
Combining Artifact-Driven Monitoring
with Blockchain: Analysis and Solutions

Giovanni Meroni(B) and Pierluigi Plebani

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
{giovanni.meroni,pierluigi.plebani}@polimi.it

Abstract. The adoption of blockchain to enable a trusted monitoring
of multi-party business processes is recently gaining a lot of attention, as
the absence of a central authority increases the efficiency and the effec-
tiveness of the delivery of monitoring data. At the same time, artifact-
driven monitoring has been proposed to create a flexible monitoring plat-
form for multi-party business processes involving an exchange of goods
(e.g., in the logistics domain), where the information delivery does not
require a central authority but it lacks of sufficient level of trust. The goal
of this paper is to analyze the dependencies among these two areas of
interests, and to propose two possible monitoring platforms that exploit
blockchain to achieve a trusted artifact-driven monitoring solution.

Keywords: Artifact-driven monitoring · Trusted process monitoring
Cyber-physical systems

1 Introduction

To promptly satisfy the ever-changing needs of their customers, organizations
must become more flexible and open to changes and opportunities. The serviti-
zation paradigm [8] goes into this direction: instead of owning corporate assets,
be them physical goods, human resources, or business activities, an organization
establishes contracts with other organizations, named service providers, that, in
exchange for a periodic fee, grant the use of such assets together with value-added
services (e.g., maintenance).

As a consequence of servitization, many business processes that were inter-
nal now cross the boundaries of single organizations, thus becoming multi-party.
This also affects the goods that participate in the process, that could be now
manipulated and possibly altered by multiple organizations when the process
is executed. Additionally, the identity of the service providers involved in these
multi-party processes is subject to frequent changes. In fact, short-term con-
tracts with service providers that best fit the needs of a specific process instance
are more and more preferred to long-term contracts that span among all the
instances of a given business process.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Matulevičius and R. Dijkman (Eds.): CAiSE 2018 Workshops, LNBIP 316, pp. 103–114, 2018.
https://doi.org/10.1007/978-3-319-92898-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92898-2_8&domain=pdf


104 G. Meroni and P. Plebani

Despite the previously mentioned advantages, servitization also requires orga-
nizations involved in a multi-party process to trust each other: i.e., to ensure that
the portion of the process assigned to a party is executed as agreed with the other
parties and, in case of problems, deviations are correctly reported to properly
identify the cause of failures.

In our previous research work, we proposed a novel approach to monitor
multi-party business processes, named artifact-driven monitoring [5]. By exploit-
ing the Internet of Things (IoT) paradigm, artifact-driven monitoring makes
physical objects smart, that is, makes them aware of their own conditions. Based
on the conditions of these smart objects, it is then possible to identify when activ-
ities are executed and if they are executed as expected, promptly alerting the
organizations when a violation occurs. Since smart objects can monitor activities
regardless of the organization responsible for their execution, they can take both
the orchestration (i.e., the execution of process portions internal to an organiza-
tion) and the choreography (i.e., the coordination among different organizations)
into account.

Although artifact-driven monitoring solves the problem of keeping track of
the execution of processes that span across multiple organizations, it does not
fully solve the problem of trust among organizations. In particular, the owners
of the smart objects are responsible for properly configuring them by specify-
ing which process has to be monitored, based on which physical conditions are
activities identified as being executed, and with which other smart objects should
monitoring information be exchanged. Therefore, organizations could intention-
ally misconfigure smart objects in order not to detect violations caused by them.

To guarantee the required level of trust when implementing an artifact-driven
monitoring solution, this paper proposes to adopt blockchain technology that,
by definition, provides a trusted environment that perfectly suits the needs of
multi-party business process monitoring. Moreover, this paper introduces and
compares two possible artifact-driven monitoring platforms relying on a permis-
sioned blockchain to propagate monitoring information.

The remainder of this paper is structured as follows: Sect. 2 introduces a
motivating example justifying the need for artifact-driven monitoring, which
is briefly described in Sect. 3. In Sect. 4 the architecture of the two possible
blockchain-based solutions are presented and compared. Finally, Sect. 5 surveys
related work and Sect. 6 draws the conclusions of this work and outlines future
research plans.

