
Aggregation Policies for Tuple Spaces

Linas Kaminskas and Alberto Lluch Lafuente(B)

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
linaskmnsks@gmail.com, albl@dtu.dk

Abstract. Security policies are important for protecting digitalized
information, control resource access and maintain secure data storage.
This work presents the development of a policy language to transpar-
ently incorporate aggregate programming and privacy models for dis-
tributed data. We use tuple spaces as a convenient abstraction for stor-
age and coordination. The language has been designed to accommodate
well-known models such as k-anonymity and (ε, δ)-differential privacy,
as well as to provide generic user-defined policies. The formal semantics
of the policy language and its enforcement mechanism is presented in
a manner that abstracts away from a specific tuple space coordination
language. To showcase our approach, an open-source software library has
been developed in the Go programming language and applied to a typical
coordination pattern used in aggregate programming applications.

Keywords: Secure coordination · Policy languages · Privacy models
Tuple spaces · Aggregate programming

1 Introduction

Privacy is an essential part of society. With increasing digitalization the attack
surface of IT-based infrastructures and the possibilities for abuse is growing. It
is therefore necessary to include privacy models that can scale with the complex-
ity of those infrastructures and their software components, in order to protect
information stored and exchanged, while still ensuring information quality and
availability. With EU GDPR regulation [19] being implemented in all EU coun-
tries, regulation on how data acquisition processes handle and distribute personal
information becomes enforced. This affects software development processes and
life cycles as security-by-design choices will need to be incorporated. Legacy sys-
tems will also be affected by GDPR compliance. With time, these legacy systems
will need to be replaced, not only because of technological advancements, but
also due to political and social demands for higher quality infrastructure. No
matter the perspective, the importance of privacy-preserving data migration,
mining and publication will remain relevant as society advances.

c© IFIP International Federation for Information Processing 2018

Published by Springer International Publishing AG 2018. All Rights Reserved

G. Di Marzo Serugendo and M. Loreti (Eds.): COORDINATION 2018, LNCS 10852, pp. 181–199, 2018.

https://doi.org/10.1007/978-3-319-92408-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92408-3_8&domain=pdf

182 L. Kaminskas and A. Lluch Lafuente

Aggregation, Privacy and Coordination. Aggregate programming meth-
ods are used for providing privacy guarantees (e.g. by reducing the ability to
distinguish individual data items), improving performance (e.g. by reducing stor-
age size and communications) and even as the basis of emergent coordination
paradigms (e.g. computational field and aggregate programming based on the
field calculus [1,23] or the SMuC calculus [14]). Basic aggregation functions (e.g.
sums, averages, etc.), do not offer enough privacy guarantees (e.g. against statis-
tical attacks) to support the construction of trustworthy coordination systems.
The risk is that less users will be willing to share their data. As a consequence,
the quality of different infrastructures and services based on data aggregations
may degrade. More powerful privacy protection systems are needed to reassure
users and foster their participation with useful data. Fortunately, aggregation-
based methods can be enhanced by using well-studied privacy models that allow
policy makers to trade between privacy and data utility. We investigate in this
work how such methods can be easily integrated in a coordination model such as
tuple spaces, that in turn can be used as the basis of aggregation-based systems.

Fig. 1. Different stages of GIS
data.

Motivational Examples. One of our main moti-
vations is to address systems where users provide
data in order to improve some services that they
themselves may use. In such systems it is often the
case that: (i) A user decides how much privacy is
to be sacrificed when providing data. Data aggre-
gation is performed according to a policy on their
device and transmitted to a data collector. (ii) A
data collector partitions data by some quality cri-
terion. Aggregation is then performed on each par-
tition and results are stored, while the received
data may be discarded. (iii) A process uses the
aggregated data, and shares results back to the
users in order to provide a service.

A typical example of such systems are Intelli-
gent Transport System (ITS), which exploit Geo-
graphic Information Systems (GIS) data from
vehicles to provide better transportation services,
e.g. increased green times at intersections, reduc-
tion of queue and congestion or exploration of
infrastructure quality. As a real world example,
bicycle GIS data is exploited by ITS systems to
reduce congestion on bicycle paths, while main-
taining individuals privacy. Figure 1 shows user
positional data in different stages: (a) raw data
as collected, (b) data after aggregating multiple trips, and (c) aggregated data
with addition of noise to protect privacy. This aggregated data can then be deliv-
ered back to the users, in order to support their decision making before more

Aggregation Policies for Tuple Spaces 183

congestion occurs. Depending on the background knowledge and insights in a
service, an adversary can partially or fully undo bare aggregation. By using pri-
vacy models and controlling aggregate functions, one can remove sensitive fields
such as unique identifiers and device names, and add noise to give approxima-
tions of aggregation results. This gives a way to trade data accuracy in favor of
privacy.

Fig. 2. A distance gradient field (Color
figure online)

