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Abstract. For any mixing SFT X containing a fixed point we con-
struct a reversible shift-commuting continuous map (automorphism)
which breaks any given finite point of the subshift into a finite collection
of gliders traveling into opposing directions. As an application we show
that the automorphism group Aut(X) contains a two-element subset S
whose centralizer consists only of shift maps.
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1 Introduction

Let X ⊆ AZ be a one-dimensional subshift over a symbol set A. If X contains
some constant sequence 0Z (0 ∈ A), we may say that an element x ∈ X is
finite if it differs from 0Z only at finitely many coordinates. In this paper we
consider the problem of constructing reversible shift-commuting continuous maps
(automorphisms) on X which decompose all finite configurations into collections
of gliders traveling into opposing directions. As a concrete example, consider the
binary full shift X = {0, 1}Z and the map g = g3 ◦ g2 ◦ g1 : X → X defined
as follows. In any x ∈ X, g1 replaces every occurrence of 0010 by 0110 and
vice versa, g2 replaces every occurrence of 0100 by 0110 and vice versa, and g3
replace every occurrence of 00101 by 00111 and vice versa. In Fig. 1 we have
plotted the sequences x, g(x), g2(x), . . . on consecutive rows for some x ∈ X. It
can be seen that the sequence x eventually diffuses into two different “fleets”,
the one consisting of 1 s going to the left and the one consisting of 11 s going
to the right. It can be proved that this diffusion happens eventually no matter
which finite initial point x ∈ X is chosen.1 In Sect. 3 we construct on all mixing
SFTs (that contain the point 0Z) a glider automorphism with the same diffusion
property as the binary automorphism g above.

The work was partially supported by the Academy of Finland grant 296018 and by
the Vilho, Yrjö and Kalle Väisälä Foundation.

1 This can be proved along similar lines as in the proof of Lemmas 10 and 11.
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Fig. 1. The diffusion of x ∈ X under the map g : X → X. White and black squares
correspond to digits 0 and 1 respectively.

The existence of a glider automorphism g on a subshift X is interesting,
because g can be used to convert an arbitrary finite x ∈ X into another sequence
gt(x) (for some t ∈ N+) with a simpler structure, which nevertheless contains
all the information concerning the original point x because g is invertible. Such
maps have been successfully applied to other problems e.g. in [3,4].

We also consider a finitary version of Ryan’s theorem. Let X be a mixing
SFT and denote the set of its automorphisms by Aut(X), which we may consider
as an abstract group. According to Ryan’s theorem [2] the center of the group
Aut(X) is generated by the shift map σ. There may also be subsets S ⊆ Aut(X)
whose centralizers are generated by σ. Denote the minimal cardinality of such
a finite set S by k(X). In [3] it was proved that k(X) ≤ 10 when X is the full
shift over the four-letter alphabet. In the same paper it is noted that k(X) is an
isomorphism invariant of Aut(X) and therefore computing it could theoretically
separate Aut(X) and Aut(Y ) for some mixing SFTs X and Y . We use our
glider automorphism construction to prove that k(X) = 2 for all mixing SFTs
that contain the point 0Z.

2 Preliminaries

A finite set A containing at least two elements (letters) is called an alphabet and
the set AZ of bi-infinite sequences (configurations) over A is called a full shift.
Formally any x ∈ AZ is a function Z → A and the value of x at i ∈ Z is denoted
by x[i]. It contains finite and one-directionally infinite subsequences denoted by
x[i, j] = x[i]x[i+1] . . . x[j], x[i,∞] = x[i]x[i+1] . . . and x[−∞, i] = . . . x[i−1]x[i].
A factor of x ∈ AZ is any finite sequence x[i, j] where i, j ∈ Z, and we interpret
the sequence to be empty if j < i. Any finite sequence w = w[1]w[2] . . . w[n]
(also the empty sequence, which is denoted by λ) where w[i] ∈ A is a word over
A. The set of all words over A is denoted by A∗, and the set of non-empty words
is A+ = A∗ \ {λ}. More generally, for any L ⊆ A∗, let

