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Abstract. Predictive process monitoring is concerned with anticipating
the future behavior of running process instances. Prior work primarily
focused on the performance of monitoring approaches and spent little
effort on understanding other aspects such as reliability. This limits the
potential to reuse the approaches across scenarios. From this starting
point, we discuss how synthetic data can facilitate a better understand-
ing of approaches and then use synthetic data in two experiments. We
focus on prediction as classification of process instances during execution,
solely considering the discrete event behavior. First, we compare different
feature representations and reveal that sub-trace occurrence can cover a
broader variety of relationships in the data than other representations.
Second, we present evidence that the popular strategy of cutting traces
to certain prefix lengths to learn prediction models for ongoing instances
is prone to yield unreliable models and that the underlying problem
can be avoided by using approaches that learn from complete traces.
Our experiments provide a basis for future research and highlight that
an evaluation solely targeting performance incurs the risk of incorrectly
assessing benefits and limitations.
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1 Introduction

One goal of process mining [1] is to support organizations in identifying devia-
tions from the expected behavior during process execution. Here, conformance
checking techniques, e.g., [2,3], analyze, if the current state of a process instance
in terms of its event trace conforms to the normative behavior. Complementary,
predictive process monitoring is concerned with anticipating the future develop-
ment of an instance [4] and focuses on (i) estimating the remaining execution
time [5,6]; (ii) determining the next events [6–8]; (iii) measuring the risk associ-
ated with possible paths to completion [9,10]; and (iv) predicting the outcome
of an instance [11–14].

In this work, we primarily focus on the latter category where prediction mod-
els are derived from historical data which contains event traces of past instances,
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labeled with the classes. Those classes e.g., indicate whether a business constraint
was met [11,15], or describe the quality level achieved by the instance [12]. In
prior work, a general approach to implementing the prediction is to (i) trans-
form each trace from the historical data into a feature vector; (ii) use standard
machine learning algorithms to train a model on the feature vectors and the
associated outcome; (iii) represent ongoing traces as features vectors; and (iv)
apply the model to obtain a prediction at runtime.

In this context, our work is motivated by the observation that prior work
is largely limited to reporting performance metrics obtained on some real-world
datasets (see Sect. 2) and to interpreting the results as evidence for the quality
of the proposed approach. In the machine learning community, this methodol-
ogy has long been criticized [17–19], because without further investigation it is
unclear whether the performance is due to the discovery of higher level concepts
or chance. A recent example in this regard is the study by Jo and Bengio [20].
While convolutional neural networks achieved a high performance for image
recognition on various datasets, the study presented evidence that this high per-
formance is partly due to superficial hints in the images which were present in
the (training and test) data, but not because the networks derive higher level
concepts to describe and recognize objects. Based on this criticism and related
empirical evidence, we argue that more emphasis must be put on understand-
ing the circumstances under which certain strategies perform well or poorly,
following e.g., [16].

While data from real-world scenarios is certainly important to evaluate and
compare the techniques’ performance under realistic circumstances, it is often
hard to understand to which degree the data enables the learning of a reliable
prediction model and to assess whether the techniques learn the correct rela-
tionships from the data. In contrast, the generation of synthetic data allows
researchers to exert full control over the variables that influence the outcome of
a process instance. We therefore discuss and demonstrate how the use of syn-
thetic data as a supplement for real-world data can yield additional insights. In
this context and without the loss of generalizability, we focus on the sub-problem
of classifying traces and only consider categorical outcome variables. Further-
more, we limit our work to discrete event behavior, i.e., the ordering of events
in terms of sequences of event identifiers. While events can be associated with
more information, the ordering of the events is the main dimension that sepa-
rates predictive process monitoring from other prediction problems. In summary,
our contributions are:

1. We present and discuss an approach to generate synthetic data that enables
the establishment of an objective baseline, which in turn can be used to
gain a more comprehensive understanding of how predictive process mining
techniques work.

2. We use this approach to examine two aspects of the classification of traces.
(a) We analyze different feature encodings for the representation of discrete

event behavior and show that our sub-trace encoding is better suited for
classification of completed traces than encodings from prior work. This
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experiment also demonstrates that synthetic data can facilitate the under-
standing of how approaches pick up relationships between trace properties
and outcomes.