2 Motivating Example

To better understand the importance of a reliable and trusted process monitoring
solution, a case study concerning the shipment of dangerous goods is adopted.
The actors are a manufacturer M, a customer C, and a truck shipper S that is
involved when potentially explosive chemicals must be delivered from M to C.

The delivery process is organized according to the Business Process Model
and Notation (BPMN) model shown in Fig. 1. To avoid possible accidents during



Combining Artifact-Driven Monitoring with Blockchain 105

the execution of this process, the following countermeasures must be put in
place. Firstly, if a leakage of the chemical is detected when M is filling a tank,
no matter how modest, M must empty and replace the tank. Secondly, if the
tank gets overheated while it is being shipped, S must immediately abort the
shipment, notify the authorities about this potential hazardous occurrence, and
wait for them to intervene.

Like in every multi-party business process, also in this case each organization
is in charge only of the activities included in their pools, thus nobody has full
control on the whole process. Consequently, being able to identify when activities
are performed and if they are performed as expected is required to determine who
caused the process not to be executed as expected. This becomes particularly
important if an accident occurs, as depending on which portion of the process
was not executed as expected, the organization to blame for the accident varies.
For example, if the chemical explodes while the tank is being unloaded from the
truck, it could be determined by a multitude of causes. Firstly, the tank may
have been overheated and S decided to ignore that event and go on shipping
it. Alternatively, the tank may have had a leakage and have not been replaced
by M.

M
an

uf
ac

tu
re

r
M

an
uf

ac
tu

re
r

Sh
ip

pe
r

Sh
ip

pe
r

Cu
st

om
er

Cu
st

om
er

Manufacturer portion 
started

Fill in tank

Truck reached
manufacturer

Container attached
to truck

Carrier portion 
ended

Manufacturer portion 
ended

Attach tank 
to truck

Carrier portion 
started

Drive to 
manufacturer

Truck reached 
manufacturer

Container attached 
to truck

Truck reached 
Inland terminal

Container 
delivered

Detach tank

Container 
delivered

Truck reached 
customer

Shipment aborted

Terminal portion 
ended

Leakage

Empty tank

Ship to 
customer

Tank
[empty,detached]

Tank
[full,detached]

Tank
[leaking,detached]

Tank
[full,attached]

Truck
[carrier,moving]

Truck
[manufacturer,still]

Truck
[manufacturer,moving]

Truck
[customer,still]

Tank
[overheated,attached]

Tank overheated

Fig. 1. BPMN diagram of the motivating example.



106 G. Meroni and P. Plebani

3 Artifact-Driven Monitoring

Nowadays, several organizations rely on a Business Process Management Sys-
tem (BPMS) to manage their processes, as it enacts the execution of business
activities, monitors the process, and identifies potential issues. When a process
includes human-based activities, operators are in charge of explicitly notify-
ing the activation and completion of these activities. This way, the BPMS has
knowledge about if, and when, those activities are performed. Consequently, the
organizations have to trust the operators to provide timely notifications that
reflect the actual execution of the process. In addition, when a multi-party pro-
cess takes place, organizations are required to federate their own BPMS to be
able to monitor the whole process. Alternatively, a centralized BPMS must be
put in place, and fed with notifications sent by all the participating organiza-
tions. In both cases, relevant system integration efforts must be undertaken, and
each organization have to trust the other ones.

To solve these issues, artifact-driven monitoring [5] relies on a completely dif-
ferent approach. Instead of requiring organizations to actively monitor a process,
it moves the monitoring tasks onto the physical objects (i.e., artifacts) partici-
pating in the process. To this aim, activities operating on those objects should be
defined in terms of pre-conditions (i.e., status of the objects before the activity
can be executed) and post-conditions (i.e., status of the objects determining the
completion of the activity). For example, as shown in Fig. 1, to execute activity
Attach tank to truck the tank must be full and detached from the truck, and
the truck must be located at the manufacturer plant and stay still. Similarly, we
assume Attach tank to truck to be completed when the tank is full and attached
to the truck.