L∗ = {w1 . . . wn | n ≥ 0, wi ∈ L} ⊆ A∗,

i.e. L∗ is the set of all finite concatenations of elements of L. The set of words
of length n is denoted by An. For a word w ∈ A∗, |w| denotes its length, i.e.
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|w| = n ⇐⇒ w ∈ An. We say that the word w ∈ An occurs in x ∈ AZ at
position i if w = x[i] . . . x[i + n − 1]. We define the shift map σA : AZ → AZ

by σA(x)[i] = x[i + 1] for x ∈ AZ, i ∈ Z. The subscript A in σA is typically
omitted. The set AZ is endowed with the product topology (with respect to the
discrete topology on A), under which σ is a homeomorphism on AZ. Any closed
set X ⊆ AZ such that σ(X) = X is called a subshift, and the collection of words
appearing as factors of elements of X is the language of X, denoted by L(X).
The restriction of σ to X may be denoted by σX , but typically the subscript X
is omitted.

If X ⊆ AZ is a subshift and z ∈ X is such that σ(z) = z (i.e. z is a fixed
point), then there exists a ∈ A such that z[i] = a for all i ∈ Z. For such subshifts
we always fix one such point and denote a = 0, z = 0Z. Then for x ∈ X we
define its support supp(x) = {i ∈ Z | x[i] �= 0} and say that x is finite if supp(x)
is finite. Finite points x, y ∈ X with disjoint supports can be glued together; if
supp(x)∩ supp(y) = ∅ we define x⊗y ∈ AZ by (x⊗y)[i] = x[i] when i ∈ supp(x)
and (x ⊗ y)[i] = y[i] otherwise.

Definition 1. A graph is a pair G = (V,E) where V is a finite set of vertices
(or nodes or states) and E is a finite set of edges. Each edge e ∈ E starts at
an initial state denoted by ι(e) ∈ V and ends at a terminal state denoted by
τ(e) ∈ V . We say that e ∈ A is an outgoing edge of ι(e) and an incoming edge
of τ(e).

A sequence of edges e[1] . . . e[n] in a graph G = (V,E) is a path (of length n) if
τ(e[i]) = ι(e[i + 1]) for 1 ≤ i < n and it is a cycle if in addition τ(e[n]) = ι(e[1]).
We say that the path starts at e[1] and ends at e[n]. A graph G is primitive if
there is n ∈ N+ such that for every v1, v2 ∈ V there is a path of length n starting
at v1 and ending at v2. For any graph G = (V,E) we call the set

{x ∈ EZ | τ(x[i]) = ι(x[i + 1])}

(i.e. the set of bi-infinite paths on G) the edge subshift of G.

Definition 2. A subshift X ⊆ AZ is a mixing subshift of finite type (mixing
SFT) if it is the edge subshift of a primitive graph G = (V,E) containing at least
two edges (in particular E ⊆ A).

Example 3. Let A = {0, a, b}. The graph in Fig. 2 defines a mixing SFT X also
known as the golden mean shift. A typical point of X looks like

. . . 000abab0ab00ab000 . . .

i.e. the letter b cannot occur immediately after 0 or b and every occurrence of a
is followed by b.

Definition 4. An automorphism of a subshift X ⊆ AZ is a continuous bijection
f : X → X such that σ ◦ f = f ◦ σ. We say that f is a radius-r automorphism



Glider Automorphisms on Some Shifts of Finite Type 91
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Fig. 2. The golden mean shift.

if f(x)[0] = f(y)[0] for all x, y ∈ X such that x[−r, r] = y[−r, r] (such r always
exists by continuity of f). The set of all automorphisms of X is a group denoted
by Aut(X). (In the case X = AZ automorphisms are also known as reversible
cellular automata.)

The centralizer of a set S ⊆ Aut(X) is

C(S) = {f ∈ Aut(X) | f ◦ g = g ◦ f for every g ∈ S}

and the subgroup generated by f ∈ Aut(X) is denoted by 〈f〉. The following
definition is from [3]:

Definition 5. For a subshift X, let k(X) ∈ N ∪ {∞,⊥} be the minimal cardi-
nality of a set S ⊆ Aut(X) such that C(S) = 〈σ〉 if such a set S exists, and
k(X) =⊥ otherwise.