(b) We additionally compare two approaches for the classification of ongo-
ing traces. The local prediction approach, which works by training a set
of classifiers for pre-defined prefix lengths, has often been used in prior
work [11,13–15]. We demonstrate that it bears the risk of increasing the
importance of irrelevant features. In contrast, a global prediction model
that relies on a single classifier trained on the completed traces yields
a higher reliability. This comparison emphasizes that solely relying on
performance measures can be misleading.

The remainder of the paper is organized as follows. Section 2 summarizes
related work and Sect. 3 introduces basic definitions. In Sect. 4, we subsequently
discuss the process of generating synthetic data and the use of the data for
analyzing predictive process mining techniques. Next, Sect. 5 is concerned with
comparing different feature encodings. After that, we analyze the local prediction
approach in Sect. 6 and the global prediction approach in Sect. 7. Finally, Sect. 8
concludes the paper.

2 Related Work

In the field of process mining, comparing event logs with normative process
models (i.e. conformance checking [2,3]) or comparing event logs with other
event logs (e.g. [21,22]) are common themes. Most of these techniques, however,
are offline and focus on full behavior (i.e., partial executions are not taken into
account) for the purpose of assessing the differences between normative behavior
(represented by models or event logs) and observed behavior (event logs), but not
for immediate classification. Partial traces have been analyzed for the purpose
of conformance checking (e.g. [23,24]), but these approaches are based on trace
alignment, where each event mismatch is taken into account individually and
is, therefore, less precise and not complete [3]. In earlier work, we discussed
real-time binary conformance checking [25].

The area of predictive business process monitoring [4,11] is concerned with
forecasting how business process instances will unfold until completion. A first
set of approaches aims to predict the next events for a prefix. For example, [6–8]
evaluate different neural network architectures for this task. Other approaches
focus on estimating the remaining time of a business process instance [5,6,26,27]
or until the next event [6,28]. The evaluation of risks arising during execution
and threatening the successful completion are studied in [9,10,29].

In the context of this paper, the most important category is the prediction
of the outcome of a business process instance. The approaches in [11,13–15,30,
31] are what we refer to as local prediction approaches, which train prediction
models at predefined positions, e.g., at prefixes of lengths 3, 4, 5, etc. As such,
they rely on training sets where the outcome is given for the completed traces.
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When learning a prediction model at a certain position, the completed traces are
reduced to the events that occurred up until this position. We present a global
prediction approach in [12] where one prediction model is trained on the original
training set and applied to all possible partial traces.

Complementary to these approaches, we here provide an analysis which
reveals that the local prediction approach is prone to yield unreliable classifiers.
Additionally, we demonstrate that global prediction approaches can overcome
this limitation. To this end, we discuss an approach that in contrast to [12] also
achieves good results for unstructured processes. Moreover, while all the men-
tioned works limit their evaluation to the presentation of accuracy measures or
similar effectiveness metrics, we here additionally study the reliability based on
synthetic data that is associated with an objective ground truth. In this con-
text, Metzger and Flöcker [15] studied the filtering of prediction results based on
confidence levels. Yet, they relied on a local prediction approach and measured
reliability based on the outcome of the prediction model. In contrast, we here
assess the reliability with regard to an objective ground truth.

3 Preliminaries

Events and Traces. The execution of a process instance results in events that
provide information on the current state of the instance. For example, during the
processing of a sales order, events might indicate that the order is confirmed, or
that the goods were shipped.1 To capture this information, the observed events
are recorded as traces in which the events are ordered with respect to the time
at which they were observed and described in terms of labels. Events can also be
annotated with further information, e.g., with timestamps, resource identifiers,
or data that is processed – but we focus solely on the information in a trace that
concerns the ordering of events. As mentioned in the introduction, our work can
be supplemented with additional features for additional dimensions. A set of
traces is grouped in an event log.

Definition 1 (Event log, Trace). Let L be an event log over the set of labels
L . Let E be a set of event occurrences and λ : E → L a labeling function. An
event trace θ ∈ L is defined in terms of an order i ∈ [1, n] and a set of events
Eθ ⊆ E with |Eθ| = n such that θ = 〈λ(e1), λ(e2), . . . , λ(en)〉. Moreover, given
two events ei, ej ∈ Eθ with i < j, we write ei � ej or say that event ej follows ei.

During execution, the current state of an instance is given by the events
that already occurred. While a trace captures the information of a completed
instance, we refer to the sequence of the first l events of an instance as a prefix.