Another typical example are self-
organizing systems. Consider, for instance,
the archetypal example of the construc-
tion of a distance field, identified in [2] as
one of the basic self-organization building
blocks for aggregate programming. The
typical scenario in such systems is as fol-
lows. A number of devices and points-of-
interests (PoI) are spread over a geograph-
ical area. The main aim of each device
is to estimate the distance to the clos-
est PoI. The resulting distributed map-
ping of devices into distances and possi-
bly the next device on the shortest path,
forms a computational field. This provides
a basic layer for aggregate programming
applications and coordinated systems, as
in e.g. providing directions to PoIs. Figure 2 shows an example with the result of
1000 devices in an area with a unique PoI located at (0, 0), where each device is
represented by a dot and whose color intensity is proportional to the computed
distance. The computation of the field needs to be done in a decentralized way,
since the range of communication of devices needs to be kept localized. The
algorithm that the devices use to compute the field is based on data aggrega-
tions: a device iteratively queries the neighbouring devices for their information
and updates its own information to keep track of the closest distance to a PoI.
Initially, the distance di of each device i is set to the detected distance to the
closest PoI, or to ∞ if no device is detected. At each iteration, a device i updates
its computed distance di as follows. It gets from each neighbour j its distance
dj , and then updates di to be the minimum between di or dj plus the distance
from i to j. In this algorithm, the key operation performed by the devices is an
aggregation of neighbouring data, which may not offer sufficient privacy guaran-
tees. For instance, the exact location of devices or their exact distance to a PoI
could be inferred by a malicious agent. A simple case where this could be done
is when one device and a PoI are in isolation. A more complex case could be if
the devices are allowed to move and change their distances to a PoI gradually.
By observing isolated devices and their interactions with neighbours, one could
start to infer more about the behaviour of a device group.

184 L. Kaminskas and A. Lluch Lafuente

1 privacy_policy:

2 noisy_average:

3 aquery avg, data

4 altered by result func add_noise

5 ...

Listing 1.1. An aggregation policy that adds noise to average-based queries

1 program:

2 ...

3 x := aquery avg, data

4 ...

Listing 1.2. An aggregated query subject to the policy in Listing 1.1.

Challenges. Engineering of privacy mechanisms and embedding of these
directly into large software systems is not a trivial task, and may be error prone.
Therefore, it is crucial to separate privacy mechanisms from an application,
in such a way that the privacy mechanisms can be altered without having to
change the application logic. For example, Listing 1.1 shows a policy that a data
hosting service will provide, and Listing 1.1 shows a program willing to use the
data. The policy controls the aggregate query (aquery) of the program. It only
allows to average (avg) some data and, in addition, it uses a add noise func-
tion to the result before an assignment in the program occurs. In this manner,
a clear separation of logic can be achieved, and multiple queries of the same
kind can be altered by the same policy. Furthermore, it allows policies to be
changed at run-time, in order to adapt to changes in regulations or to optimize
the implementation of a policy. Separation of concerns provides convenience for
both developers and policy makers alike.

Contribution. Our goal is to develop a tool-supported policy language provid-
ing access control for which well-studied privacy models, aggregate programming
constructs, and coordination primitives could be used to provide non-intrusive
data access in distributed applications. We wanted to focus on an interactive set-
ting where data is dynamically produced, consumed and queried, instead of the
traditional static data warehousing that privacy models implementations tend
to address.

Our first contribution is a novel policy language in Sect. 2 to specify aggre-
gation policies for tuple spaces. The choice of tuple spaces has been motivated
by the need to abstract away from concrete data storage models and to address
data-oriented coordination models. Our approach to the language provides a
clean separation between policies that need to be enforced, and application logic
that needs to be executed. The presentation abstracts away from any concrete
tuple-based coordination language and we focus on aggregated versions of the
traditional operations to add, retrieve and remove tuples.

Our second contribution (Sect. 3) is a detailed description of how two well-
studied privacy models such as k-anonymity and (ε, δ)-differential privacy can

Aggregation Policies for Tuple Spaces 185

be expressed in our language. For this purpose, those models (which are usually
presented in a database setting) have been redefined in the setting of tuple
spaces. To the authors knowledge, this is the first time that the definition of
those models has been adapted to tuple spaces.

Our third and last contribution (Sect. 4) is an open-source, publicly available
implementation of the policy language and its enforcement mechanism in a tuple
space library for the Go programming language, illustrated with an archetypal
example of a self-organizing pattern used as basic block in aggregate program-
ming approaches [2], namely the above presented computation of a distance
gradient.

2 A Policy Language for Aggregations

We start the presentation of our policy language by motivating the need of
supporting and controlling aggregate programming primitives, and present a set
of such primitives. We then move into the description of our policy language,
illustrate the language through examples, and conclude the section with formal
semantics.

Fig. 3. Aggregation primitives.

Aggregate Programming Primitives.
The main computations we focus in this
paper are aggregations of multiset of data
items. As we have discussed in Sect. 1, such
computations are central to aggregate pro-
gramming approaches. The main motiva-
tion is to control how such aggregations are
performed: a data provider could want, for
instance, to provide access to the average of
a data set, but not to the data set or any of
its derived forms. Traditional tuple spaces
(e.g. those following the Linda model) do
not support aggregations as first-class prim-
itives: a user would need to extract all the
data first and perform the aggregation dur-
ing or after the extraction. Such a solution
does not allow to control how aggregations
are performed, and the user is in any case
given access to an entire set of data items
that needs to be protected. However, in
databases, aggregate operators can be used
in queries, providing thus a first-class prim-
itive to perform aggregated queries, more
amenable for access control. A similar sit-
uation can be found in aggregate programming languages that provide functions
to aggregate data from neighbouring components: the field calculus offers a nbr

186 L. Kaminskas and A. Lluch Lafuente

primitive to retrieve information about neighbouring devices and aggregation is
to be performed on top of that, whereas the SMuC calculus is based on atomic
aggregation primitives.

We adapt such ideas to tackle the necessity of controlling aggregations
in tuple spaces by proposing variants of the classical single-data operations
put/out, get/in and qry/read. In particular, we extend them with an additional
argument: an aggregation function that is intended to be applied to the multi-
set of all matched tuples. Typical examples of such functions would be averages,
sums, minimum, concatenation, counting functions and so forth. While standard
tuple space primitives allow to retrieve some or all tuples matching some tem-
plate, the primitives we promote would allow to retrieve the aggregated version
of all the matched tuples. More in detail, we introduce the following aggregate
programming primitives (Fig. 3):

aqryλD, U : This operation works similarly to an aggregated query in a database
and provides an aggregated view of the data. In particular, it returns the
result of applying the aggregation function λD to all tuples that match the
template U .

agetλD, U : This operation is like aqry, but removes the matched data with
template U .

aputλD, U : This operation is like aget, but the result of the aggregation is intro-
duced in the tuple space. It provides a common pattern used to atomically
compress data.