The main result of [2] is that k(X) �=⊥ whenever X is a mixing SFT.
We say that subshifts X ⊆ AZ and Y ⊆ BZ are conjugate if there is a

continuous bijection ψ : X → Y such that ψ ◦ σX = σY ◦ ψ. For conjugate
subshifts X and Y it necessarily holds that k(X) = k(Y ).

3 Glider Automorphisms

In this section we define as a technical tool a subclass of mixing SFTs, and for
any subshift X from this class we construct an automorphism which breaks every
finite point of X into a collection of gliders traveling in opposite directions.

Note that if X is a mixing SFT with a fixed point 0Z, then necessarily in
its graph G = (V,E) it holds that τ(0) = ι(0). For such a graph we denote
G′ = (V,E′) and E′ = E \ {0}, i.e. we get G′ from G by removing the 0-edge.

Definition 6. A mixing SFT X with a fixed point 0Z and defined by the graph
G = (V,E) is called a 0-mixing SFT if the graph G′ is also primitive and contains
at least two edges.

The golden mean shift given by the graph in Fig. 2 is an example of a mixing
SFT which strictly speaking isn’t 0-mixing. Nevertheless, in the following lemma
we show that the definition of a 0-mixing SFT is only technical and that it is
not an actual restriction.
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Lemma 7. Any mixing SFT with a fixed point is conjugate to a 0-mixing SFT.

Proof. Let X be a mixing SFT with a fixed point 0Z defined by the graph
G = (V,E) and let s = ι(0) = τ(0). Let 0, a1, . . . , at be all the outgoing edges of
s, let 0, b1, . . . , bu be all the incoming edges of s and construct a new graph

H = (V ∪ {s′}, E ∪ {0′, b′
1, . . . , b

′
u})

with the starting and ending nodes of e ∈ E the same as in G with the exception
that ι(ai) = s′ for 1 ≤ i ≤ t, and additionally ι(0′) = s, τ(0′) = s′, ι(b′

j) = ι(bj)
and τ(b′

j) = s′ for 1 ≤ j ≤ u.2 Let Y be the edge subshift of H; it is conjugate
with X via the continuous shift-commuting map ψ : X → Y defined for x ∈ X,
i ∈ Z as

ψ(x)[i] =

⎧
⎨

⎩

0′ when x[i] = 0 and x[i + 1] ∈ {a1, . . . , at},
b′
j when x[i] = bj for some 1 ≤ j ≤ u and x[i + 1] ∈ {a1, . . . , at},

x[i] otherwise.

s

. . .

. . .

s

s′

. . .

. . .

0

bj

ai

00

0′

bj

b′
j

ai

Fig. 3. Splitting the state s.

Construct the graphs G′, H′ and let c[1] . . . c[n]bj be a cycle in G′ visiting
s only at the beginning and ending. Then c[1] . . . c[n]bj0′ and c[1] . . . c[n]b′

j are
distinct cycles in H′ of coprime length, so H′ has to be primitive and Y is a
0-mixing SFT (Fig. 3). ��

In the rest of the section we assume that X is a 0-mixing SFT defined by the
graph G = (V,E). This means that the edge subshift of G′ is also a mixing SFT.
Denote s = ι(0) = τ(0). Let v1 be a cycle in G′ visiting s only at the beginning
and ending, denote p = |v1| and let v0 = 0p. The words

g� = v0v1, gr = v1v1

will be left- and rightbound gliders of the automorphism g defined later. The
languages of left- and rightbound gliders are

L� = (g�00∗)∗, Lr = (0∗0gr)∗.
2 In other words we have performed an elementary state splitting of G at state s. State

splitting is a well-known method to produce conjugate subshifts, see e.g. Chapter
2.4 of [1].
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We denote by ∞0 and 0∞ left- and right-infinite sequences of zeroes and define
the glider fleet sets

