on the users. These results bode very well for the feasibility
of a mobile solution for crime reporting.

5.2 Experiments on Anonymization

Our feasibility study and experiment conducted on the prototype crime data
collection application, CryHelp [5], informed the generation of more datasets for
the second phase of experiment. The generation of more crime data was done
using a random generator software1 and pseudo-random algorithm based on a
Gaussian distribution to populate the crime data-stream based on ground-truth
provided by the users, UCT Campus Protection Service and the South African
Police Service. Our data are in two sets, which contain 1000 and 10 000 records
respectively, the first set contains 1000 records while the second set contains
10000 records, this is a reasonable bound for daily average crime report rates in
South Africa [5].

Therefore, this section discusses the gains obtained using Poisson probabil-
ity distribution to predict the time a sliding window should exist, while ensur-
ing that records do not expire, the number of unanonymizable (or suppressed)
records is minimal and privacy is maintained using k-anonymity, �-diversity and
t-closeness. The gains obtained are explained in the following sub-sections:

Recovered Unanonymizable Tuples: During anonymization there is usually
a trade-off between the rate of IL, suppression and generalization. Usually if an
equivalence class (cluster) is unable to satisfy the privacy requirement, such a
class is either merged with another class or all its records are suppressed. A higher
suppression rate implies that vital information is likely to be concealed from the
recipient of the anonymized table, while merging of classes implies an increase in
IL, which has the drawback of offering lower data utility. In order to curb this,
Poisson probability distribution predicts the chances of such unanonymizable
(suppressed) records undergoing anonymization in the next sliding window in
a manner that preserves privacy and maximizes data utility with the goal of
minimizing delay or expiration of records.

Figures 9 and 10 show the rate at which unanonymizable records were
anonymized again, going by the predictions of Poisson probability distribution.
It is evident from the figure that many unanonymizable records were recovered
and allowed to go for anonymization again. It was also observed that the prob-
ability threshold influenced the number of unanonymizable records recovered.
This leads to the conclusion that the higher the probability threshold, the lower
1 http://www.mockaroo.com.

http://www.mockaroo.com
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Fig. 9. Poisson probability threshold versus recovered tuples for dataset 1

Fig. 10. Poisson probability threshold versus recovered tuples for dataset 2

the probability of unanonymizable records being given a chance for anonymiza-
tion re-consideration in subsequent sliding window(s). The implication of this
is that more records are likely not to be given the chance of another round of
anonymization if higher threshold values are used. Another observation is that
if a higher threshold value is used, then there are fewer changes or movements
in records between sliding windows.

Privacy Value/Level Versus Recovered Unanonymizable Tuples: “Pri-
vacy level” simply means the degree of anonymity offered, while unanonymiz-
able tuples are those tuples that belong to an equivalence class whose size is less
than k. For the purpose of sliding windows that start with a small number of
tuples, the minimum privacy level threshold was set as k=2 and the maximum
at k= 15; the �-diversity value, �, was varied between values 3 and 5 and finally
the t-closeness value, t, was alternated between values 0.1 and 0.15 for the two
datasets.
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Fig. 11. Relationship between privacy level and recovered tuples for dataset 1

As illustrated in Figs. 11 and 12, it was observed that as the privacy
value/level increases, the possible number of unanonymizable records that can be
recovered using Poisson probability prediction is reduced. The main reason for
this is that as the privacy level or degree increases, it is expected that the rate or
possibility of achieving anonymization will become increasingly challenging. This
definitely also influences the expectation of higher chances of anonymization rate
for unanonymizable records. To understand the reason for the decline in the rate
of recovered unanonymizable records better, let us assume the k privacy level
is set to three and an equivalence class, ECi, has two records; this implies that
we are looking for at least one more record to make ECi satisfy k-anonymity. In
essence, using Poisson probability, the adaptive buffer resizing model attempts
to predict the chance of at least one record in ECi arrive within time, t, in the
next sliding window. If k is set to four, this will mean the chance of at least two
records arriving in the next sliding window. An implication of this is that the
chances of having at least two records is more difficult or demanding compared
to the chances of just one record. Thus, this explains why the model has a drop
in recovered unanonymizable records as privacy level increases. Therefore, the
conclusion is that the rate at which unanonymizable records in a current sliding
window can be anonymized in a subsequent window is mainly dependent on the
privacy value.