1 The notion of an event used throughout this paper assumes that it corresponds to
some activity in an underlying process. System-level logs, for instance, may contain
events with some variation in the labels. We assume that, if present, any such vari-
ation has been removed in a preprocessing step, and that events belonging to the
same activity have the same label.
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Definition 2 (Prefix). Given an event trace θ = 〈λ(e1), λ(e2), . . . , λ(en)〉, a
prefix of this trace with length l ∈ N is defined as

θl :=

⎧
⎨

⎩

〈〉 if l = 0
〈λ(e1), . . . , λ(el)〉 if 0 < l ≤ n
〈λ(e1), . . . , λ(en)〉 otherwise

For a training log L, we also define the set of all prefixes in this log as
Lpre = {θl|θ ∈ L ∧ 1 ≤ l ≤ |θ|}.

Classification and Features. For each completed trace, the outcome might
be given in terms of one of m behavioral classes, where the function cl : L → C
with C = {c1, . . . , cm} represents the classification of the traces. The goal is to
learn this classification and to derive a prediction function pr : Lpre → C that
can be used to classify traces as well as prefixes. It is important to note that the
prediction function is trained on a mapping from the traces to the classes, but
allows for the classification of traces and prefixes.

To support the learning of such prediction functions, traces and prefixes are
typically encoded using features. More specifically, we are interested in feature
encoding functions φ : Lpre → F where F = (F1, . . . , Fn) is a vector of n feature
variables. Thus, prefixes and traces are no longer represented as a sequence of
event labels, but as a feature vector f = (f1, . . . , fn) where each element fi

takes a value from the domain Di of the respective feature variable Fi. By
relying on a certain feature encoding φ, the argument of the prediction function
pr : Lpre → C changes and the function pr : φ(Lpre) → C now classifies traces
based on feature vectors. Moreover, the learning of such a prediction function
is carried out in two steps. The first (optional) step is feature learning: given
a set of training traces L, the feature encoding function φ is learned and each
training trace θ ∈ L is encoded as a feature vector based on the learned encoding
function f = φ(θ). After that, a prediction model is learned based on the feature
vectors. To classify an observed prefix θr

l at runtime, it is first encoded as a
feature vector fr = φ(θr

l ), which is subsequently passed to the prediction model
to obtain the classification cr = pr(fr).

4 Generating Synthetic Data

Subsequently, we outline how we generated and used data in our experiments,
and point to the aspects that allowed us to gain a deeper understanding of how
approaches work. We also made the synthetic data from our experiments publicly
available2.

Generation. To represent a broad variety of scenarios, we generated two
datasets. Each dataset is based on one process model. These models are ori-
ented towards the distinction between “Lasagna” and “Spaghetti” processes [1].
2 https://doi.org/10.4225/08/5acff82350c74.

https://doi.org/10.4225/08/5acff82350c74
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Fig. 1. Models with normative behavior (We introduced the notation i ≤ x with x ∈ N

to indicate that an event has to be among the first x events.)

The low variance (“Lasagna”) model is on one end of the structuredness spec-
trum. It imposes strict ordering rules, is mostly sequential, and describes a small
set of distinct traces. On the contrary, the high variance (“Spaghetti”) model
allows for a more flexible process execution and enforces only a few constraints
resulting in a large amount of possible distinct traces. These two models define
the respective normative behavior and are presented in Fig. 1.

Based on these models, we generate traces and assign them to different behav-
ioral classes by applying a procedure that is inspired by mutation testing [33] – a
well-known technique for measuring the quality of software test suites. That is,
we defined five different mutation operators, which we applied independently to
the basic model in order to obtain one model per operator. Table 1 presents the
operator descriptions, their class labels (class label A is used for the normative
model), and how they were applied to the two models. While these operators
represent basic differences in the discrete event behavior, it is conceivable to
define more complex operators that also modify other event attributes e.g., the
distribution of processing time.