GF� = ∞0(g�00∗)∗0∞ GFr = ∞0(0∗0gr)∗0∞ GF = GF� ∪ GFr

(note that these consist of finite configurations).
Denote u′ = v1v1v1 and let n ∈ N+ be a mixing constant of G′ (i.e. a number

such that for every n′ ≥ n and s1, s2 ∈ V there is a path of length n′ in G′

from s1 to s2) chosen such that n ≥ |u′| = 3p. For every a ∈ E we may choose
some path wa ∈ E′2n in G′ such that wa begins with u′ and 0waa ∈ L(X). For
every a ∈ E let W ′

a = {wa,1, . . . , wa,ka
} ⊆ E′2n be the paths of length 2n in

G′ such that wa,i does not have a prefix u′ and 0wa,ia ∈ L(X) for 1 ≤ i ≤ ka,
and let Wa = W ′

a ∪ {wa}. Let U ′ = {u′
1, . . . , u

′
k} ⊆ (E′)+ be the cycles from s

to s (which may visit s several times) of length at most 2n − 1 ≥ 5p which are
different from v1 and v1v1 and do not have u′ as a prefix. Finally, these words are
padded to constant length; u = 02n−1−|u′|u′ and ui = 02n−1−|u′

i|u′
i. The words

in Wa and U ′ are chosen so as to allow the following structural definition.

Definition 8. Assume that x /∈ GF� is a non-zero finite element of X. Then
there is a maximal i ∈ Z such that

x[−∞, i − 1] ∈ ∞0L�,

and there is a unique word w ∈ {v10} ∪ {v1v10} ∪ {u′} ∪ (U ′0) ∪ (
⋃

a∈E W ′
aa)

such that w is a prefix of x[i,∞]. If w = v1v10 or w ∈ U ′0, let j = i + |w| − 1
and otherwise let j = i+ |v1|. We say that x is of left bound type (w, j) and that
it has left bound j (note that j > i).

Similarly, if x /∈ GFr is a non-zero finite element of X, then there is a minimal
j ∈ Z such that

x[j + 1,∞] ∈ Lr0∞

and we say that x has right bound j.

The point of this definition is that if x is of left bound type (w, j), then
the glider automorphism g defined later will create a new leftbound glider at
position j and break it off from the rest of the configuration.

We define four maps g1, g2, g3, g4 : X → X as follows. In any x ∈ X,

– g1 replaces every occurrence of 0(v0v1)0 by 0(v1v1)0 and vice versa
– g2 replaces every occurrence of 0(v1v0)0 by 0(v1v1)0 and vice versa
– g3 replaces every occurrence of 0v0(v1v0v1) by 0v0(v1v1v1) and vice versa
– g4 replaces every occurrence of 0waa, 0wa,ia and 0wa,ka

a by 0wa,1a, 0wa,i+1a
and 0waa respectively (for a ∈ E and 1 ≤ i < ka) and every occurrence of
0u0, 0ui0 and 0uk0 by 0u10, 0ui+10 and 0u0 respectively (for 1 ≤ i < k).

It is easy to see that these maps are well defined automorphisms of X. The glider
automorphism g : X → X is defined as the composition g4 ◦ g3 ◦ g2 ◦ g1. The
name is partially justified by the following lemma.
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Lemma 9. If x ∈ GF� (resp. x ∈ GFr), then g(x) = σp(x) (resp. g(x) =
σ−p(x)).

Proof. Assume that x ∈ GF� (the proof for x ∈ GFr is similar) and assume that
i ∈ Z is some position in x where g� occurs. Then

x[i − 1, i + 2p] = 0g�0 = 0(v0v1)0
g1(x)[i − 1, i + 2p] = 0(v1v1)0
g2(g1(x))[i − p − 1, i + p] = 0v0(v10) = 0g�0
g(x) = g4(g3(g2(g1(x)))) = g2(g1(x))),

so every glider has shifted by distance p to the left and g(x) = σp(x). ��
In fact, the previous lemma would hold even if g were replaced by g2 ◦ g1.