It is worth to remark that such operations allow to replicate many of the
common operations on tuple spaces. Indeed, the aggregation function could be,
for instance, the multiset union (providing all the matched tuples) or a function
that provides just one of the matched tuples (according to some deterministic
or random function).

Syntax of the Language. The main concepts of the language are knowledge
bases in the form of tuple spaces, policies for expressing how operations should
be altered, and aggregate programming operators. The language itself can be
embedded in any host coordination language, but the primary focus will be
in expressing policies. The language is defined in a way that is reminiscent of
a concrete syntax for a programming language. Although, the point is not to
force a particular syntax, but to have a convenient abstraction for describing the
policies themselves. Further, the language and aggregation policies do not force
a traditional access control based model by only permitting or denying access to
data: policies allow transformations thus giving different views on the same data.
This gives a choice to a policy maker to control the accuracy of the information
released to a data consumer. Subjects (e.g. users) and contextual (e.g. location)
attributes are not part of our language, in order to keep the presentation focused
on the key aspects of aggregate programming. Yet, the language could be easily
extended to include these attributes.

Aggregation Policies for Tuple Spaces 187

Table 1. Syntax for policies and aggregate programming operators.

Tuple Space : T ::= ∅ | V :u | V :u ; T
Policy Label : v

Policy Labels : V ::= ∅ | v | v ,V

Tuple : u ::= ε | c | u1 ,u2

Template : U ::= ε | c | Ω | U1 ,U2

Composable Policy : Π ::= 0 | π | π ;Π

Aggregation Policy : π ::= v :H

Aggregation Rule : H ::= none | putU altered byDa

| AD altered byDU Du Da

Action : A ::= AS | AD

Simple Action : AS ::= putV :u

Aggregate Action : AD ::= aputλD ,U | agetλD ,U | aqryλD ,U

Template Transformation : DU ::= template funcλU

Tuple Transformation : Du ::= tuple funcλu

Result Transformation : Da ::= result funcλa

Aggregate operator : λD ::= sum | avg | min | max | . . .

Template operator : λU ::= id | pseudo i | collapse i | . . .

Tuple operator : λu ::= id | collapse i | noiseX | . . .

The syntax of our aggregation policy language can be found in Table 1. Let
Ω denote the types which are exposed by the host language and a type be τ ∈ Ω.
For the sake of exposition we consider the simple case {int, float, string} ⊆ Ω.
T is a knowledge base represented by a tuple space with a multiset interpretation,
where the order of tuples is irrelevant and multiple copies of the identical tuples
are allowed. For T , the language operator ; denotes the multiset union, \ is
the multiset difference and � is the multiset symmetric difference. T contains
labelled tuples, i.e. tuples attached a set of labels, with each label identifying a
policy. A tuple is denoted and generated by u, and an empty tuple is denoted
by ε. Tuples may be primed u′ or stared u� to distinguish between different
types of tuples. The type of a tuple u is denoted by τu = τu1 × τu2 × . . . × τun

.
In Sect. 3, individual tuple fields will be needed, and hence we will be more
explicit and use u = (u1, . . . , ui, . . . , un), where ui denotes the ith tuple field
with type τui

. When dealing with a multiset of tuples of type τu (e.g. a tuple
space), the type τ∗

u will be used. For a label set V , a labelled tuple is denoted by
V :u. Similarly as for a tuple, the empty labelled tuple is denoted by ε. A label
serves as a unique attribute when performing policy selection based on an action
A. A template U can contain constants c and types τ ∈ Ω and is used for pattern
matching against a u ∈ T . As with tuples, we shall be explicit with template
fields when necessary and use U = (U1, . . . , Ui, . . . , Un), where Ui denotes the ith

template field with type τUi
. There are three main aggregation actions derived

from the classical tuple space operations (put, get, qry), namely: aput, aget and
aqry. All operate by applying an aggregate operator λD on tuples u ∈ T that
matches U . Aggregate functions λD have a functional type λD : τ∗

u → τu′ and

188 L. Kaminskas and A. Lluch Lafuente

are used to aggregate tuples of type τu into a tuple of type τu′ . The composable
policy Π is a list of policies that contain aggregation policies π. An aggregation
π is defined by a policy label v and an aggregation rule H, where v is used
as an identifier for H. An aggregation rule H describes how an action A is
altered either by a template transformation DU , a tuple transformation Du, and
a result transformation Da, or not at all by none. A template transformation
DU is defined by a template operator λU : τU → τU ′ , and can be used for e.g.
hiding sensitive attributes or to adapt the template from the public format of
tuples to the internal format of tuples. A tuple transformation Du is defined
by a tuple operator λu : τu → τu′ . This allows to apply additional functions
on a matched tuple u, and can be used e.g. for doing sanitization, addition of
noise or approximating values, before performing the aggregate operation λD on
the matched tuples A result transformation Da is defined by a tuple operator
λa : τu′ → τu′′ . The arguments of λa are the same as for tuple transformations
λu, except the transformation is applied on an aggregated tuple. This allows
for coarser control, say, in case a transformation on all the matched tuples is
computationally expensive or if simpler policies are enough.