Table 1. Mutation operators and their application to the models

Description Specific application to models Class label

Low variability High variability

Change the order of
activities

Swap t6 and t8 Swap t1 and t3 B

Insert a new activity Add t20 after t2 Add t14 somewhere C

Move an activity Move t7 after t12 Move t4 to i > 6 D

Remove an activity Delete t9 Delete t2 E

Execute an activity
twice

Insert t14 after t14 Let t5 occur twice F
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Subsequently, we simulated the models to obtain a set of distinct traces. For
the low variance models, we considered all of the distinct traces that each model
defines. This resulted in 90 traces for class E and 270 for each of the other
classes. For the high variance model, where the amount of possible traces is very
large, we generated 250 distinct traces per class. In the traces, the execution of
an activity is represented by a single event whose label is identical to the activity
label. Note that, in addition to the structuredness, both datasets also differ with
regard to the coverage of the training data relative to the trace space.

Prefix Classifiability. The advantage of the synthetic data is that we do not
only know the outcome (i.e., the class) for the entire trace, but we can use
the definition of the mutation operators to setup a classifiability oracle which
constitutes the objective ground truth. This oracle can tell us for each prefix, if
the outcome can already be predicted at this point, and if that is the case, what
the outcome is. For example, consider the following prefixes of length 3 on the
low variability dataset: θ3 = 〈t1, t2, t20〉 and θ′

3 = 〈t1, t2, t3〉. For θ3 it can clearly
be determined that it belongs to class C, as it contains the event t20 which only
occurs in traces of this class. Similarly, we can rule out that θ′

3 belongs to C,
as it does not contain t20 which needed to appear before t3. Yet, θ′

3 is still
unclassifiable, as all remaining classes are still possible for θ′

3. Figure 2 depicts
the percentage of classifiable prefixes per class, prefix length, and dataset.
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Fig. 2. Percentage of classifiable traces per prefix length and class

Observation 1: In our datasets, the percentage of classifiable prefixes overall
as well as per class increases monotonically with a growing prefix length.

In addition to this observation, Fig. 2 also shows that on the low variability
dataset there are windows of prefix lengths in which traces belonging to a certain
class become classifiable, e.g., class D becomes classifiable for prefix lengths
between 4 and 7. Yet, the high variability dataset demonstrates that this does
not necessarily need to happen. Due to a greater flexibility in the ordering of
events, these windows cover the entire range of prefix lengths.

The ground truth of the classification oracle enables us to go beyond an accu-
racy assessment and to analyze the reliability of correct predictions. In particular,
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we can check, if a correctly classified prefix could actually already be classified, or
if the classifier was lucky.

Evaluation Metrics. Each set is used once as a test set for the functions that
were trained on the union of the remaining trace sets. When evaluating different
combinations of feature encodings and prediction functions, we perform a 5-fold
cross validation where the event log is split into 5 equally sized sets of traces;
training is performed on 4 of the 5 sets, testing against the remaining set. The
overall effectiveness reported is the average over all trace sets. As the datasets
only contain distinct traces, our evaluation is based on out-of-sample forecasts.
That is, a trace is either used for training or testing and it is hence not sufficient
for an approach to memorize the data. Instead, it needs to infer higher level
relationships and concepts from the data to achieve a high performance.

In the evaluation, we measure the effectiveness of a prediction function for a
certain position l (number of events after which we want to predict the outcome)
with regard to different confidence levels. In general, the higher the confidence
the more certain is the prediction function. At this point, we abstract from the
specific confidence measurement and provide more details in the context of the
experiments. Given a test trace set T , we obtain the prediction along with the
confidence for all prefixes of length l. Next, we determine the set Tcf which
contains all prefixes where the confidence is equal to or higher than the fixed
confidence level. Based on the set of correctly predicted traces Tco ⊆ Tcf , the
precision pc = |Tco|

|Tcf | is the ratio of correctly classified and confidently classified

prefixes, while the recall rec = |Tco|
|T | is the overall share of correctly classified pre-

fixes. In addition to these measures, we also take advantage of the classification
oracle and investigate if it supports the correct predictions – i.e., if the pre-
dictions are justified given the observed prefix. In particular, we determine the
set Tcl, which comprises all prefixes in Tco that were actually classifiable. This
is expressed as the justification score js = |Tcl|

|Tco| , i.e., the share of the correct
predictions that are justified according to the classification oracle.

5 Feature Encodings

In this section, we compare and analyze five feature encodings, which include
four encodings from prior work:

Event occurrence (EvOcc) [13]: Each distinct event label is represented as
a feature variable. In the feature vector for a trace, an element is set to 1 if the
respective label occurs in the trace, and to 0 otherwise.