Therefore, as long as those physical objects (i) are aware of the process being
performed, (ii) can autonomously determine their own conditions, and (iii) can
exchange this information with the other objects, they can passively monitor
the process without requiring human intervention. This is made possible thank
to the IoT paradigm, that makes physical objects smart, that is, equipped with
sensors, a computing device, and a communication interface.

Other Smart object

Smart object

On-board 
Sensors

Events 
Router

Events 
Processor

Monitoring
Engine

Sensor 
data

Local state 
changes State changes

Truck state 
changes

Container 
state changes

Truck state 
changes

Container 
state changes

Re
m

ot
e 

st
at

e 
ch

an
ge

s

Local state 
changes

Fig. 2. Architecture of an artifact-driven monitoring platform.



Combining Artifact-Driven Monitoring with Blockchain 107

Figure 2 shows the current architecture of an artifact-driven monitoring plat-
form [5]. Firstly, the physical characteristics of a smart object are captured by
On-board Sensors. Then, sensor data are processed and discretized by the Events
Processor module, in order to assign to the smart object a single state from a
finite set, representing its current conditions according to the possible states
defined in the BPMN process model (e.g., empty, leaking). Whenever a change
in the state of the smart object is detected by the Events Processor, this informa-
tion is forwarded by the Events Router to the other smart objects participating
in the process. As soon as the Events Router receives a change in the state of
a smart object, either local or remote, it forwards it to the Monitoring Engine
module, that uses this information to actively monitor the process. To do so, the
Monitoring Engine relies on an Extended-GSM (E-GSM) model1, which con-
tains a formal representation of the process agreed among the organizations,
enriched with information on the physical objects and states required by and
altered by the business activities composing the process. This way, whenever
the Monitoring Engine determines that an activity is being carried out or that
the process is not executed as agreed, it can promptly inform the organizations
participating in the process.

4 Approach

Artifact-driven monitoring allows to continuously and autonomously monitor
multi-party business processes. However, it does not solve the problem of trust
among organizations. In fact, organizations are in charge of configuring their
own smart objects with the process to monitor, and deliberately erroneous con-
figuration could be not detected.

For example, still referring to the accident described in Sect. 2, if the tank
detects that it was overheated while being shipped, S could argue that M (the
owner of the tank) incorrectly implemented the monitoring platform, or worse,
it intentionally omitted, from the agreed process model, to monitor the portion
responsible for detecting a leakage. In this case, an independent authority would
typically have to investigate on the actual cause of such an accident, and on the
correct implementation and configuration of the monitoring platform. However,
this task could be really difficult. For example, the explosion may have com-
pletely destroyed the smart objects, so the authority could no longer rely on
monitoring information to determine the real cause.

To solve these issues, we propose to combine artifact-driven process moni-
toring with blockchain. A blockchain provides a shared immutable ledger, which
guarantees that each entry (i) has to be validated before being stored, (ii) is per-
sistently stored, (iii) is replicated along multiple nodes, and (iv) is immutable.
This way, by storing monitoring information on a blockchain, such an informa-
tion can be accessed and validated by all the participants of a process both
during its execution and after it is completed. In addition, independent auditors
1 We refer you to [5] to understand the advantages of E-GSM over other process

modeling languages when doing runtime process monitoring.



108 G. Meroni and P. Plebani

can also access and validate monitoring information even if the smart objects
are no longer accessible, as the needed information has been distributed to the
several ledgers composing the blockchain environment.

Sections 4.1 and 4.2 present two possible architectures of an artifact-driven
monitoring solution integrating a blockchain, discussing the advantages and dis-
advantages of each solution.