Examples and Comparison with a Database. Observe that λD and any
of the aggregation actions in A can provide all of the aggregate functions found
in commercial databases, but with the flexibility of exactly defining how this is
performed in the host language itself. The motivation for doing this comes from
the fact that: (i) there is tendency for database implementations to provide non-
standardized functionalities, introducing software fragmentation when swapping
technologies, (ii) user-defined aggregate functions are often defined in a different
language from the host language. In our approach, by allowing to directly express
both the template for the data needed and aggregate functionality in the host
language, helps reducing the programming complexity and improves readability,
as the intended aggregation is expressed explicitly and in one place. Moreover,
the usage of templates allows to specify the view of data at different granularity
levels. For instance, in our motivational example on GIS data, one could be
interested in expressing:

1. Field granularity where U contains concrete values only, but access is provided
to some fields only. Listing 1.3 shows how to allow access to a specific data
source by using U = ("devices", "gps", "accelerometer", "gyroscope") as
a template of concrete devices. Here, id is the identity function, first is an
aggregation function which returns the first matched tuple, and nth 2 selects
the second field of the tuple.

1 accelerometer-data-only:

2 aqry first, "devices", "gps", "accelerometer", "gyroscope"

3 altered by

4 template func id

5 tuple func id

6 result func (fun x -> nth 2 x)

Listing 1.3. Example of field granularity policy.

Aggregation Policies for Tuple Spaces 189

2. Tuple granularity where U contains concrete values and all fields are provided.
Listing 1.4 shows how a policy can provide access to a specific trip. In this
case, it is specified by a trip type and trip identifier U = ("bike-ride", 1).

1 single-ride:

2 aqry first, "bike-ride", 1 altered by

3 template func id

4 tuple func id

5 result func id

Listing 1.4. Example of tuple granularity policy.

3. Mixed granularity where U contains a mix of concrete values and types.
Listing 1.5 shows how this could be used to protect user coordinates expressed
as a triplet of float’s encoding latitude, longitude, elevation while allowing a
certain area. In this case, the copenhagen area is exposed, and computation
of the average elevation with avg is permitted.

1 alices-trips:

2 aqry avg, "copenhagen", float, float, float altered by

3 template func id

4 tuple func (fun x -> nth 4 x)

5 result func id

Listing 1.5. Example of mixed granularity policy.

4. Tuple-type granularity where U contains only types. Listing 1.6 shows how
this could be used to count how many points there are in each discretized
part of a map, where area maps coordinates into areas.

1 map-partition:

2 aqry count, float, float altered by

3 template func id

4 tuple func (fun (x y) -> area(x,y))

5 result func id

Listing 1.6. Example of tuple-type granularity policy.

With respect to databases, the aforementioned granularities correspond to: 1.
cell level, 2. single row level, 3. multiple row level, and 4. table level Combined
with a user-defined aggregate function λD and transformations DU , Du and Da,
one can provide many different views of a tuple space in a concise manner.

Formal Semantics. Before presenting the formal semantics, we provide a
graphical and intuitive presentation using A = aqryλD,U and some T and Π
as an example shown in Fig. 4. The key idea is: 1. Given some action A, deter-
mine the applicable policy π. There can be multiple matches in Π; 2. extract
the first-matching policy π with some label v; 3. extract template, tuple and
result operators from transformations DU , Du, and Da respectively; 4. extract
the aggregate operator λD and apply U ′ = λU (U); 5. based on the tuples V :u

190 L. Kaminskas and A. Lluch Lafuente

Fig. 4. Semantics of an aggregate action A given an applicable policy π.

from T that match U ′ and have v ∈ V : perform tuple transformation with λu,
aggregation with λD, and result transformation with λa

The formal operational semantics of our policy enforcement mechanism is
described by the set of inference rules in Table 2, whose format is

P1 . . . Pi . . . Pn

T , Π � A → T ′
, Π � R

where P1, . . . , Pn are premises, T is a tuple space subject to Π, A is the action
subject to control, and the return value (if any) is modelled by �R. The return
value may then be consumed by the host language. The absence of a return value
denotes that no policy was applicable.

The semantics for applying a policy that matches an aggregate action
aputλD,U , agetλD,U and aqryλD,U is respectively defined by rules Agg-Put-
Apply, Agg-Get-Apply and Agg-Query-Apply. For performing putV :u,
Put-Apply is used. All three rules apply such transformation and differ only
in that aget and aput modify the tuple space. A visual representation of the
semantics of aputλD,U , agetλD,U and aqryλD,U can be seen in Fig. 4. The
premises of the rules include conditions to ensure that the right operation is
being captured and a decomposition of how the operation is transformed by the
policy. In particular, the set T1 represents the actually matched tuples (after
transforming the template) and T2 is the actual view of the tuple space being
considered (after applying the tuple transformations to T1). It is on T2 that the
user-defined aggregation λD is applied, and then the result transformation λa

is applied to provide the final result ua. Rules named Unmatched, Priority-
Left, Priority-Left, and Priority-Unavailable take care of scanning the

Aggregation Policies for Tuple Spaces 191

Table 2. Semantics for action A under Π including the semantics format.

