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Abstract Changes in landscape and land use can drive the emergence of zoonoses,
and hence, there has been great interest in understanding how land cover change and
the cascade of ecological effect associated with it are associated with emerging
infectious diseases. In this chapter, we review how a spatially hierarchical approach
can be used to guide research into the links between landscape properties and
zoonotic diseases. Methodological advances have played a role in the revival of
landscape epidemiology and we introduce the role of methodologies such as
geospatial analysis and mathematical modeling. Importantly, we discuss cross-
scale analysis and how this would provide a richer perspective of the ecology of
zoonotic diseases. Finally, we will provide an overview of how hierarchical research
strategies and modeling might be generally used in analyses of infectious zoonoses
originating in wildlife.
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9.1 Introduction

Zoonotic diseases, or zoonoses, are infectious diseases transmitted to humans from
animals and may be bacterial, viral, or parasitic in origin. Approximately 58% of the
pathogens associated with infectious diseases in humans have originated through
spillover from wildlife—e.g., ebolaviruses, hantaviruses, coronaviruses,
henipaviruses (Jones et al. 2008; Lloyd-Smith et al. 2009; Smith et al. 2014;
Woolhouse and Gowtage-Sequeria 2005). Since 1980, zoonotic pathogens represent
the bulk of the outbreaks in human populations in both number (87% versus 13% by
vector-borne pathogens) and diversity (Smith et al. 2014). The recently reported
increase in zoonoses has been attributed to a variety of reasons, although a major
driver is changes in land use resulting from the increased demands of human
populations on the natural environment through agriculture intensification and defor-
estation (Jones et al. 2013; Woolhouse and Gowtage-Sequeria 2005). Land alteration
for food production, broadly defined to include both agriculture and pastoral activ-
ities, has produced profound changes in the type and structure of the earth’s vegeta-
tion cover. It has also altered the way humans interact with their environment, for
example, in some geographical areas suppressing wildlife-human interaction (e.g.,
contact with large predators common among hunter-gathers) and instead favoring
contact between humans and peridomestic species such as rodents, which are com-
mon reservoirs for many zoonotic pathogens. Numerous examples of emergent
zoonoses have often accompanied land clearance, and hence, there has been great
interest in understanding how land cover change and the cascade of ecological effects
associated with it are ecologically associated with emerging infectious diseases
(McFarlane et al. 2013; Woolhouse and Gowtage-Sequeria 2005).

A persistent question in modeling of pathogen emergence is what is the spatial
scale at which these processes occur? How do we measure and integrate the impact
of processes that occur at varying and nested spatial scales that result in the observed
disease distribution (Watts et al. 2005)? For example, climate (which can vary in
scale from local to continental) and landscape are each associated with disease
patterns and have been cited as factors in zoonotic disease outbreaks. Land cover
change and land-use intensification often occurs at finer scales than climate and can
thus be thought of as nested within the climate system. At still finer scales, popula-
tion dynamics and habitat interactions of the pathogen and its reservoir communities
(and, indeed, with the human populations vulnerable to disease transmissions from
these communities) occur within the climate and landscape scales and are influenced,
but not necessarily determined, by them. This hierarchical nesting (Fig. 9.1) of these
processes complicates the overall study and modeling of the spillover and transmis-
sion dynamics of wildlife pathogens to human populations. However, there are
existing bodies of theory which can help shed light on these processes. Hence, we
review some of these conceptual ideas, focusing especially on landscape epidemi-
ology, a body of theory first developed in the 1930s and more recently updated to
include modern tools and techniques for studying both disease and environmental
process (Ostfeld et al. 2005), and hierarchy theory, a framework which incorporates
the idea of multiple, nested spatial scales (Allen and Starr 1982).