The role of the part g4 ◦g3 is, for a given finite point x ∈ X, to “erode” non-zero
non-glider parts of x from the left and to turn the eroded parts into new gliders.
This is the content of the following lemmas.

Lemma 10. Assume that x ∈ X has left bound j. Then there exists t ∈ N+

such that the left bound of gt(x) is strictly greater than j.

Proof. Let x ∈ X be of left bound type (w, j) with w ∈ {v10}∪{v1v10}∪{u′}∪
(U ′0) ∪ (

⋃
a∈E W ′

aa). The gliders to the left of the occurrence of w near j move
to the left at constant speed p under action of g without being affected by the
remaining part of the configuration.

Case 1. Assume that w = v1v10. Then g1(x)[j − (p + 1), j] = 0v10. If g1(x)[j −
(p + 1), j + p] = 0v1v00, then g(x)[j − (p + 1), j + p] = g2(g1(x))[j − (p +
1), j + p] = 0v1v10, g(x) is of left bound type (v1v10, j + p) and we are
done. Otherwise g2(g1(x))[j − (p + 1), j] = 0v10. Denote y = g3(g2(g1(x))).
If y[j − (p + 1), j] = 0v10, then g(x) = g4(y) is of left bound type (v10, j)
and we proceed as in Case 3. Otherwise y[j − (p + 1), j + (2p − 1)] = 0u′. If
y[(j + 2p) − 2n, j + 2p] = 0u0, then g(x)[(j + 2p) − 2n, j + 2p] = 0u10, g(x)
is of left bound type (u′

10, j + 2p) and we are done. On the other hand, if
y[(j + 2p) − 2n, j + 2p] �= 0u0, then g(x) is of left bound type (w′, j) for some
w′ ∈ W ′

aa ∪ {u′} (a ∈ E) and we proceed as in Case 4 or Case 5.
Case 2. Assume that w = u′

i0 for 1 ≤ i ≤ k. There is a minimal t ∈ N such
that g3(g2(g1(gt(x))))[j − 2n, j] = 0ui0. Because gt+k−i+1(x)[j − 2n, j] =
0u0, it follows that y = gt+k−i+1(x) is of left bound type (u′, j − 2p). Then
g(y)[j − 5p, j] = g3(g2(g1(y)))[j − 5p, j] = v0(v0v1)v0v10 is of left bound type
(v10, j) and we proceed as in Case 3.

Case 3. Assume that w = v10. Then x[j − (2p + 1), j] �= 0v0v10 = 0g�0 because
otherwise the left bound of x would already be greater than j, so g1(x)[j − (p+
1), j] = 0v10. If moreover g1(x)[j − (p + 1), j + p] = 0v1v00, then g(x)[j − (p +
1), j +p] = g2(g1(x))[j − (p+1), j +p] = 0(v1v1)0 so g(x) is of left bound type
(v1v10, j + p) and we are done. Let us therefore assume that g1(x)[j − (p +
1), j + p] �= 0v1v00, in which case g2(g1(x))[j − (2p + 1), j] = 0v0v10.
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If g2(g1(x))[j − (2p + 1), j + 2p − 1] �= 0v0v1v0v1, then g(x)[j − (2p + 1), j] =
g3(g2(g1(x)))[j − (2p + 1), j] = 0v0v10. The left bound of g(x) is now greater
than j and we are done. Otherwise g3(g2(g1(x)))[j−(2p+1), j+2p−1] = 0v0u

′.
If g3(g2(g1(x)))[(j +2p)− 2n, j +2p] = 0u0, then g(x)[(j +2p)− 2n, j +2p] =
0u10 and the left bound of g(x) equals j + 2p. Finally, if g3(g2(g1(x)))[(j +
2p) − 2n, j + 2p] �= 0u0, then g(x) is of left bound type (w′, j) for some
w′ ∈ W ′

aa ∪ {u′} (a ∈ E) and we proceed as in Case 4 or Case 5.
Case 4. Assume that w = wa,ia for a ∈ E and 1 ≤ i ≤ ka. Then gka−i+1(x)[j −

p, j + (2p − 1)] = u′ and we proceed as in Case 5.
Case 5. Assume that w = u′. Then g2(g1(x))[j − (2p+1), j +(2p−1)] = 0v0u

′,
g3(g2(g1))[j − (2p + 1), j + (2p − 1)] = 0v0v1v0v1 and the left bound of g(x)
is at least j + 2p.