Put-Apply:
Π = vπ : putU altered by result funcλa

match(u, U) vπ ∈ V ua = λa(u) T ′
= T ;V :ua

T , Π � putV :u → T ′
, Π � V :ua

Agg-Put-Apply:
Π = vπ : aputλD ,U

′ altered by template funcλU tuple funcλu result funcλa

match(U, U
′
) T1 = {V :u ∈ T |match(u, λU (U)) ∧ vπ ∈ V } T ′

= T \ T1

T2 = {V :λu(u) | V :u ∈ T1} ua = λa(λD({u | V :u ∈ T2})) T ′′
= T ′ ; {vπ} :ua

T , Π � aputλD ,U → T ′′
, Π � {vπ} :ua

Agg-Get-Apply:
Π = vπ : agetλD ,U

′ altered by template funcλU tuple funcλu result funcλa

match(U, U
′
) T1 = {V :u ∈ T |match(u, λU (U)) ∧ vπ ∈ V }

T ′
= T \ T1 T2 = {V :λu(u) | V :u ∈ T1} ua = λa(λD({u | V :u ∈ T2}))

T , Π � agetλD ,U → T ′
, Π � {vπ} :ua

Agg-Query-Apply:
Π = vπ : aqryλD ,U

′ altered by template funcλU tuple funcλu result funcλa

match(U, U
′
) T1 = {V :u ∈ T |match(u, λU (U)) ∧ vπ ∈ V }

T2 = {V :λu(u) | V :u ∈ T1} ua = λa(λD({u | V :u ∈ T2}))
T , Π � aqryλD ,U → T , Π � {vπ} :ua

Unmatched:
Π = vπ : none ∨ (Π = vπ :A2 altered byDU Du Da ∧ A1 �= A2) ∨ Π = 0

T , Π � A1 → T , Π

Priority-Right:
T , Π1 � A → T , Π1

T , Π2 � A → T ′
, Π

′
2 � V :u

T , Π1 ;Π2 � A → T ′
, Π1 ;Π

′
2 � V :u

Priority-Left:
T , Π1 � A → T ′

, Π
′
1 � V :u

T , Π1 ;Π2 � A → T ′
, Π

′
1 ;Π2 � V :u

Priority-Unavailable:
T , Π1 � A → T , Π1 T , Π2 � A → T , Π2

T , Π1 ;Π2 � A → T , Π1 ;Π2

policy as list. It is up to the embedding in an actual host language to decide
what to do with the results. For example, in our implementation, if the policy
enforcement yields no result, the action is simply ignored.

3 Privacy Models

The design of our language has been driven by inspecting a variety of privacy
models, first and foremost k-anonymity and (ε, δ)-differential privacy. We show
in this section how those models can be adopted in our approach. The original
definitions have been adapted from databases to our tuple space setting.

k-anonymity. The essential idea of k-anonymity [15,20,22] is to provide
anonymity guarantees beyond hiding sensitive fields by ensuring that, when

192 L. Kaminskas and A. Lluch Lafuente

information on a data set is released, every individual data item is indistin-
guishable from at least k − 1 other data items. In our motivational examples,
for instance, this could be helpful to protect the correlation between devices and
their distances from an attacker that can observe the position and number of
devices in a zone and can obtain the list of distances within a zone through
a query. k-anonymity is often defined for tables in a database, here it shall be
adapted to templates U instead. We start by defining k-anonymity as a property
of T : roughly, k-anonymity requires that every tuple u cannot be distinguished
from at least k − 1 other tuples. Distinguishability of tuples is captured by an
equivalence relation =t. Note that =t is not necessarily as strict as tuple equal-
ity: two tuples u and u′ may be different but equivalent, in the sense that they
can be related exactly by the same, and possibly external, data. In our setting,
k-anonymity is formalized as follows.

Definition 1 (k-anonymity). Let k ∈ N
+, T be a multiset of tuples, and let

=t be an equivalence relation on tuples. T has k-anonymity for =t if:

∀u ∈ T .|{u′ ∈ TU | u′ =t u}| ≥ k

In other words, the size of the non-empty equivalence classes induced by =t

is at least k. We say that a multiset of tuples T has k-anonymity if T has k-
anonymity for =t being tuple equality (the finest equivalence relation on tuples).
k-anonymity is not expected to be a property of the tuple space itself, but of the
release of data provided by the operations aqry, aget and aput. In particular,
we say that k-anonymity is provided by a policy Π on a tuple space T when for
every query based on the above operations the released result ua (cf. Fig. 4) has
k-anonymity. Note that this does only make sense if the result ua is a multiset
of tuples, which could be the case when the aggregation function is a multiset
operation like multiset union. Policies can be used to enforce k-anonymity on
specific queries. Consider for instance the previously mentioned example of the
attacker trying to infer information about distances and positions of devices.
Assume the device information is stored in tuples (x, y, i, j, d) where (x, y) are
actual coordinates of the devices, (i, j) represents the zone in the grid and d
is the computed distance to the closest PoI. Suppose further that we want to
provide access to a projection of those tuples by hiding the actual positions and
providing zone and distance information. Hiding the positions is not enough and
we want to provide 2-anonymity on the result. We can do so with the following
policy:

1 2-anonymity:

2 aqry mset_union, float, float, int, int, float altered by

3 tuple func (fun x y i j d -> if anonymity(2) (i j d) else nil))

Listing 1.7. Example of k-anonymity for k = 2.

where anonymity(k) checks k-anonymity on the provided view T2 (cf. Fig. 4),
according to Definition 1. Basically, the enforcement of the policy will ensure
that we provide the expected result, if in each zone there are at least two devices
with the same computed distance, otherwise the query produces the empty set.