9 Integrating Landscape Hierarchies in the Discovery and Modeling of. . . 301

Fig. 9.1 Illustration of
hierarchical nesting of
possible key components in
pathogen emergence in
wildlife. Each process
outlined with a “box”
represents a distinct spatial
scale to consider in
developing models

Eandscape

In the following, we will review how a spatially hierarchical approach can be used
to guide research into the links between landscape properties and zoonotic diseases.
This will show how landscape concepts have been used to analyze the occurrence and
spatial patterning of zoonotic diseases and how many of these studies are being
conducted at particular spatial scales. This review will be followed by an illustration
of how an integrated, cross-scale analysis might be employed to gain a deeper
understanding of the ecology of zoonotic diseases, using an example from our own
research. As earlier noted, methodological advances have played a role in the revival
of landscape epidemiology. We will therefore discuss the role of methodologies such
as geospatial analysis and mathematical modeling—again using examples drawn
from our current research. We will show how cross-scale analysis might be employed
to gain a deeper understanding of the ecology of zoonotic diseases. Finally, we will
provide an overview of how hierarchical research strategies and modeling might be
generally used in analyses of infectious zoonoses originating in wildlife.

9.2 Landscape Epidemiology and Ecology

Landscape epidemiology is the study of spatial patterns of disease and disease risk
arising from underlying environmental causes. The fundamental concepts of land-
scape epidemiology, first proposed by Evegenii Pavlovskii, stem from the idea that
the spatial occurrence of disease could be understood by studying landscape and
environmental factors associated with the disease (Pavlovskii 1966). Pavlovksii’s
ideas have undergone a revival, stimulated in part by widespread availability of
geospatial data, analysis tools, and models. In particular, satellite remote sensing
data analyzed within a geographic information systems (GIS) framework has
equipped landscape epidemiologists with a powerful suite of tools for analyzing
environmental patterns associated with disease occurrence. Landscape epidemiology
has also benefited from the theoretical perspective of landscape ecology, another
relatively new discipline that attempts to understand the relationship between spatial
pattern and ecological process (Meentemeyer et al. 2012). For example, landscape
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epidemiologists have made use of ecological concepts such as fragmentation to
analyze disease vectors (Brownstein et al. 2005; Reisen 2010). One aspect of
landscape ecology that remains relatively unexplored in infectious disease applica-
tions is the concept of spatial hierarchy.

9.2.1 Hierarchy Theory

Hierarchy in ecology is a multifaceted theory incorporating elements of nonlinear
dynamics and complexity; for a comprehensive treatment of hierarchy theory, see
Allen and Starr (1982). The fundamental concept of hierarchy theory is that processes
occurring at finer scales (i.e., “lower” in the spatial hierarchy) are constrained by
processes at higher levels. Hierarchical levels can also be distinguished by the rates at
which ecological processes occur—faster at finer scales, slower at coarser ones.

Hierarchy theory in ecology arose as a response to the need for a rigorous method of
handling middle-number systems, that is, systems whose components are too few to treat
statistically but too many to address with classical Newtonian mathematics. Hierarchy
provides a framework by which these middle number systems can be decomposed into a
series of manageable units, whose environmental drivers can be characterized by the scale
(and thus the rate) at which they occur. Such a framework is amenable to the study of
landscape epidemiology, since the linkages between environmental factors and disease
are often multivariate, nonlinear, and not confined to a specific spatial scale.

Spatial scale is a crucial aspect of hierarchy theory. Any discussion of the
relationship between ecological process and scale therefore must first define how
the term is used and to what characteristic dimensions these terms apply. These
definitions are complicated by the number of ways that the term “scale” is used.
Scale is frequently referred to by descriptive adjectives such as “large” or “small,”
which Meentemeyer (1989) noted can have opposing meaning depending on
whether one is referring to cartographic scale (where small scale refers to less spatial
detail) or ecological scale, where smaller scale equates to smaller spatial area and
greater detail. Ecologists generally distinguish between the grain and extent of a
process, where extent refers to the area over which a process occurs, and grain
denotes the smallest resolvable component of the process. Typically, grain can be
described as either “fine,” indicating small resolvable elements, or “coarse,” indi-
cating larger elements. Thus, we might characterize the scale process like tropical
deforestation as occurring at relatively large extent, because a large area is affected,
but at relatively fine grain, because the individual deforested units can be quite small.
Csillag et al. (2000) argue that for ecological uses of scale, it is preferable to adopt
specific terminology to distinguish between extent and grain. In hierarchy theory,
spatial extent is probably the more commonly used sense of scale (Jenerette and Wu
2000). In describing spatial hierarchies, it is often useful to apply descriptive names
to realms of scale. Terms such as “global,” “continental,” “regional,” and “local” are
often used, although the precise areas referred to often vary. For our review of
hierarchy in infectious disease analysis, we will operationally define continental
scale as areas exceeding 10° km?, regional scales as ranging from 10 km?~10° km?,

99 ¢
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local scale from 10'-10° kmz, and microscale <10' km?. The lower end of the
microscale represents the general size range of a small rodent’s world.