��
Lemma 11. Assume that x ∈ X has right bound j. Then there exists t ∈ N+

such that the right bound of gt(x) is strictly less than j.

Proof. Let us assume to the contrary that the right bound of gt(x) is at least j
for every t ∈ N+.

Assume first that the right bound of gt(x) is equal to j for every t ∈ N+. By
the previous lemma there is t ∈ N+ such that the left bound of gt(x) is at least
j + 3n, which means that gt(x) contains only g�-gliders to the left of j + n and
only gr-gliders to the right of j. This can happen only if gt(x)[j+1, n−1] = 0n−1.
Then the right bound of gt+1(x) is at least j − p, a contradiction.

Assume then that the right bound of gt(x) is strictly greater that j for some
t ∈ N+ and fix the minimal such t. This can happen only if g1(gt−1(x))[j −p, j +
p + 1] = 0v1v00, in which case gt(x)[j − p, j + p + 1] = 0v1v10 = 0gr0. But then
the right bound of gt(x) is less than j − p, a contradiction. ��

Together these two lemmas yield the following theorem.

Theorem 12. If x ∈ X is a finite configuration, then for every N ∈ N there
exists t ∈ N such that gt(x)[−N,N ] = 02N+1, gt(x)[∞,−(N + 1)] ∈ ∞0L� and
gt(x)[N + 1,∞] ∈ Lr0∞.

4 Finitary Ryan’s Theorem

In this section we prove a finitary version of Ryan’s theorem. The idea is that
only very specific automorphisms commute with the glider map g : X → X
defined in the previous section, so it will be relatively easy to choose another
automorphism f on X such that only powers of the shift map commute with
both g and f . We make a simple choice of such f .

First we define maps f1, f2 : X → X for a 0-mixing SFT X as follows. In
any x ∈ X,

– f1 replaces every occurrence of 0(v1v1)v0v0v0(v1)0 by 0(v1v1)v0v0(v1)v00 and
vice versa
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– f2 replaces every occurrence of 0(v1v1)v0v0(v1)0 by 0v0(v1v1)v0(v1)0 and vice
versa,

where v0 and v1 are as in the previous section. It is easy to see that these maps
are well defined automorphisms of X. The automorphism f : X → X is then
defined as the composition f2 ◦ f1. The map f has two important properties.
First, it replaces any occurrence of 0(v1v1)v0v0v0(v1)0 by 0v0(v1v1)v0(v1)v00.
Second, if x ∈ X is a configuration containing only gliders g� and gr and every
occurrence of g� is sufficiently far from every occurrence of gr, then f(x) = x.

To prove our main result we need the following lemma.

Lemma 13 ([3], Lemma 7.5). If X is a mixing SFT containing a fixed point 0Z

and h : X → X is an automorphism which is not a power of σ, then there exists
a finite configuration x �= 0Z such that h(x) /∈ O(x) � {σi(x) | i ∈ Z}.

Theorem 14. Let X ⊆ AZ be a 0-mixing SFT and g, f : X → X as above. The
only automorphisms of X which commute with both g and f are powers of σ.

Proof. Assume to the contrary that h : X → X is a radius-r automorphism
whose inverse is also a radius-r automorphism and which commutes with g and
f but is not a power of σ. Let us first show that h(0Z) = 0Z. Namely, if it were that
h(0Z) = aZ, for some a ∈ A \ {0}, consider x = . . . 000g�000 . . . with the glider
g� at the origin and note that h(x)[i] �= a for some −r ≤ i ≤ (2p − 1) + r (recall:
g� = v0v1, |v0| = |v1| = p) and h(x)[−∞, i − jp] = . . . aaa for some j ∈ N+.
Then gt(h(x))[−∞, i − jp] = . . . aaa for every t ∈ Z but h(gj(x))[i − jp] =
h(σjp(x))[i − jp] = h(x)[i] �= a, contradicting the commutativity of h and g.
Thus h maps finite configurations to finite configurations.