Aggregation Policies for Tuple Spaces 193

(ε, δ)-differential Privacy. Differential privacy techniques [7] aim at protect-
ing against attackers that can perform repeated queries with the intention of
inferring information about the presence and/or contribution of single data item
in a data set. The main idea is to add controlled noise to the results of queries
so to reduce the amount of information that such attackers would be able to
obtain. Data accuracy is hence sacrificed for the sake of privacy. For instance,
in the motivational example of the distance gradient, differential privacy can be
used to the approximate the result of the aggregations performed by the gra-
dient computation. This is done in order to minimize leakage about the actual
positions and distance of each neighbouring device. Differential privacy is a prop-
erty of a randomized algorithm, where the data set is used to give enough state
information in order to increase indistinguishably. Randomization arises from
privacy protection mechanisms based on e.g. sampling and adding randomly
distributed noise. The property requires that performing a query for all possible
neighbouring subsets of some data set, the addition (or removal) of a single data
item produces almost indistinguishable results. Differential privacy is often pre-
sented in terms of histogram representations of databases not suitable for our
purpose. We present in the following a reformulation of differential privacy for
our setting. Let P[A(T) ∈ S] denote the probability that the output A(T) of a
randomized algorithm A is in S when applied to T , where S ⊆ R(A) and R(A)
is the codomain of A. In our setting A should be seen as the execution of an
aggregated query, and that randomization arises from random noise addition.
(ε, δ)-differential privacy in our setting is then defined as the following property.

Definition 2 ((ε, δ)-differential privacy). Let A be a randomized algorithm,
T be a tuple space, e be Euler’s number, and ε and δ be real numbers. A satisfies
(ε, δ)-differential privacy if and only if for any two tuple spaces T1 ⊆ T and
T2 ⊆ T such that ‖T1 � T2‖τu

≤ 1, and for any S ⊆ R(A), the following holds:

P[A(T1) ∈ S] ≤ eε · P[A(T2) ∈ S] + δ

Differential privacy can be enforced by policies that add a sufficient amount
of random noise to the result of the queries. There are several noise addition
algorithms that guarantee differential privacy. A common approach is based on
the global sensitivity of data set for an operation and a differentially private
mechanism which uses the global sensitivity to add the noise. Global sensitivity
measures the largest possible distance between neighbouring subsets (i.e. differ-
ing in exactly one tuple) of a tuple space, given an operation. The differentially
private mechanism uses this measure to distort the result when the operation is
applied. To define a notion of sensitivity in our setting, assume that for every
basic type τ there is a norm function ‖ · ‖ : τu → R which maps every tuple into
a real number. This is needed in order to define a notion of difference between
tuples. We are now ready to define a notion of sensitivity for a given aggregate
operator λD.

194 L. Kaminskas and A. Lluch Lafuente

Definition 3 (Sensitivity). Let T be a tuple space, λD : τu′ → τu�
be an

aggregation function, and p ∈ N
+. The pth-global sensitivity Δp of λD is defined

as:
Δp(λD) = max

∀ T1,T2 ⊆ T
T1�T2=1

p

√ ∑
i∈{0,..,|τu′ |}

|‖λD(T1)i‖ − ‖λD(T2)i‖|p (1)

Roughly, Eq. (1) is expressing that the sensitivity scale of an aggregate operator
is determined by the largest value differences between all fields of the aggregated
tuples. The global sensitivity can then be used to introduce Laplace noise accord-
ing to the well-known Laplace mechanism, which provides (ε, 0)-differential
privacy.

Definition 4 (Laplace noise addition). Let T be a tuple space, λD : τ∗
u →

τu′ be an aggregation function, ⊕ : τu′ × τu′ → τu′ be an addition operator
for type τu′ , ε ∈]0, 1], p ∈ N

+, and Y = (Y1, . . . , Yi, . . . , Yn) be a tuple of
random variables that are independently and identically distributed according
to the Laplace distribution Yi ∼ L(0,Δp(λD)/ε). The Laplace noise addition
function laplaceT ,λD,ε is defined by:

laplaceT ,λD,ε(u) = u ⊕ Y (2)

Note that the function is parametric with respect to the noise addition operator
⊕. For numerical values ⊕ is just ordinary addition. In general, for ⊕ to be to be
meaningful, one has to define it for any type. For complex types such as strings,
structures or objects this is not trivial, and either one has to have a well-defined
⊕ or other mechanisms should be considered for complex data types.

Consider again our motivational example of distance gradient computation,
we can define a policy to provide differential privacy on the aggregated queries
of each round of the computation as follows:

1 edp:

2 aqry minD, float, float, int, int, float altered by

3 result func (fun x y i j d -> (laplace minD 0.9 (x, y, d)))

Listing 1.8. Example of (ε, 0)-differential privacy policy.

The policy controls queries aiming at retrieving the information (x, y) coordi-
nates, (i, j) zone and distance d of the device that is closest to a PoI, obtained by
the aggregation function minD. The query returns only the coordinates of such
device and its distance, after distorting them with Laplace noise by function
laplace, implemented according to Definition 4 (with the tuple space being the
provided view T2, cf. Fig. 4).

More in general, the enforcement of policies of the form

1 aquery λD, U altered by

2 template func DU

3 tuple func Du

4 result func (fun u -> (laplace λD ε u))

Listing 1.9. Schema for (ε, 0)-differential privacy policies.

Aggregation Policies for Tuple Spaces 195

provides (ε, 0)-differential privacy on the view of the tuple space (cf. T2 in Fig. 4)
against aggregated queries based on the aggregation function λD.

4 Aggregation Policies at Work

To showcase the applicability of our approach to aggregate computing applica-
tions, we describe in this section a proof-of-concept implementation of our policy
language and its enforcement mechanism in a tuple space library (cf. Sect. 4.1),
and the implementation of one of the archetypal self-organizing building blocks
used in aggregate programming, namely the computation of a distance gradient
field, that we use also to benchmark the library (cf. Sect. 4.2).