Regardless of the specific approach, the adoption of a blockchain protocol to
support the artifact-driven monitoring approach has the advantage of provid-
ing a native, trusted, and reliable environment for sharing monitoring informa-
tion among the parties. Moreover, we propose the adoption of a permissioned
blockchain [12] instead of a public one, such as Ethereum2. A public blockchain
allows anyone to read and write entries to it, requiring the participants to man-
ually manage the encryption of entries in case they want them to be kept con-
fidential. Instead, a permissioned blockchain natively supports access control
mechanisms to ensure that only authorized participant can read and/or write
blocks on the blockchain. This way, only organizations and smart objects par-
ticipating in the process can be granted write access. Also, read access can be
restricted in case the participants of a multi-party process do not want informa-
tion on the execution of the process be available to anyone. Moreover, adopting
Ethereum as blockchain protocol gives also the possibility to define the so-called
smart contracts, that can be defined as functions, coded using languages like
Solidity3, whose execution determines either the acceptance or the refusal of a
block to be written in the chain. Since the blocks to be written concerns the sta-
tus of the smart objects, we assume that smart contracts could be inferred from
the initial process model. In fact, once a process instance is created (and the
corresponding monitoring infrastructure properly configured), the process speci-
fication contains all the information needed to determine under which conditions
smart objects change their state.

As one of the main drawbacks of blockchain concerns the performances, espe-
cially in terms of throughput and latency, both architectures adopts multiple
chains to reduce space, bandwidth and computational requirements [11]. In order
to work, a blockchain requires all the participants to keep track of all the entries
that were written to it. Therefore, if a single chain is used by all the organiza-
tions implementing our artifact-driven monitoring solution, each smart object
and organization would have to also store entries that are completely unrelated
to the process they are currently monitoring. This causes the hardware and
network requirements to grow proportionally to the number of entries that are
written to the blockchain, and it is one of the issues that limit the scalability of a
blockchain. To mitigate this issue, multiple chains based on the same blockchain
protocol can be deployed. In particular, before a new execution of a process
takes place, we propose to deploy a new chain and instruct the smart objects
and organizations participating in that specific execution to use that chain. By
doing so, each chain contains only entries that are specific to the current process

2 See https://www.ethereum.org.
3 See https://solidity.readthedocs.io/en/develop/.

https://www.ethereum.org
https://solidity.readthedocs.io/en/develop/


Combining Artifact-Driven Monitoring with Blockchain 109

execution, thus sensibly limiting the hardware and network requirements of the
smart objects.

Focusing on the definition of smart contract, we propose to add a block to the
chain only when a smart device detects a change in its state, and we envision two
alternatives concerning the content of a block. In the first case, the block contains
only the new state. Consequently, the smart contract only checks if the smart
object adding the block is the one whose state changed (see Sect. 4.1). In the
second case, the block contains both the new state and the series of sensor data
causing the smart object to detect the change of state. In this case, the smart
contract has to encode rules to verify that the change of state is compatible
with the sensor data (see Sect. 4.2). As the information to be stored in a block is
generated by different elements of the artifact-driven monitoring platform, these
two alternatives have an impact on the configuration of the platform.

4.1 State-Oriented Block

A first approach is named state-oriented blockchain, as a new block is added
whenever a smart object realizes that its state has changed.

Block

Blockchain External Auditor

Smart object

On-board 
Sensors

Events 
Router

Events 
Processor

Monitoring
Engine

Contract

Participants

Smart objects

Process model

Contract

Participants

Smart objects

Process modelBlockchain 
Client

Initiated 
transactions

Approved 
transactions

Blockchain 
Client

Monitoring
Engine

Timestamp

Smart 
object id

Smart 
object state

Digest

Sensor 
data

Local state 
changes State changes

Re
m

ot
e 

st
at

e 
ch

an
ge

s
Local state 

changes

State changesApproved 
transactions

Fig. 3. State-oriented blockchain.

Figure 3 shows the reference architecture, where the blockchain is used to let
smart objects exchange information on their current state. Instead of directly
communicating with the other smart objects, the Events Router module relies
on a new module, named Blockchain Client. The Blockchain Client is responsible
for writing a new block whenever the current smart object changes state, and
for sending a notification to the Events Router whenever a new block is written
by the other smart objects.



110 G. Meroni and P. Plebani

Before the process starts, the identity of the organizations participating in
the process and of the smart objects owned by them is extracted from the E-GSM
model and formalized in a smart contract, which is written to the blockchain
and approved by all the participants. The E-GSM model is also included in
the description of the smart contract, to make all participants, including smart
objects and external auditors, aware of the process they have to monitor.