5.3 Benchmarking: Poisson Solution Comparison with Non-Poisson
Solution

As a baseline case, for evaluating our proposed adaptive buffering scheme we
implemented the proactive-FAANST and passive-FAANST. These algorithms
are a good comparison benchmark because they are the current state-of-the-art
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Fig. 12. Relationship between privacy level and recovered tuples for dataset 2

streaming data anonymization and reduce IL with minimum delay and expired
tuples [3]. The proactive-FAANST decides if an unanonymizable record will
expire if included in the next sliding window, while passive-FAANST searches
for unanonymizable records that have expired. A major drawback of these two
variants is that there is no way of deciding whether or not such unanonymizable
records would be anonymizable during the next sliding window. This is neces-
sary to avoid repeatedly cycling a tuple that has a low chance of anonymization
in subsequent sliding window(s). Moreover, these algorithms do not consider the
fact that the flow or speed of a data stream could change. These weaknesses
of proactive-FAANST and passive-FAANST are what we attempt to address
by using Poisson probability distribution to predict if such tuples would be
anonymizable in subsequent sliding window(s) by taking into consideration the
arrival rate of records, success rate of anonymization per sliding window, time a
tuple can exist and rate of suppressed records.

Expired Tuples and Information Loss in Delay: A tuple expires when
it remains in the system for longer than a pre-specified threshold called delay
[3,10]. In order to decide whether a tuple has exceeded its time-delay constraint,
additional attributes such as arrival time, expected waiting time and entry time
were included. As a heuristic, the choice of delay values, tl = 2000ms and tu =
5000ms, is guided by values of delay that are used in published experimentation
results [3].

In general, our approach shows that there are fewer expired tuples when
compared to passive-FAANST and proactive-FAANST solutions. This is because
before our Poisson prediction transfers suppressed records to another sliding
window, it checks for the possibility of their anonymization. In other solutions,
there is no mechanism in place to check the likelihood of the anonymizability of



On Anonymizing Streaming Crime Data 183

a suppressed record before allowing it to go to the next sliding window/round.
As a result, such tuples are sent to the next sliding window and have high
a tendency to expire eventually. Our solution also shows that the lower a k-
value, the higher the number of expired tuples. This is because the outcome
of Poisson prediction is lower for higher k-values. As a result, there are fewer
changes of sliding windows as the k-value increases and this means there is a
lower possibility of expired tuples.

One of the main goals of our solution is to reduce IL in delay (i.e. to lower
the number of expired tuples). Figure 13 depicts that our solution is successful in
achieving its main goal, and the IL (delay) in our solution is lower than in passive
and proactive solutions. In order to determine the total number of records that
expired, a simple count function was used to retrieve all records that had remain
in the buffer longer than the upper limit threshold, tu. To determine the average
expired records, we sum up the expired records in all the experiments and divide
the result by the total number of experiments.
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Fig. 13. Privacy level versus expired tuples for Poisson solution, passive-FAANST and
proactive-FAANST

Data Utility and Information Loss in Record: An important factor that
is considered in anonymization is the degree of usability of anonymized data for
data analysis or data mining tasks [28]. Therefore, we compared the degree of IL
in records of our solution with that of Passive-FAANST and proactive-FAANST.
Our result, as illustrated in Fig. 14, shows that at the minimal level of privacy
enforcement, the information loss of our solution is on par with the other two
schemes, while at the maximal level our solution has better data utility.
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Fig. 14. Privacy level versus information loss for Poisson solution, passive-FAANST
and proactive-FAANST

6 Conclusions

We started this paper on the note that resource constrained environments lack
data analytic expertise that can analyze and mine crime data in real-time. This
anonymization process is important in order to provide intervention that can
carry out this analysis in timely fashion. We adopted k-anonymity, �-diversity
and t-closeness as our anonymization scheme due to their simplicity, efficiency
and applicability in real-life. However current literature on integration of these
techniques to data stream has issues in terms of performance and privacy. The
performance issue deals with information loss in terms of delay and running cost.

To address the challenge of ensuring that delay is optimal during anonymiza-
tion process, we adaptively resized the buffer to handle intermittent flows of
crime reporting traffic optimally by using Poisson Distribution. Results from
our prototype implementation demonstrate that in addition to ensuring privacy
of the data, our proposed scheme outperforms other with an information loss rate
of 1.95% in comparison to 12.7% on varying the privacy level of crime report
data records.
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