4.1 Implementation of a Proof-of-Concept Library

The open-source library we have implemented is available for download, instal-
lation and usage at https://github.com/pSpaces/goSpace. The main criteria for
choosing Go was that it provides a reasonable balance between language features
and minimalism needed for a working prototype. Features that were considered
important included concurrent processes, a flexible reflection system and a con-
cise standard library. The goSpace project was chosen because it provided a basic
tuple space implementation, and had the fundamental features, such as addition,
retrieval and querying of tuples based on templates, and it also provides derived
features such as retrieval and querying of multiple tuples. Yet, goSpace itself was
modified in order to provide additional features needed for realizing the policy
mechanism. One of the key features of the implementation is a form of code
mobility that allows to transfer functions across different tuple spaces. This was
necessary to serve as a foundation for allowing user-defined aggregate functions
across multiple tuple spaces. Further, the library was implemented to be slightly
more generic than what is given in Sect. 2 and can in principle be applied to other
data structures beyond tuple spaces and aggregation operators on tuple space.
Currently, our goSpace implementation supports policies for the actions aput,
aget and aqry but it can be easily extended to support additional operations.

4.2 Protecting Privacy in a Distance Gradient

We have implemented the case study of the distance field introduced in Sect. 1 as
a motivational example. In our implementation, the area where devices and PoIs
are placed, is discretized as a grid of zones; each device and PoI has a position
and is hence located in a zone. The neighbouring relation is given by the zones:
two devices are neighbours if their zones are incident. Devices can only detect
PoIs in their own zone and devices cannot communicate directly with each other:
they use a tuple space to share their information. Each device publishes in the
tuple space their information (position, zone and computed distance) labelled
with a privacy policy. The aggregation performed in each round uses the aqry

https://github.com/pSpaces/goSpace

196 L. Kaminskas and A. Lluch Lafuente

(a) noise 0.01 (b) noise 0.1 (c) noise 0.2 (d) noise 1.0

Fig. 5. Distance gradients with aggregation policies based on noise addition. (Color
figure online)

operation with an aggregation function that selects the tuple with the smallest
distance to a PoI.

Different policies can be considered. The identity policy would simply corre-
spond to the typical computation of the field as seen in the literature. Basically,
all devices and the tuple space are considered to be trustworthy and no privacy
guarantees are provided. Another possibility would be to consider that devices,
and other agents that want to exploit the field, cannot be fully trusted with
respect to privacy issues. A way to address this situation would be to consider
policies that hide or distort the result of the aggregated queries used in each
round.

Fig. 6. Gradient with noise

We have performed several experiments with
our case study and we have observed, as
expected, that such polices may affect accu-
racy (due to noise addition) and performance
(due to the overhead of the policy enforce-
ment mechanism). Some results are depicted
in Figs. 2, 5 and 6. In particular the figures show
experiments for a scenario with 1000 devices
and a discretization of the map into a 100×100
grid. Figure 2 shows the result where data is not
protected but is provided as-it-is, while Fig. 5
shows results that differ in the amount of noise
added to the distance obtained from the aggre-
gated queries. This is regulated by a parameter
x so that the noise added is drawn from a uniform distribution in [−x ∗ d, x ∗ d],
where d is the diameter of each cell of the grid (actually

√
10 ∗ 10). In the fig-

ures, each dot represents a device and the color intensity is proportional to the
distance to the PoI, which is placed at (0, 0). Highest intensity corresponds to
distance 0, while lowest intensity corresponds to the diameter of the area (

√
200).

The results with more noise (Fig. 5(d)) make it evident how noise can affect data
accuracy: the actual distance seems to be the same for all nodes. However, Fig. 5,
which shows the same data but where the color intensity goes from 0 to the

Aggregation Policies for Tuple Spaces 197

maximum value in the field, reveals that the price paid for providing more privacy
does not affect much the field: the gradient towards the PoI is still recognizable.

5 Conclusion

We have designed and implemented a policy language which allows to succinctly
express and enforce well-understood privacy models in the syntactic category
such as k-anonymity, and in the semantic category such as (ε, δ)-differential
privacy. Aggregate operations and templates defined for a tuple space were used
to give a useful abstraction for aggregate programming. Even if not shown here,
our language allows to express additional syntactic privacy models such as
-
diversity [15], t-closeness [13,21] and δ-presence [8]. Our language does not only
allow to adopt the above mentioned privacy models but it is flexible enough to
specify and implement additional user-defined policies. The policy language and
its enforcement mechanism have been implemented in a publicly available tuple
space library. The language presented here has been designed with minimality
in mind, and with a focus on the key aspects related to aggregation and privacy
protection. Several aspects of the language can be extended, including richer
operations to compose policies and label tuples, user-dependent and context-
aware policies, tuple space localities and polyadic operations (e.g. to aggregate
data from different sources as usual in aggregate computing paradigms). We
believe that approaches like ours are fundamental to increase the security and
trustworthiness of distributed and coordinated systems.

Related Work. We have been inspired by previous works that enriched tuple
space languages with access control mechanism, in particular SCEL [6,16] and
Klaim [3,11]. We have also considered database implementations with access
control mechanisms amenable for the adoption of privacy models. For exam-
ple, [5] discusses the development strategies for FBAC (fine-grained access con-
trol) frameworks in NoSQL databases and showcases applications for MongoDB,
the Qapla policy framework [18] provides a way to manipulate DBMS queries
at different levels of data granularity and allows for transformations and query
rewriting similar to ours, and PINQ [17] uses LINQ, an SQL-like querying syn-
tax, to express queries that can apply differential privacy embedded in C#. With
respect to databases our approach provides a different granularity to control
operations, for instance our language allows to easily define template-dependent
policies. Our focus on aggregate programming has been also highly motivated
by the emergence of aggregate programming and its application to domains of
increasing interest such as the IoT [1]. As far as we know, security aspects of
aggregate programming are considered only in [4] where the authors propose to
enrich aggregate programming approaches with trust and reputation systems to
mitigate the effect of malicious data providers. Those considerations are related
to data integrity and not to privacy. Another closely related work is [9] where
the authors present an extension to a tuple space system with privacy properties
based on cryptography. The main difference with respect to our work is in the
different privacy models and guarantees considered.