The payload of each block in the blockchain contains a timestamp, the iden-
tity of the smart object producing the block, and the current state of the smart
object. To ensure that the block was produced by the smart object it refers to, a
Public Key Infrastructure (PKI) is put in place. Each smart object owns a pri-
vate key, which is used to sign the block and kept private, and a public key, which
is distributed among all the participants in the process. This way, thank to the
PKI and the smart contract, each node approves the block only if (i) the signa-
ture matches the payload, and (ii) the smart object writing the block is actually
owned by the participating organizations. Since a permissioned blockchain is
adopted and, consequently, the identity of the participants is known, there is
no need to put in place computationally expensive consensus algorithms, such
as proof of work. Instead, simpler algorithms, such as Practical Byzantine Fault
Tolerance (PBFT), are sufficient.

This architecture presents several advantages. Firstly, external auditors can
easily monitor the process, either while it is being executed or after it com-
pleted. Thank to smart contracts, they can be sure that changes in the state of
the smart objects were written to the blockchain only if they originated from the
same smart object. In addition, as the E-GSM model is enclosed in the descrip-
tion of the smart contract, they can trust such a model and be certain that it
represents the process approved by all the organizations. Then, by instructing a
Monitoring Engine with the E-GSM model and feeding it with changes in the
state of the smart objects extracted from the blocks in the blockchain, auditors
can independently verify if the process was executed as agreed. For example, still
referring to the example described in Sect. 2, if this architecture is implemented
by M, S and C, the authorities can easily identify the organization responsible
for the accident, even if the smart objects were destroyed. In fact, authorities can
simply query the blockchain to obtain the E-GSM process and all the changes in
the state of the smart objects, being sure that this information was not altered
once it was written to the blockchain. Then, they can instruct a Monitoring
Engine with the E-GSM model, and replay the state changes to detect which
portion of the process was incorrectly executed.

However, this architecture also presents one limitation. By design, the
blockchain does not store information on how to determine from sensor data
the state of the smart objects. Consequently, organizations could argue that
smart objects incorrectly determined their state, thus providing unreliable mon-
itoring data. For example, when instructing the monitoring platform running on
its tanks, M could have intentionally left out information on how to determine
when the tank is leaking. Therefore, even if a leakage occurs, the monitoring plat-
form would never be able to detect and write to the blockchain this information.



Combining Artifact-Driven Monitoring with Blockchain 111

As a consequence, based only on the information on the blockchain, external
authorities would not be able to notice that the process was not executed as
expected.

4.2 Sensor-Oriented Block

To address the limitation of the previous approach, a new one, named sensor-
oriented blockchain, is introduced. This approach also makes use of smart con-
tracts. However, besides formalizing the organizations participating in the pro-
cess and the identity of the smart objects, each smart contract also defines the
rules to detect from sensor data when the smart objects change state. This
makes it possible for all participants to agree on how the state of the smart
objects should be detected. For example, to detect when a truck assumes the
state moving, all participants will require the GPS coordinates of the truck to
vary of at least 0.01 degrees per minute.

Blockchain

Contract

Participants

Smart objects

State detection 
rules

Process model

Contract

Participants

Smart objects

State detection 
rules

Process model

Block

Timestamp

Smart object id

...

Digest

Sensor 1

Sensor n

Smart object

On-board 
Sensors

Events 
Router

Events 
Processor

Monitoring
Engine

Blockchain 
Client

Initiated 
transactions

Approved 
transactions

Sensor 
data

Local state 
changes State changes

Re
m

ot
e 

st
at

e 
ch

an
ge

s

Local state 
changes

Se
ns

or
 d

at
a

Smart object 
state

External Auditor

Blockchain 
Client

Monitoring
Engine

State changesApproved 
transactions

ts

ts

Fig. 4. Sensor-oriented blockchain.