Event frequency (EvFreq) [13]: Again, there is one feature variable per dis-
tinct event label. For a given trace, the vector elements contain the number of
occurrences of the respective label in the trace.

Simple index (Index) [13]: Given the maximal trace length lm, there is one
feature variable for each position 1 ≤ p ≤ lm. For a trace, each vector element
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contains the event label from the respective position. If a trace is shorter than
the maximal trace length |θ| < lm, the elements for positions p > |θ| are set to
a default label to indicate the absence of a label.

Prime event structures (PES) [12]: For each behavioral class, a real-valued
feature variable is introduced. Here, a variable represents a matching score that
indicates the degree to which a trace resembles the behavior of the respective
class. To this end, for each class the according traces from the training log
are transformed into a PES that captures the behavioral relations between the
event labels, along with the execution frequencies for multiple exclusive branches.
Subsequently, a weighted matching score is obtained for each PES, based on the
identified behavioral differences with the trace and the branching frequencies of
the matched trace in that PES.

Sub-trace occurrence (SubOcc): Here, we consider binary feature variables
that indicate whether a sub-trace occurred in a trace. A sub-trace ς is a sequence
of labels ς = 〈λ1, . . . , λo〉 and we say that a sub-trace occurs in a trace ς ∈ θ,
if all labels in ς occur in the same order as in θ, i.e., if ∀1 ≤ i < j ≤ |ς| :
∃ek, el ∈ Eθ : ςi = λ(ek) ∧ ςj = λ(el) ∧ ek � el. To establish the feature variables,
we derive the set of sub-traces from the training traces by applying sequence
mining and in particular the SPADE algorithm [34]. We control the identification
of relevant sub-traces by two parameters. First, we only consider sub-traces with
a support of at least .05, i.e., the sub-traces have to occur in at least 5% of the
training prefixes. Second, we restrict the length of the sub-traces to 3 which
we found to be a sufficient length for our datasets. For each sub-trace in the
mined set, there is one feature variable. For a trace, a vector element is set
to 1 if the corresponding sub-trace occurs in the trace, and to 0 otherwise.
This encoding shares similarities with declarative process discovery algorithms
like DECLARE [32] that aim to extract general execution constraints. Such
constraints specify, for instance, that two activities are sequential, or activities
are executed in a loop, etc. However, we here abstain from this generalization
and focus on the concrete behavior. As such we can, for example, capture how
often a loop is executed, and similar differentiations which may be important to
distinguish classes.

We evaluated these encodings by adopting the experimental setup from [13,
14] and chose Random Forest3 [35] to learn the prediction functions. At heart, a
Random Forest trains a set of decision trees of size ntree. Each of these trees is
trained on a random sample drawn from the training dataset with replacement.
Moreover, not all features, but only a randomly drawn sub-set of features of size
mtry is considered when a decision node is induced. To discriminate an object,
each tree classifies it and the overall result is the class that was yielded by the
most trees. We interpret the percentage of the trees that voted for this class as
the confidence in the result. Additionally, we followed guidelines from the liter-
ature [35,36] and focused on optimizing mtry, while we used a default value of

3 We use the default implementation provided by the randomForest package for R

(https://cran.r-project.org/package=randomForest, accessed: 15/11/2017).

https://cran.r-project.org/package=randomForest
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500 for ntree. That is, in each iteration of the 5-fold cross-validation that we use
to evaluate the effectiveness, we performed another 5-fold cross validation with
3 repetitions on the training set to evaluate different values for mtry and chose
the one with the highest accuracy to obtain the final Random Forest4. Finally,
we determined the recall for all encodings and for four different confidence levels
(95%, 75%, 50%, 25%). We do not consider the precision and justification score
here, as we are evaluating the feature encodings over the completed traces and
can thus be sure that there is evidence that supports the classification of a trace.
Figure 3 summarizes the recall for each encoding.
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Fig. 3. Accuracy of the different encodings per confidence level

Observation 2: The sub-trace occurrence yields the highest accuracy.