198 L. Kaminskas and A. Lluch Lafuente

Future Work. One of the main challenges of current and future privacy protec-
tion systems for distributed systems, such as the one we have presented here, is
their computational expensiveness. We plan to carry out a thorough performance
evaluation of our library. We plan in particular to experiment with respect to
different policies and actions. It is well known that privacy protection mechanism
may be expensive and finding a right trade-off is often application-dependent.
Part of the overhead in our library is due to the preliminary status of our imple-
mentation where certain design aspects have been done in a naive manner to pri-
oritize rapid prototyping over performance optimizations, e.g. use of strong cryp-
tographic hashing, use of standard library concurrent maps and redundancies in
some data structures. This makes room for improvement and we expect that the
performance of our policy enforcement mechanism will be significantly improved.
More in general, finding the optimal k-anonymity is an NP-hard problem. There
is however room for improvements. For instance, [12] provides an approximation
algorithm. This algorithm could be adapted if enforcement is needed. An online
differentially private algorithm, namely private multiplicative weights algorithm,
is given in [7]. Online algorithms are worth of investigation since interactions
with T are inherently online. Treatment of functions and functional data in dif-
ferential privacy setting can be found [10]. We are currently investigating online
efficient algorithms to improve the performance of our library.

References

1. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the Internet of Things.
Computer 48(9), 22–30 (2015)

2. Beal, J., Viroli, M.: Building blocks for aggregate programming of self-organising
applications. In: Eighth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshops, SASOW 2014, London, United Kingdom, 8–12
September 2014, pp. 8–13. IEEE Computer Society (2014)

3. Bruns, G., Huth, M.: Access-control policies via Belnap logic: effective and efficient
composition and analysis. In: Proceedings of CSF 2008: 21st IEEE Computer Secu-
rity Foundations Symposium, pp. 163–176 (2008)

4. Casadei, R., Aldini, A., Viroli, M.: Combining trust and aggregate computing. In:
Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 507–522. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-74781-1 34

5. Colombo, P., Ferrari, E.: Fine-grained access control within NoSQL document-
oriented datastores. Data Sci. Eng. 1(3), 127–138 (2016)

6. De Nicola, R., et al.: The SCEL language: design, implementation, verification.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16310-9 1

7. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–487 (2013)

8. Ercan Nergiz, M., Clifton, C.: δ-presence without complete world knowledge.
IEEE Trans. Knowl. Data Eng. 22 (2010). https://ieeexplore.ieee.org/document/
4912209/

9. Floriano, E., Alchieri, E., Aranha, D.F., Solis, P.: Providing privacy on the tuple
space model. J. Internet Serv. Appl. 8(1), 19:1–19:16 (2017)

https://doi.org/10.1007/978-3-319-74781-1_34
https://doi.org/10.1007/978-3-319-16310-9_1
https://ieeexplore.ieee.org/document/4912209/
https://ieeexplore.ieee.org/document/4912209/

Aggregation Policies for Tuple Spaces 199

10. Hall, R., Rinaldo, A., Wasserman, L.: Differential privacy for functions and func-
tional data. J. Mach. Learn. Res. 14(1), 703–727 (2013)

11. Hankin, C., Nielson, F., Nielson, H.R.: Advice from Belnap policies. In: Computer
Security Foundations Symposium, pp. 234–247. IEEE (2009)

12. Kenig, B., Tassa, T.: A practical approximation algorithm for optimal k-anonymity.
Data Min. Knowl. Disc. 25(1), 134–168 (2012)

13. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and l-diversity. In: International Conference on Data Engineering (ICDE), pp. 106–
115 (2007)

14. Lluch-Lafuente, A., Loreti, M., Montanari, U.: Asynchronous distributed execution
of fixpoint-based computational fields. Log. Methods Comput. Sci. 13(1) (2017)

15. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
privacy beyond k-anonymity (2014)

16. Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic abstractions for programming and
policing autonomic computing systems. In: 2013 IEEE 10th International Confer-
ence on and 10th International Conference on Autonomic and Trusted Computing
(UIC/ATC) Ubiquitous Intelligence and Computing, pp. 404–409 (2013)

17. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. Commun. ACM 53(9), 89–97 (2010)

18. Mehta, A., Elnikety, E., Harvey, K., Garg, D., Druschel, P.: QAPLA: policy
compliance for database-backed systems. In: 26th USENIX Security Symposium
(USENIX Security 2017), Vancouver, BC, pp. 1463–1479. USENIX Association
(2017)

19. Official Journal of the European Union. Regulation (EU) 2016/679 of the European
parliament and of the council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such
data, and repealing directive 95/46/EC (general data protection regulation), L119,
pp. 11–88, May 2016

20. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
report, Harvard Data Privacy Lab (1998)

21. Soria-Comas, J., Domingo-Ferrer, J., Sánchez, D., Mart́ınez, S.: t-closeness
through microaggregation: strict privacy with enhanced utility preservation. CoRR,
abs/1512.02909 (2015)

22. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl. Based Syst. 10(5), 557–570 (2002)

23. Viroli, M., Damiani, F.: A calculus of self-stabilising computational fields. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 163–
178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43376-8 11

https://doi.org/10.1007/978-3-662-43376-8_11

	Aggregation Policies for Tuple Spaces
	1 Introduction
	2 A Policy Language for Aggregations
	3 Privacy Models
	4 Aggregation Policies at Work
	4.1 Implementation of a Proof-of-Concept Library
	4.2 Protecting Privacy in a Distance Gradient

	5 Conclusion
	References