Landscape analyses across spatial scale frequently use remote sensing data
(Kitron et al. 2006; Wu 1999). Currently, imagery is available from an array of
orbital sensors with widely varying spatial, temporal, and spectral resolutions
(Table 9.1). Grain size (or resolution, as it is more commonly termed in remote
sensing) is an engineered property of these sensors, dependent on the optical
characteristics of the sensor and orbital characteristics of the platform. Theoretically,

Table 9.1 Partial list of current of current and past orbital remote-sensing instruments, frequently
used in landscape epidemiological studies

Instrument Platform Spatial resolution (m) Notes
Pleiades 1A Pleiades 2.0 m (VNIR) Available 2011-Present
0.5 m (PAN)
Worldview Worldview 14 1.41-1.84 (VNIR) Resolution is at nadir.
0.31m-0.46 m (PAN) Finer resolution sensor on
WV-3 and -4. Available
2007—present
GeoEye-1 GeoEye 1.84 m (VNIR) Available 2008—present
0.46 (PAN) Resolution is at nadir
value
QuickBird QuickBird 2.63 (VNIR) Available 2001-2015
0.73 (PAN)
IKONOS IKONOS 3.2 (VNIR) Available 2007-2105
0.82 (PAN)
HRV SPOT 1-3 20 m (VNIR) Available 1986-1997
10 m (PAN)
HRVIR SPOT 4-5 20m (VNIR, SWIR) Available 1998-2015
10 m (Pan)
Vegetation SPOT 4-5 1000 m Produces a vegetation
index (NDVI) product
Azersky SPOT 6-7 6 m (VNIR, SWIR) Available 2012—present
1.5 m (PAN)
Multispectral scanner Landsat 1-5 79 m Available 1972-1999

(MSS)

Thematic Mapper/

Landsat 4,5,7

30 m (VNIR, SWIR)

Available 1984-2013

Enhanced Thematic 120 m (TIR) (ETM+ experienced par-
Mapper + (TM/ETM+) 20 m (Pan) tial failure in 1999)
OLI/TIRS Landsat 8 30 m (VNIR, SWIR) Available 2013—present
100 m (TIR)
15 m (Pan)
LISS IRS 1C/1D 23.5 m (VNIR, SWIR) Available 2003—present
7.5 PAN
Sentinel-2 Sentinel-2 10 m (VNIR) Available 2015—present
20 m (SWIR)
Terra/Aqua MODIS 250 m (Red, NIR Available 1999—present
500 m (VNIR, SWIR)
1000 m (VNIR, SWIR,
TIR)
AVHRR NOAA polar 1000 m (VNIR, TIR) Available 1979—present

orbiters
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there are no limitations to the extent of any of these systems, although practical
limitations (particularly cost of data acquisition) dictate a rough correspondence
between extent and resolution. Thus, the extents listed in Table 9.1 are based on
these practical limitations. The variety of remote sensor data available has certainly
facilitated hierarchical landscape analysis, but in some sense, it has also imposed
limitations. Each remote sensor represents a “window” through which ecological
process at some combination of grain size and extent can be observed. These
limitations also extend to the range of spectral wavelengths each sensor can detect
and the number and width of bands in which these wavelengths are detected.
Combining these discrete views into an integrated picture is a central challenge for
hierarchical analysis of infectious disease processes.