On both datasets, the EvOcc and EvFreq encodings yield low accuracy values,
as they discard information regarding the ordering of events and hence struggle
to provide meaningful features in cases where the event ordering is relevant
for classification. The Index encoding achieves a perfect accuracy on the low
variability dataset, but performs poorly on the high variability dataset because
it does not enable a classifier to infer that events need to be positioned relative
to each other. For example, consider that event t2 has to eventually follow event
t1, in order for a trace to belong to a certain class. Here, the trees in the Random
Forest need to introduce one rule per possible combination of absolute positions
that satisfy this characteristic, e.g., λ1 = t1 ∧ λ2 = t2, λ1 = t1 ∧ λ3 = t2. . . ,
λ2 = t1 ∧ λ3 = t2,. . . . Thus, the higher the variance in the events’ positions
and the trace length, the more data is needed to infer all these rules. The PES
encoding suffers from the same problem, because the approach as presented
in [12] focuses on differences in specific positions in the trace and is, as such, more
suited for structured processes as it fails to provide a more flexible representation
of the behavior in the presence of variability. Finally, the SubOcc provides the
richest features, because it also includes relative relationships between events
and thus allows the classifier to consider these relationships independent of the
4 In particular, we applied the random search strategy from the caret package for R

(https://cran.r-project.org/package=caret, accessed: 15/11/2017).

https://cran.r-project.org/package=caret
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absolute positioning. For low confidence intervals, it achieves a recall of 1 on
the low and of .96 on the high variability dataset. Yet, the recall drops with an
increase in the confidence level on both datasets. This is due to the high number
of features and the random sampling of traces as well as features in the Random
Forest, which can result in some irrelevant features distorting the classification.

Conclusion 1: Encoding relative ordering relationships between events as
features can improve the effectiveness of prediction models.

6 Local Prediction

Next, we examine the local prediction approach, where one prediction function
prl is trained for each prefix length l that was (manually) determined beforehand.
To induce such a function from the training data, all traces in the dataset are
reduced to prefixes of length l. At runtime, the prediction function that matches
the number of observed events is used for classification.

Table 2. Illustrative example training log

Class Traces

A 〈t1, t2, t3, t4, t5〉 〈t1, t3, t2, t4, t5〉 〈t1, t3, t2, t4, t5〉 〈t1, t3, t2, t4, t5〉
B 〈t1, t2, t3, t4, t5, t6〉 〈t1, t3, t2, t4, t5, t6〉 〈t1, t2, t3, t4, t6, t5〉 〈t1, t6, t2, t3, t4, t5〉

For illustration, Table 2 depicts an example training log that contains eight
traces which are assigned to one of two classes. In class A we observe that t1
always occurs first, followed by t2 and t3 in any order, and ending with event t4
followed by t5. Class B shows the same behavior, but there is an additional event
t6 which seems to occur at an arbitrary position. Clearly, the existence of t6 is a
perfectly discriminating characteristic. Now, consider that we learn a prediction
model at position 4 and only consider the prefixes of length 4. Then, t6 only
occurs in one out of four prefixes in class B, but the sub-trace 〈t2, t3〉 occurs
three times in class B and only once in class A. Thus, a classifier would deem
this sub-trace more important for the classification than the existence of t6. This
shows that by removing the suffixes, we change the importance of features and
in the worst case favor irrelevant over relevant features.

To further examine this risk, we evaluate the local prediction approach. That
means, for each prefix length greater than 2, we repeat the procedure from Sect. 5
and evaluate the Random Forest in combination with the SubOcc encoding. In
addition to the classifiability oracle (Oracle Cl.), we also use the classifiability
oracle with a default option (Oracle Def.) as a baseline: for unclassifiable prefixes
this oracle predicts normative class A in the absence of evidence to the contrary.
That may be desirable, for instance, in settings where the normative case is much
more frequent than any deviation. We then compare the Oracles’ recall values
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to the recall values of the classifiers, to see how close the classifiers come to the
objective ground truth. Figure 4 shows the effectiveness yielded at the different
prefix lengths for four confidence levels.

3 4 5 6 7 8 9 10 11 12 13 14

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pr
ec

isi
on

Prefix Length

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Re
ca

ll

Prefix Length

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ju
st

ifi
ca

tio
n 

Sc
or

e

Prefix Length

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

3 4 5 6 7 8 9 10 11 12 13 14

Pr
ec

isi
on

Prefix Length

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Re

ca
ll

Prefix Length

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

3 4 5 6 7 8 9 10 11 12 13 14

Ju
st

ifi
ca

tio
n 

Sc
or

e

Prefix Length

Oracle Def.
Oracle Cl.
0.95
0.75
0.50
0.25

Fig. 4. Prefix length vs. precision, recall and justifiability score on the low (left) and
high variability datasets (right)

Observation 3: Raising the confidence (i) increases the precision and justifi-
cation score; (ii) decreases the recall; but (iii) does not ensure that all correct
predictions are justified.