We have h(GF�) ⊆ GF�. To see this, assume to the contrary that there exists
x ∈ GF� such that h(x) /∈ GF�. Recall that g is reversible and g(GF�) = GF�,
so gt(h(x)) /∈ GF� for all t ∈ N. Combining this with Theorem 12 it follows
that gt(h(x)) contains an occurrence of 0v1v10 to the right of coordinate r for
all sufficiently large t and therefore h−1(gt(h(x)))[i] is non-zero for some i ≥ 0
which depends on t. This contradicts the fact that h−1(gt(h(x)))[i] = gt(x)[i] = 0
for all i ≥ 0 given that t is sufficiently big. Similarly h(GFr) ⊆ GFr.

For any finite x �= 0Z define its left and right offsets

off�(x) = min{supp(h(x))} − min{supp(x)},

offr(x) = max{supp(h(x))} − max{supp(x)}.

For all nonzero x� ∈ GF� and xr ∈ GFr we have off�(x�)−offr(xr) = 0. If this did
not hold, we could assume without loss of generality that off�(x�)− offr(xr) > 0
(by replacing h with h−1 if necessary) and that min{supp(x�)} = (r + 2)p,
max{supp(xr)} = −(r + 1)p − 1 (by shifting x� and xr suitably). Then consider
x = xr ⊗x� and note that from min{supp(x�)} = (r+2)p > r, max{supp(xr)} =
−(r+1)p−1 < −r it follows that h(x) = h(xr)⊗h(x�). Then gr(x)[−3p−1, 3p] =
0(v1v1)v0v0v0(v1)0 and gr(h(x)) contains no occurrence of the words mentioned
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in the definition of f1 and f2 by the assumption off�(x�) − offr(xr) > 0, so
f(gr(x)) �= gr(x) and f(gr(h(x))) = gr(h(x)). Now

x �= g−r(f(gr(x))) =h−1(g−r(f(gr(h(x)))))

=h−1(g−r(gr(h(x)))) = x,

a contradiction. It also follows that there is a fixed s ∈ Z such that off�(x�) =
offr(xr) = s for all nonzero x� ∈ GF�, xr ∈ GFr.

If x� ∈ GF� and xr ∈ GFr are configurations containing exactly one occur-
rence of g� and gr respectively, then h(x�) = σ−s(x�) and h(xr) = σ−s(x�). To see
this, assume to the contrary (without loss of generality) that min{supp(x�)} =
(r+2)p (i.e. the occurrence of g� in x is at (r+1)p), max{supp(xr)} = −(r+1)p−1
and h(x�)[(r+1)p+s, (r+3)p−1+s] = h(x�)[(r+1)p+s+k, (r+3)p−1+s+k] = g�

for some k > 2p (i.e. h(x�) contains at least two occurrences of g�, the case in
which h(xr) contains at least two occurrences of gr being similar). Then consider
x = xr ⊗ x� and note that

gr(x)[−3p − 1, 3p] = 0(v1v1)v0v0v0(v1)0
f(gr(x))[−3p − 1, 3p] = 0v0(v1v1)v0(v1)v00

g−1(f(gr(x)))[−3p − 1, 3p] = 0(v1v1)v0v0v0(v1)0

g−(r+1)(f(gr(x))) = x,

therefore also h(x) = g−(r+1)(f(gr(h(x)))) � y. On the other hand,

f(gr(h(x)))[p + s + k, 3p − 1 + s + k]
= gr(h(x))[p + s + k, 3p − 1 + s + k] = g�

g−(r+1)(f(gr(h(x))))[(r + 2)p + s + k, (r + 4)p − 1 + s + k] = g�,

so in particular y[(r +2)p+ s+k, (r +3)p−1+ s+k] = v0. Because we assumed
that

h(x)[(r + 2)p + s + k, (r + 3)p − 1 + s + k]
= h(x�)[(r + 2)p + s + k, (r + 3)p − 1 + s + k] = v1,