9.3 Landscape and Zoonotic Disease: A Selected Review
of Literature

There is a large body of work relating infectious disease to environmental factors.
Most of these studies have concentrated on a single class of causative factor operating
over a characteristic spatial scale. In the following, we will briefly review several
examples which represent different classes of landscape factors that have been shown
to impact zoonotic viral emergence. Since our intent is to show how landscape spatial
hierarchies influence disease processes, we will concentrate on examples that show
the influence of landscape and land cover processes at various spatial scales, using the
concept and terminology of scale developed in the previous section.

For convenience, we will group the literature reviewed here into two categories.
First, we will review the relationship between land cover disturbance (including
anthropogenic and natural disturbance) and zoonotic disease emergence. Included in
this category are causes due to landscape structure, including natural landscape
barriers, land cover change and disturbance, and fragmentation. This category also
includes disturbance due to agricultural practices. The second class of landscape
impacts that we will review are climate-driven landscape changes, which include
climate-influenced changes in vegetation phenology patterns as well as persistent or
transient superficial changes such as flooding. Processes contained within these two
categories are not exclusive; however we will review them based on their predom-
inant process.

9.3.1 Disturbance-Driven Landscape Change

Landscape structure refers to the pattern and arrangement of habitats on the Earth’s
surface. Like all landscape variables, structure is complex. It varies with scale and
per organism. The same landscape might be structurally very different for birds,
small mammals such as rodents, and larger animals, and since zoonotic disease
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reservoirs vary in their body size and habitat, structural effects on disease also vary.
Structure can arise naturally due to topographic, edaphic meaning related to the soil,
or climatic conditions, as well as through human landscape alteration. Both types of
structural changes can be relevant to disease processes. Landscape structure has been
related to zoonotic disease at a variety of spatial scales. At regional scale, Russell
et al. (2006) show how natural landscape barriers such as rivers and preferred habitat
can limit rabies spread by raccoons and be used to manage wildlife through vacci-
nation efforts. Smith et al. (2002) used landscape heterogeneity as a predictor of the
spread of rabies. Langlois et al. (2001) showed that the distribution of hantavirus-
bearing rodents in North America was influenced by landscape fragmentation. Their
analysis was unusual in that the extent of the study was continental, but the grain size
was local (=1 km). Estrada-Pefia and Oteo (1991) showed that landscape structure,
particularly landscape connectivity, showed a strong influence on the abundance of
Lyme disease vectors in Spain.

Land cover changes are known to affect zoonotic diseases through controls on the
population dynamics of reservoir species (especially wild mammals) as well as
disease vectors (Patz et al. 2008). Giraudoux et al. (2003) used regional-scale land
cover changes in France and China to show how host mammal communities affect
transmission dynamics of the endoparasite Echinococcus multilocularis. Using the
ROMPA (ratio of optimal to marginal patch area) hypothesis of Lidicker and others,
it has been shown that regional-scale landscape dynamics of intermediate host
species can in turn affect parasite egg survival and transmission (Lidicker 1995).
The Giraudoux et al. (2003) study also considered the role of landscape change on
establishing minimum thresholds, which they termed “filters” or “screens” of suit-
ability for disease transfer.

Agriculture practices led to the Nipah virus outbreak in Malaysia (Epstein et al.
2006; Pulliam et al. 2012). Using a combination of field, laboratory, and modeling
approaches, these efforts have supported the hypothesis that emergences of viruses
such as Nipah are due to ecological and not evolutionary drivers. These findings
underscore the importance of having multidisciplinary teams work together to build
predictive models for discovery of the relationships between anthropogenic envi-
ronmental change and the transmission or spillover of infectious agents.