The positive relation between the confidence and the precision as well as the
justification score and the negative relation between the confidence and the recall
are expected, as a higher confidence level requires more agreement on the result.
Interestingly, increasing the confidence does not guarantee a high justification
score. In fact, independent of the confidence level the justification score is quite
low at the beginning and only approaches 1 at high prefix lengths on the high
variability dataset. A similar effect can be observed on the low variability dataset.
This implies that for a large portion of correct predictions the classifiers rely on
irrelevant features and exploit spurious correlations.

Observation 4: The classifiers’ recall can exceed that of the oracles.
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On the high variability dataset the classifiers outperform the oracles for low
confidence levels and prefix lengths. A performance better than Oracle Cl. can
be explained by relying on a default option. However, the improved accuracy
in comparison to Oracle Def. substantiates that the classifiers are exploiting
spurious correlations.

Observation 5: The recall might decrease with a growing prefix length, even
if the justification score is not decreasing.

For example, on the low variability dataset the accuracy drops after position
7 for confidence levels of 25% and 50% or at position 18 for a confidence of 95%.
In both cases, the justification score remains stable or increases. A decreasing
effectiveness for higher prefix lengths can also be observed in prior work, e.g.,
in the evaluation in [13]. This indicates that the classification rules at a cer-
tain prefix length are in part invalidated at a higher prefix length and that the
importance of some irrelevant features decreases with a growing prefix length.

Conclusion 2: Our experiments provide clear evidence that the local pre-
diction approach can provide predictions that are not justified by the data
observed, which may be due to an overly high reliance of irrelevant features.
This negatively impacts the reliability of the prediction models and thus the
practical applicability.

7 Global Prediction

In this section, we test our hypothesis that a global prediction approach can
overcome the problems of the local prediction approach. To this end, we first
introduce our specific implementation of the global prediction approach and
afterwards present the evaluation results.

In contrast to the local prediction approach, we only learn one classifier in
the global prediction approach, which is then used to classify any prefix. More-
over, this classifier is trained solely on the completed traces and their associated
outcomes. We utilize rule-based classification and in particular a variant of the
RIPPER algorithm [37], since a direct application of classification approaches
like the Random Forest does not yield high-quality results in this setting (as
explained below). That is, the classifier consists of a set of rules of the form
IF condition THEN cwhere condition defines properties that a prefix needs
to possess in order to belong to class c. Given a training log, a set of rules is
established based on the following two step procedure.

First, we define the set of elementary conditions that are considered during
rule induction. To this end, we start with mining all sub-traces as explained in
Sect. 5. For each sub-trace ς, there is one sub-trace condition that evaluates to
true, if the sub-trace is part of the prefix. These conditions enable us to check
whether an event occurs at all or relative to other events (i.e., before or after
them). However, sometimes it is the absence of events that is representative for
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a certain behavioral class. Therefore, for each ς we introduce absence conditions.
Such a condition evaluates to true if the prefix reached a length and the sub-
trace did not occur beforehand. To this end, we iterate over all event labels
and for each event label λ we determine its preset, i.e., the set of labels that
solely occur before λ. Next, we group all events that have the same preset. In
the preset comparison, we remove those labels from the presets that we are
currently comparing. We then yield the set of absence conditions by combining
each of the obtained groups with each sub-trace. In the evaluation of an absence
condition, we check if any of the position labels is part of the prefix. If that is the
case, we check if the sub-trace does not occur before the first label in the prefix.
Lastly, we cluster perfectly correlated conditions into an elementary or-condition
that evaluates to true if any of the sub-conditions are satisfied. Two conditions
are perfectly correlated, if for all training traces the conditions evaluate to the
same value. The reason to cluster such conditions is that we want to ensure
that we decide on the class as early as possible. For example, consider the case
where an event t1 needs to occur before two events t2 and t3 which always occur
together but in any order. For the classification of completed traces it would
not matter, if we consider 〈t1, t2〉 or 〈t1, t3〉 for representing this correlation.
Yet, when we classify running instances and only consider 〈t1, t2〉, we will lately
classify prefixes where t3 occurs before t2. This is where the Random Forest
fails: it just picks one of the conditions at random, which can severely delay the
classification.