To support this approach, the reference architecture shown in Fig. 4 is pro-
posed. In this case, the Blockchain Client also receives data from the On-board
Sensors, and encloses this information to the blocks written to the blockchain.
Like in the previous architecture, a new block is written to the blockchain when-
ever the smart object assumes a new state. However, besides containing a times-
tamp, the identity of the smart object producing the block, and the current state
of the smart object, each block also contains a list of sensor values, together with



112 G. Meroni and P. Plebani

a timestamp, that were collected since when the previous state was detected. For
example, a block written by the truck when it transitions from moving to still
will contain the state still, the date and time when still was detected, the iden-
tifier of the truck, and all the GPS coordinates that the truck assumed since
when the state moving was previously detected. Also in this case, the architec-
ture relies on a PKI infrastructure to ensure that the block was produced by the
smart object it refers to.

With respect to the previous approach, this one achieves an even greater level
of trust. In fact, thank to the smart contract, every participant can autonomously
verify if the state detected by a smart object is reflected by the sensor data and,
if not, discard the corresponding block. Since the rules to determine this infor-
mation are defined in the smart contract, and are approved by all organizations
before the process takes place, nobody can argue that the process is incorrectly
monitored.

However, this approach also presents some issues that are not present in the
previous one. Firstly, it makes a much more intensive use of the blockchain.
In fact, the size of each block can be quite large, as it also contains a set of
sensor data. Therefore, depending on the sampling rate of the sensors and on
the duration of the process, the blockchain can grow significantly while the pro-
cess is being monitored. Nevertheless, thank to the typically small size of sensor
data, storage requirements are still quite modest. However, network require-
ments, especially in terms of bandwidth, can grow significantly.

Another issue of this approach is the higher workload that each smart object
must handle. In fact, besides determining the state of its own smart object, each
smart object also has to verify if the state indicated by the other smart objects
is correct. Thus, the computational requirements of the architecture depend on
the total number of rules defined in the smart contract, and on their complexity.
To compensate for this issue, additional nodes deputed to the verification of the
blocks can be deployed on the organizations’ premises, thus freeing smart objects
from this task.

5 Related Work

Given the recent affirmation of blockchain in many domains, the Business Pro-
cess Management (BPM) research community is also investigating the impact of
this technology on all the phases of the BPM lifecycle. In [4] an exhaustive analy-
sis of the implications of introducing blockchain in inter-organizational processes
are discussed, and a list of seven possible future research directions is identified.
Among them, the goal of this paper is mainly “developing a diverse set of exe-
cution and monitoring frameworks on blockchain”, albeit the proposed solution
may also affect other directions. To this aim, particular emphasis is given on a
solution that is able to deal with some of the main aspects, namely through-
put and size, that could hamper the adoption of blockchain in BPM. In fact,
the proposed solution distributes the workload to several chains, resulting in a
reduced amount of transactions per single chain, with consequent low hardware



Combining Artifact-Driven Monitoring with Blockchain 113

and network requirements. In addition, the two alternatives discussed in the
paper further decrease the computational effort to be done on the blockchain by
moving some of the computation to off-chain, as also suggested in [2].

Focusing on the usage of blockchain to monitor a supply chain, the litera-
ture is currently investigating this issue according to different perspectives. For
instance, [3] analyses the possible grind between a blockhain infrastructure with
the information management infrastructure currently adopted in the shipping
domain. Moreover, in [10] a framework for process monitoring based on sev-
eral private blockchain installations, globally managed by a public blockchain,
is presented. In some way, the idea of having several chains to increase the con-
fidentiality of the information among the stakeholders is similar to what it is
proposed in this paper. Nevertheless, [10] considers monitoring as a centralized
element, while in our approach it is distributed among the smart objects.

An interesting report, [7], proposes two different approaches: the first one
relies on a common blockchain to collect all the events coming from the different
stakeholders involved in the supply chain, while the second one is based on the
usage of smart contracts. In both cases, the approach assumes to start from the
complete definition of the choreography to configure the blockchain. As discussed
in the paper, this introduces a significant problem related to the encryption of
the data stored in the ledgers, as not all the information can be read by all the
participants in the blockchain. In our approach, each process execution relies on a
specific chain, which is accessible only by the organizations participating in that
specific process execution. This solves the problem of the data confidentiality, as
the data stored in one of the blockchains should be visible by all the participants.
Finally, [6] proposes an interesting solution for run-time verification of business
process execution based on Bitcoin, thus, with a public and very specific solution
where smart contracts are not allowed.