9.3.2 Climate-Driven Landscape Change

Climate-driven landscape change in this context refers to the effect of atmospheric
processes (most notably precipitation) on the habitat of zoonotic host organisms.
Variations in rainfall magnitude and frequency have notable effects on vegetation
phenology, causing variations in surface greenness that can be tracked using remote-
sensing instruments (De Beurs and Henebry 2004; Reed et al. 2009). The emergence
of several zoonotic diseases including hantavirus pulmonary syndrome (HPS) (Yates
et al. 2002), Argentine hemorrhagic fever (Simone et al. 2010), and Bolivian
hemorrhagic fever (Kilgore et al. 1995) can be clearly linked to landscape.
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Several studies have linked climate-driven changes to patterns of disease occur-
rence at different spatial scales. Two groups have evaluated the relationship between
temporal patterns of Normalized Difference Vegetation Index (NDVI) and occur-
rence of Ebola virus in West Africa (Pinzon et al. 2004; Tucker et al. 2002). They
found that NDVI trajectories showed distinctive “trigger events” prior to occur-
rences of the disease in humans and apes, which they hypothesized might be used to
forecast conditions conducive to outbreaks of Ebola hemorrhagic fever. The
remotely sensed data for this analysis came from the NOAA-AVHRR sensor, with
continental spatial extent and observation grain size (pixel resolution) of 1 km?. The
observed NDVI trajectories were related to precipitation patterns, reinforcing the
link between climate and disease occurrence. Estrada-Pefa and Oteo (1991) and
Estrada-Pefia et al. (2006) used coarse resolution vegetation index data to model and
predict the continental-scale relationship between climate-driven landscape change
and Lyme disease. Again, the resolution and extent of this study were consistent with
the idea that climate constrains disease processes at higher levels in the spatial
hierarchy. At finer spatial scales, Glass et al. (2000) used patterns of reflectance in
Landsat Thematic Mapper (TM) data to statistically model the presence of HPS in
the Southwestern United States. At this spatial scale, the spectral response of the
surface incorporates climatic factors (especially antecedent precipitation) but also
integrates structural and compositional factors of the vegetation canopy itself.
Models based on these techniques have shown some utility for predicting hantavirus
cases (Glass et al. 2002).

9.4 Hierarchical Analysis of an Emergent Zoonosis: An
Example

One of the important advantages of a hierarchical approach is that it allows a
multifactorial explanation for the occurrence of the infection and disease. The
environmental, landscape, and climatic processes each contribute to processes that
may alter species interactions within their habitat. These extrinsic factors can alter the
reservoir population dynamics, drive extinction, and affect maintenance (persistence)
of the microorganism. Essentially, these factors can create constraints within their
spatial scale and across scales. In this section, we explore an example of hierarchical
observation that can be used in conjunction with modeling to test hypotheses regard-
ing the effects of environment, landscape, and climate upon zoonotic pathogen
distribution. For this we draw upon our work and others in the study of Hantavirus
with a focus on South America (Jonsson et al. 2010; Palma et al. 2012).
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9.4.1 Continental Scale: Phylogeography

Hierarchy theory suggests that processes at coarser grain also occur over longer time
frames and can often be assumed to be static with respect to finer-scale processes.
The phylogeographical patterns of South American hantaviruses within the Southern
Cone (“El Cono Sur,” a subcontinental region roughly defined as consisting of the
country Argentina, often including Chile, plus sometimes considered to include
Uruguay and Paraguay) mapped with environment at the coarsest spatial scales
(Chu et al. 2006). In other words, the phylogenetic clades of hantaviruses from the
Southern Cone of South America appear tied to coherent spatial patterns consistent
with subcontinental-scale biogeographic features such as the major biomes (Chu
et al. 2006). In Fig. 9.2, the locations of strains from three major subclades of South
American hantaviruses are shown in the context of the major biomes based on the
World Wildlife Fund terrestrial ecoregions data (Olson et al. 2001). For example, we
find members from one subclade (i.e., Laguna Negra, Rio Mamoré, and Alto Parani
viruses) carried by rodent reservoirs that span the tropical grass and shrubland and
dry broadleaf forest areas along the western, central regions of South America (Chu
et al. 2006; Johnson et al. 1997; Richter et al. 2010; Yahnke et al. 2001). In contrast,
a second subclade of rodents that harbor Jabora, Maporal, and Necocli hantaviruses
inhabit mainly the moist broadleaf forest biome stretching from Venezuela and
Colombia into Paraguay (Chu et al. 2009; de Oliveira et al. 2011; Fulhorst et al.
2004; Londofio et al. 2011). Knowing the extent of prevalence of these closely
related viruses over this vast region would certainly be fascinating from a
phylogeographical point of view. It is interesting that these viruses are not yet
associated with cases of HPS. There are numerous strains of hantaviruses that
have been identified in the Atlantic Forest (extends along the eastern coast of Brazil
and into eastern Paraguay) and in the temperate grass and shrubland of Argentina.
The third clade of rodents, those that harbor the Juquitiba, Oran, and Lechiguanas
viruses, resides in the more humid Lower Chaco (a region that encompasses the
flooded savannas of Southern Paraguay and forms a transitional environment
between the arid Gran Chaco) and temperate coniferous forests in Argentina, Brazil,
and Uruguay (De Araujo et al. 2015; Delfraro et al. 2008). Andes, Maciel, and
Pergamino viruses reside in rodents in the temperate grass and shrubland biome in
Argentina (Bohlman et al. 2002; Gonzélez-Ittig et al. 2014). Andes virus is also
found in Chile in Mediterranean woodland and shrub biome (Torres-Perez et al.
2004). Araraquara viruses are associated with rodents that largely reside within
agriculturally transformed areas of Brazil (i.e., sugarcane production fields) that
were formerly areas of moist broadleaf forest biome (De Araujo et al. 2015; de
Sousa et al. 2008; Suzuki et al. 2004).