Second, in the rule induction we process each behavioral class independently.
For a given class c, we first extract the set of traces Tc from the training log that
belong to c and the set of traces T �c that do not belong to c. We then iteratively
learn one rule and after that remove all traces from Tc for which the rule is
satisfied. We repeat this step until all traces in Tc are covered by at least one
rule.

In each iteration, we learn a rule of the form condition1 AND . . . AND
conditionn based on a beam search. That is, we first select the elementary
condition that best separates the traces in Tc from those in T �c. Next, we select
another elementary condition and combine it with the first elementary condition,
if it improves the discriminative power of the rule. We keep adding elementary
conditions until the discriminative power of the rule is not improved any fur-
ther. To measure the discriminative power of a condition we employ the FOIL
gain [38], which considers not only the overall amount of traces in Tc and T �c
for which the condition is satisfied, but also the ratio of such rules in both Tc

and T �c.
At runtime, we classify a prefix or trace by selecting all rules that are satisfied

for the prefix. If no rule is satisfied, we do not predict an outcome. Otherwise,
we select the most confident rule and return the respective class. The confidence
is the percentage of training traces that belong to the rules’ class among the
set of training traces for which the rule condition is satisfied. Note that in the
evaluation we do not obtain a class if the confidence of the selected rule is too
low. Figure 5 shows the evaluation results.
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Fig. 5. Prefix length vs. precision, recall and justifiability score on the low (left) and
high variability datasets (right). Note that the same results were yielded for all confi-
dence levels.

Observation 6: The confidence level does not impact the effectiveness and
reliability of the global prediction approach.

Contrary to the local prediction approach, the confidence level has no impact
on the effectiveness. This indicates that global prediction models are reliable
indicators which exploit relationships between the relevant features and the out-
come.

Observation 7: The precision and the justification score are virtually perfect
for all prefix lengths.

In stark contrast to the local prediction approach, the precision and the
justification score are 1 for all prefixes, with one exception on the high variability
dataset where the precision is slightly lower for prefix lengths greater than 10.
This confirms that the results of the global approach are justified.

Observation 8: The recall development is similar to, but at points lower than,
that of the classifiability oracle.

The lower recall is due to the simplistic nature of the rule induction algo-
rithm, the relative nature of the sub-trace encoding, which does not con-
sider the absolute positioning of events and (on the high variability dataset)
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the high variance in the events positions’ due to which there is an extensive
amount of possible conditions. Yet, over the completed traces the global app-
roach yields a performance that is virtually equal to the local prediction app-
roach. For smaller prefix lengths, the recall falls behind that of the local pre-
diction approach, which is due to the high percentage of unjustified predic-
tions that the local prediction approach yields. In summary, we thus conclude:
Conclusion 3: Global prediction approaches can avoid the risk of increasing
the importance of irrelevant features and hence yield reliable results.

8 Discussion

In this paper, we examined the prediction of the outcome of process instances
during execution, especially classification of discrete event behavior. With regard
to the design of such prediction approaches, the findings of our systematic eval-
uation are threefold. First, encodings for representing running process instances
should consider the relative positioning of events, as shown by the effectiveness
of the sub-trace encoding over completed traces. Second, training prediction
models at fixed positions entails the risk of establishing spurious correlations
between irrelevant features and the outcome. Third, in order to avoid that risk,
the prediction models should be learned based on the completed traces rather
than reducing the traces to prefixes.

In addition, we demonstrated that the evaluation of predictive process moni-
toring approaches can benefit from synthetic data. Admittedly, the most critical
threat to the validity of the experiments based on synthetic datasets pertains the
external and ecological validity. However, we argue that synthetic data enables a
thorough analysis of the underlying principles, which goes beyond the common
effectiveness-driven evaluation in prior work. To repeat such an analysis with a
real-world case study would require an enormous effort to control all influential
factors and fully understand the reasons for differences. This is demonstrated
especially by the negative results regarding local classification. Here, our results
can be seen as counter-examples, which without doubt pinpoint a real limitation
of the local prediction approach.

For future research, we propose two main directions. First, although our
results support the usage of the sub-trace encoding along with a global prediction
approach, they also suggest that the presented approach can be improved further.
Second, research and practice would benefit from a more elaborate set of tools
and methods that support the performance and reliability assessment, especially
on real-world data.
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