6 Conclusions and Future Work

This paper presented how artifact-driven monitoring can benefit from
blockchain to monitor multi-party processes in a trusted way. Thank to a permis-
sioned blockchain, monitoring information is stored immutably and persistently,
allowing external auditors to independently verify if the process was performed
as expected, either at runtime or after the process completed.

One of the disadvantages of our approach concerns the initial set-up, as
having several blockchains requires the configuration of all of them. To solve
this limitation, we plan to adopt the approach proposed in [9] for configuring a
blockchain-based solution starting from the choreography model.

Another potential disadvantage of this approach consists in the limited speed
of blockchain. In fact, writing, approving, and distributing a new block to all
the participants takes seconds for a permissioned blockchain, or even several
minutes for a public one. Nevertheless, research efforts to speed up operations
on a blockchain are currently being taken by both academics and the industry,
so we expect this issue to be eventually solved or scaled back.



114 G. Meroni and P. Plebani

Our future research work will consist in implementing a prototype of both
architectures, and validating it with real-world processes and sensor data. In
addition, we will also consider the introduction of side-chains [1] to allow smart
objects to monitor multiple processes at the same time, and to integrate process
monitoring with automatic payment and escrow mechanisms. Finally, being the
artifact-driven monitoring a nomadic infrastructure, the impact of the lack of
connectivity in a blockchain solution will be investigated.

Acknowledgments. This work has been partially funded by the Italian Project ITS
Italy 2020 under the Technological National Clusters program.

References

1. Croman, K., et al.: On scaling decentralized blockchains - (A position paper). In:
Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53357-4 8

2. Eberhardt, J., Tai, S.: On or off the blockchain? Insights on off-chaining computa-
tion and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 1

3. Jabbar, K., Bjørn, P.: Infrastructural grind: introducing blockchain technology in
the shipping domain. In: GROUP 2018, pp. 297–308. ACM, New York (2018)

4. Mendling, J., et al.: Blockchains for business process management - challenges and
opportunities. ACM Trans. Manage. Inf. Syst. 9(1), 4:1–4:16 (2018)

5. Meroni, G., Baresi, L., Montali, M., Plebani, P.: Multi-party business process com-
pliance monitoring through IoT-enabled artifacts. Inf. Syst. 73, 61–78 (2018)

6. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification for business
processes utilizing the Bitcoin blockchain. Future Gener. Comput. Syst. (2017)

7. Staples, M., Chen, S., Falamaki, S., Ponomarev, A., Rimba, P., Tran, A.B., Weber,
I., Xu, X., Zhu, J.: Risks and opportunities for systems using blockchain and smart
contracts. Technical report, Data61 (CSIRO) (2017)

8. Vandermerwe, S., Rada, J.: Servitization of business: adding value by adding ser-
vices. Eur. Manage. J. 6(4), 314–324 (1988)

9. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 19

10. Wu, H., Li, Z., King, B., Ben Miled, Z., Wassick, J., Tazelaar, J.: A distributed
ledger for supply chain physical distribution visibility. Information 8(4), 137 (2017)

11. Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A.B., Chen,
S.: The blockchain as a software connector. In: WICSA 2016, pp. 182–191. IEEE
(2016)

12. Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., Rimba, P.:
A taxonomy of blockchain-based systems for architecture design. In: ICSA 2017,
pp. 243–252. IEEE (2017)

https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1007/978-3-319-45348-4_19

	Combining Artifact-Driven Monitoring with Blockchain: Analysis and Solutions
	1 Introduction
	2 Motivating Example
	3 Artifact-Driven Monitoring
	4 Approach
	4.1 State-Oriented Block
	4.2 Sensor-Oriented Block

	5 Related Work
	6 Conclusions and Future Work
	References