308 D. G. Goodin et al.

Rio Mamore

Alto Paraguay
Laguna Negra

Biome

[ Moist Broadleaf Forest

[] Temperature Broadleaf Forest

[ ory Broadleaf Forest

|:| Flooded Grassland and Savanna
[l Temperate Coniferous Forest

[ xeric Shrubland

- Tropical Grass and Shrubland

[E] Temperate Grass and Shrubland
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[ Mediterranean Woodland and Scrub

[ Rrock and Ice

Fig. 9.2 Illustration of the major biomes of South America from the World Wildlife Fund
terrestrial ecoregions data (Olson et al. 2001). Selected strains of closely related hantaviruses are
presented from three distinct subclades as indicated by the color of the yellow or pink dot at their
location. The viruses represented by the pink dot and pink with yellow represent two distinct
lineages from one subclade

9.4.2 Regional-Scale Land-Cover Association with Pathogen
Prevalence

Coarse-scale analysis has shown a relationship between hantavirus genetics and
broad ecological pattern. Narrowing this view to a more regional scale begins to
reveal how land cover (and land cover disturbance) affects the spatial variability of
hantaviruses. Like all zoonotic disease, the ecology of each species of Hantavirus is
closely related to that of its host organism; thus, generalization of virus-landscape
relationships cannot be made without considering the habitat characteristics of the
reservoir host. We do not have abundant data on the microhabitat characteristics of
many host species (Lozada and Guthmann 1998). However, general habitat types
defined at grains sizes of ~1 km might be useful to study preferences among various
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host species; and be relevant to the landscape epidemiology of hantaviruses; regard-
less of whether certain land cover types are more closely associated with the
presence of the virus.

A regional-scale analysis of rodent reservoirs of hantaviruses in Paraguay
(Goodin et al. 2006) showed that the host species do indeed show patterns of land
cover preference, even when land cover is mapped into very general categories. The
most common hantavirus host rodents in Paraguay, Akodon montensis and
Oligoryzomys spp., both showed disproportionately high probabilities of occurring
in areas subjected to large-scale agricultural disturbance (Goodin et al. 2006). Even
more significant, however, was the fact that rodents found to be antibody positive for
hantavirus (indicating exposure to the virus at some point) were more likely to be
associated with the human-disturbed land cover types. This relationship held even
when the underlying differences in habitat preference were controlled. This finding
suggests that some aspect of land cover disturbance or change increases the likeli-
hood that a member of a host species will be infected with the virus. While analysis
at the regional scale shows that human land cover alteration is associated with
hantavirus presence, discovering the specific nature and causes for this observation
cannot be addressed at this scale. Questions of causation must be addressed at finer
spatial scales, in large part because that is the scale to which most host populations
and individuals are interacting with their environment (Lozada and Guthmann 1998;
Owen et al. 2010).