it follows that h(x) �= y, a contradiction.
By Lemma 13 there exists a finite configuration x �= 0Z such that h(x) /∈ O(x)

and h(x) is finite. Use Theorem 12 to get t ∈ N such that gt(x)[−r, r] = 02r+1

and gt(x) = y� ⊗ yr where y� ∈ GF� has max{supp(y�)} < −r and yr ∈ GFr has
min{supp(yr)} > r (it is possible that either y� or yr is equal to 0Z). Then also
h(gt(x)) = h(y�)⊗h(yr) /∈ O(gt(x)), and combining this with off�(y�) = offr(yr)
it follows that h(y�) /∈ O(y�) or h(yr) /∈ O(yr). Without loss of generality assume
that h(y�) /∈ O(y�) (the case h(yr) /∈ O(yr) is similar), that y� contains a minimal
number of occurrences of g� (at least two by the previous paragraph) and that
the distance from the leftmost g� to the second-to-leftmost g� in y� is maximal
(at most 2r+2p since otherwise by dropping the leftmost g� we would get a new
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configuration y′
� such that h(y′

�) /∈ O(y′
�), contradicting the minimal number of

occurrences of g� in y�). Let xr ∈ GFr contain exactly one occurrence of gr

and assume that min{supp(y�)} = (r + 2)p, max{supp(xr)} = −(r + 1)p − 1.
Decompose y� = x� ⊗ x′

� so that x� contains only the leftmost g� from y� and
x′

� contains all the other occurrences of g� from y�. In a similar way as in the
previous paragraph we see that

g−(r+1)(f(gr))(xr ⊗ y�) = xr ⊗ (x� ⊗ (σ−p(x′
�))).

Denote h′ = (g−(r+1)◦f ◦gr)−1. By the maximality of distance from the leftmost
g� to the second-to-leftmost g� in y� we know that

h(x� ⊗ (σ−p(x′
�))) ∈ O(x� ⊗ (σ−p(x′

�))),

and this is possible only if

h(x� ⊗ (σ−p(x′
�))) = σ−s(x� ⊗ (σ−p(x′

�))),

h(xr ⊗ x� ⊗ (σ−p(x′
�))) = σ−s(xr ⊗ x� ⊗ (σ−p(x′

�))),

h(h′(xr ⊗ x� ⊗ (σ−p(x′
�)))) = σ−s(h′(xr ⊗ x� ⊗ (σ−p(x′

�)))),

h(xr ⊗ y�) = σ−s(xr ⊗ y�),

so in particular h(y�) ∈ O(y�), a contradiction. ��
Corollary 15 (Finitary Ryan’s theorem). k(X) = 2 for every mixing SFT X
with a fixed point.

Proof. The fact that k(X) ≥ 2 follows from the previous theorem and Lemma 7.
To see that k(X) = 2, assume to the contrary that k(X) < 2. From k(X) = 0 it
would follow that Aut(X) contains only powers of the shift, which is evidently
false. Assume then that k(X) = 1 and that h is a single automorphism which
commutes with h′ ∈ Aut(X) only if h′ is a power of the shift. Because h com-
mutes with itself, it follows that h = σi for some i ∈ Z. But all h′ ∈ Aut(X)
commute with σi and so Aut(X) contains again only powers of the shift, a
contradiction. ��

5 Conclusions

We have constructed glider automorphisms g for mixing SFTs X which have
a fixed point, and we have applied these glider maps to prove for such X that
k(X) = 2. It seems that our construction of g should generalize to arbitrary
mixing SFTs X which do not necessarily have any fixed points. In this case
instead of a fixed point 0Z we need to fix some periodic configuration p ∈ X (i.e.
σk(p) = p for some k ∈ N+) and we consider points x ∈ X which are finite (in
some sense) with respect to p instead of 0Z. In light of this it is probable that
k(X) = 2 for all mixing SFTs X.

Acknowledgments. The author thanks Ville Salo for helpful discussions concerning
these topics.
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