9.4.3 Local Scale: Host and Habitat Associations

Simply presumed, because rodents species have specific requirements with respect
to habitat, and because each hantavirus species seemingly persists only in certain
rodents species, one might assume that a predictive map can be made for ef the
prevalence of a particular hantavirus based on knowledge of the associated rodent
species. Unfortunately, for most rodents, we know very little about their general life
cycles and other important biological information that is critical for modeling (e.g.,
age at sexual maturity, birth rates, litter sizes). Further, we have only a minimal
amount of information on their habitat preferences, although some recent studies
have indicated that fine-grained evaluations are necessary to understand rodent
species distributions and community composition (Goodin et al. 2009; Lozada and
Guthmann 1998; Poindexter et al. 2012; Schnell et al. 2010).

9.4.4 Microscale: Virus and Host Interactions

At the microscale level, pathogen survival and reproduction depend on the dynamics
within the reservoir host, which in turn depend on the habitat or the reservoir. A
rodent may live within an approximate 1 km range for most of its life barring fire,
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flooding, and other natural disasters. In the case of a viral pathogen, the virus must
overcome physical barriers of the host and be compatible with cell receptors to gain
entry into a target cell (Allen et al. 2012). Viral replication depends on host and viral
genetics and other host factors such as prior pathogen or other immunogenic
exposure, nutritional status, coinfection, age, sex, reproductive status, and the host
immune response (Allen et al. 2012). These and other factors determine outcome
when a pathogen enters a host, with the possibilities including severity of any
associated disease and whether the pathogen either is to be cleared by the host
immune system; or the pathogen will persists in the host. For example, the survival
of hantaviruses in nature depends on maintenance of persistent infections within
their specific rodent reservoir. Hantaviruses infect and persist only in the rodent
reservoir with which the virus has coevolved, and the infection is believed to last the
life of the animal (Meyer and Schmaljohn 2000). Notably, persistent infection of
rodent reservoirs by hantaviruses shows continuous virus replication, without com-
plete clearance by the immune system, and no pathological changes (Jonsson et al.
2010; Vaheri et al. 2013). Humans are not a natural reservoir for these viruses, and as
such humans typically become infected only upon contact with aerosolized excreta
from the rodent reservoir. In humans, hantavirus infection can result in severe
disease although outcomes vary with different hantaviral species. The molecular
basis for different disease outcomes in humans has been attributed to difference in
receptor preferences of nonpathogenic and pathogenic hantaviruses. Models that
connect data on the outcomes associated with immune response in reservoir versus
human hosts are just beginning to be developed.

9.5 Role of Mathematical Modeling in Spatial Ecology
of Infectious Diseases

Mathematical models are valuable tools for synthesizing information and testing
hypotheses to provide insight into how and why disease outbreaks or spatial patterns
of infections might arise in wildlife populations. Several books and review articles
summarize some of the modeling efforts on zoonotic infectious diseases (Alexander
et al. 2012; Allen et al. 2012; Grenfell and Dobson 1995; Heesterbeek et al. 2015;
Hudson et al. 2002; Lloyd-Smith et al. 2009). A variety of modeling formats,
deterministic and stochastic, have been applied to the study of zoonotic diseases.
These models include compartmental, agent-based, individual-based,
metapopulation, network, and ecological niche, but these classifications overlap.
Agent-based, individual-based, and metapopulation models may be classified under
network models, where the nodes are infectious agents, individuals or populations,
connected via an underlying network (Riley et al. 2015). Simple compartment
models (SEIR—susceptible, exposed, infectious, and recovered) are connected via
a dispersal network in what is often called a patch model or metapopulation model
(Allen et al. 2009; Arino et al. 2005; McCormack and Allen 2007b). Ecological
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niche models contain less detail about individual dynamics, and instead they are
closely related to landscape, presence/absence data, and GIS-based climatic and
environmental data (Alexander et al. 2012; Peterson 2014).

Mathematical tractability and the complexity of interactions among pathogens,
reservoirs, and human hosts and the environment have often restricted the model
formulation to the reservoir host and to a single spatial scale—landscape, population,
or within-host. Coupling temporal scales (hours to years or longer), biological
complexity levels (genes to cells to ecosystems), and spatial scales (local to global)
have been a continuous challenge to modelers (Heesterbeek et al. 2015). Recent
theoretical investigations on coupling within-host and between-host models are
advancing (Feng et al. 2013; Gilchrist and Coombs 2006; Mideo et al. 2008).

Hantaviruses and rabies are two examples where spatial patterns of infection
involving multiple species have been observed (Chu et al. 2009, 2006; Haydon et al.
2002; Rhodes et al. 1998; Smith et al. 2002). Spatially explicit computer simulations
that incorporate landscape heterogeneity and spatial genetic structure are being
applied to study control of rabies and other zoonotic diseases (Alexander et al.
2012; Parratt et al. 2016; Real and Biek 2007; Rees et al. 2013). Models with
multi-host species and multi-pathogens are being investigated. For example, math-
ematical models for hantavirus infection in rodents have been studied in the context
of multiple host species, spatial spread, and environmental variability (Abramson
and Kenkre 2002; Abramson et al. 2003; Allen et al. 2006a, b, 2009; McCormack
and Allen 2007a, b). These models have shown that those random or seasonal
variations which impact an ecosystems carrying capacity for a particular rodent
species can trigger outbreaks when rodent densities and contacts rates are high
(Allen et al. 2006b). In addition, theoretical analyses have shown that when multiple
species, as opposed to a single species, are involved in the transmission process,
there may be a dilution or amplification effect that impacts disease persistence
(Dobson 2004; McCormack and Allen 2007a). Models for spatial spread among
discrete patches have shown the importance of there being at least one patch where
the disease persists (Arino et al. 2005; Allen et al. 2009; McCormack and Allen
2007b).

9.6 Conclusions

Wu and Loucks (1995) have suggested that the most significant contribution of
hierarchy theory is as a framework for explicitly incorporating heterogeneity and
scale into ecological analysis. In this chapter, we have tried to show some ways in
which hierarchical consideration of spatial (and to some extent, temporal) scale can
be incorporated into ecological analyses of zoonotic diseases. Our review of the
literature also suggests some of the opportunities in infectious disease research
resulting from the hierarchical consideration of scale but also some of the challenges.
Spatial patterns of zoonotic hosts, the pathogens they harbor, and the host-zoonosis
relationships may appear quite different depending on the scale at which we view
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them. Although patterns derived from different size scales are often referred to as
“emergent”’ patterns, it is unclear whether the newly recognized large-scale or the
small-scale patterns might not be emergent from scale levels either above or below
them. Although we could view these scales to be nested subsets of one another, it
may be more useful both conceptually and in practice, to view the patterns derived
from different scales as complementary information requiring integration, rather
than as contradictory results requiring amelioration.

One area of opportunity for the application of hierarchical concepts in zoonotic
disease ecology corresponds to scale-related questions facing the global change
research community in general; how does global environmental change, especially
global warming, manifest itself spatially? It has long been recognized that the spatial
distribution of both individuals and communities of species is linked to climate and
that these are two-way linkages; however much uncertainty remains about where,
when, and how species will respond to climate change (Potter et al. 2013). Funda-
mentally, the issue reduces to one of scale; the potential impacts of climate change
are most often conceptualized at the macroscale (i.e., regional or global) but operate
across a range of scales including those more proximate to the host or reservoir
organisms (Ashcroft et al. 2009; Diffenbaugh et al. 2005; Suggitt et al. 2011).
Adoption of the complementary, hierarchical view of scale provides a framework
to address these and similar questions in disease ecology.

Model selection among the wide array of potential formats depends on the virus-
host ecological system being investigated, data availability, and the questions to be
addressed. Many challenges remain in model formulation, analysis, and simulation
of zoonotic disease dynamics that relate to landscape and climate and the wide range
of temporal and spatial scales (Allen et al. 2012; Buhnerkempe et al. 2015;
Heesterbeek et al. 2015; Lloyd-Smith et al. 2009; Pellis et al. 2015). Addressing
the challenges of scale can be met through mathematical and computational
approaches and methods being developed in a variety of fields including computer
science, ecology, geography, immunology, genetics, mathematics, statistics, and
virology. This will require the continued close collaboration across numerous
disciplines to converge toward models that reflect the immense biological diversity
of pathogen-host ecology.
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