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Abstract. The daily use of technology has made people ever more reliant on
software. It is important these software systems are produced in a manner that is
both efficient and secure. In this context, psychological trust of software is a
pertinent aspect of research. The present study explored the relationship of
trustworthiness ratings, propensity to trust, and trait suspicion on software reuse.
In addition, we explored personality as a moderator of the trustworthiness-reuse
relationship, as hypothesized in the interpersonal trust literature [1]. We
recruited participants from Amazon’s Mechanical Turk and requested they
assess classes of Java code. Analyses revealed trait suspicion influenced
decisions to reuse code and moderated the trustworthiness-trust relation-
ship. A dual-process model of information processing was adopted for inter-
pretation of these effects. Implications include contributions to research and
theory on psychological trust, as well as practical implications for personnel
selection with regard to software production.
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1 Introduction

The integration of software systems into nearly every aspect of modern life has
increased productivity, but also vulnerability. Our reliance on these systems creates a
need for safe and secure software produced in a timely manner. This, in turn, has led to
a need for reusing software. However, little is known about how developers perceive
and comprehend code. Designing software systems with the human user in mind
requires an understanding of the factors involved in human decision-making. The
human-computer interaction literature emphasizes that systems should not be relied
upon beyond their capabilities [2]. Psychological theories of trust can help inform
software development and reuse practices by understanding the antecedents to software
reuse.
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1.1 Software Reuse and Review

Modern software production relies on source code reuse practices [3]. Frakes and Kang
[3] defined software reuse as, “the use of existing software or software knowledge to
construct new software,” (p. 529). Reusing software increases productivity by reducing
development time [4]. Systematic reuse practices can even lead to fewer software
defects in the source code [5]. However, reuse practices can lead to decreased reliability
and increased vulnerability if software is not properly vetted. Additionally, integrating
components written by different developers into a single project requires some degree
of trust in the software. Developers can choose to review code in great detail, but this is
less time-efficient. Instead, developers may perform a cursory review of the code to
make a decision.

1.2 Trust and Software Reuse

Trust is defined as the willingness to make oneself vulnerable to another [1]. Although
this definition was created for describing the interpersonal trust process, the definition
has also been applied to trust in automation contexts [2]. Recent research has investi-
gated how software characteristics can influence psychological trust in software systems
and source code [6–8]. In this context, trust is the willingness to reuse the code [6].
Reusing code makes one vulnerable, as the code may contain defects. A recent cognitive
task analysis indicated that the software, the environment, and individual differences in
the developer can influence user perceptions of software trustworthiness [6].

1.3 Heuristic Systematic Processing Model of Code

Researchers [7, 8] have developed a model of trust in software systems based on the
heuristic-systematic model (HSM) of information processing [9, 10]. The HSM was
originally developed as a model of psychological persuasion and presents two primary
ways to process information in a message, namely heuristic and systematic processing
[9]. Heuristic processing entails mental shortcuts that serve as sufficient justifications
for accepting arguments [10]. In the programming context, coders may view easily
identifiable code attributes (e.g., source of the code). These attributes serve as cues,
which influence a developer’s decision to reuse [7]. In turn, reuse can be attributed to
heuristic processing of the source cue. Systematic processing involves a detailed
analysis, requiring significantly more cognitive processing [9]. The sufficiency prin-
ciple in the HSM states that perceivers attempt to strike a balance between conserving
cognitive resources and obtaining sufficient confidence in their assessments [10]. The
sufficiency threshold is the minimum level of desired confidence about one’s judge-
ments before making a decision. When the sufficiency threshold is low, little infor-
mation is needed for a decision. When the sufficiency threshold is high, more
information is needed and systematic processing is typically employed. Individual
differences can influence one’s sufficiency threshold [7]. Some developers may tend
towards heuristic processing while others may tend towards systematic processing.
Researchers [7, 8] have suggested personality may influence developer’s information
processing strategies, leading to different reuse outcomes.
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1.4 Personality, Trust, and Software Review

Personality is the “characteristic patterns of thought, emotion, and behavior together with
the psychological mechanisms – hidden or not – behind those patterns” [11] and is a topic
of interest in the computer science literature [12]. Studies have focused on the influence of
personality on pair programming [13], team climate, and performance [14]. Although
research has explored the effects of personality on software development, no research has
explored how personality affects psychological trust in software systems. Trust is based
on the individual’s perceptions of the referent from information in the environment (i.e.,
trustworthiness) [1, 15]. Trust can be based on one’s general propensity to trust [1] or
situation specific information (e.g., interacting with a referent) [15], such as aspects of the
software [6]. According toMayer et al. [1], perceptions of trustworthiness affect decisions
to trust, and this in turn affects outcomes of trust (i.e., actual reuse of code). Therefore, we
hypothesize that perceived trustworthiness positively relates to trust intentions (H1).

Trust perceptions are not objective. Individual differences in the trustor can affect
their willingness to trust the referent, as well as the relationship between perceived
trustworthiness and trust [1]. In other words, individual differences have been
hypothesized to have direct and moderating influences on trust intentions [1, 6].
However, no research to date has explored these effects on code reuse (i.e. trust
intentions). We explored propensity to trust [1], or PT, and trait suspicion [16] as
individual differences that would have direct and indirect effects on reuse. PT is the
disposition to trust others across contexts [1]. In contrast, trait suspicion [16] is char-
acterized by uncertainty, perceived mal-intent, and cognitive activity. Participants that
have a tendency to trust others should have a higher likelihood of reusing code. We
hypothesize that PT has a positive direct effect on trust intentions (H2). In contrast,
those who have a propensity to be suspicious of others will be less likely to reuse code,
as they are inclined to seek information and be wary of potential harm. Therefore, we
hypothesize that trait suspicion has a negative direct effect on trust intentions (H3).

Trust perceptions can be influenced by individual differences [1]. Individuals high in
PT may have lower sufficiency thresholds. PT may moderate the trustworthiness-trust
relationship, as the information gained from the code should be relied on to a greater
extent. We hypothesize that PT has a moderating effect on the relationship between
trustworthiness perceptions and trust in code (H4). In contrast, individuals higher on the
cognitive activity dimension of suspicion should have a higher sufficiency threshold and
require more information about the referent to make a decision. Trustworthiness ratings
comprise perceptions of a referent. As such, the cognitive activity dimension of trait
suspicion should affect how relevant trustworthiness perceptions are for informing trust.
Therefore, we hypothesize that trait suspicion moderates the relationship between
perceived trustworthiness and trust intentions (H5).

2 Method

Subjects were recruited using Amazon’s Mechanical Turk (Mturk). Participants were
required to have at least 3 years of coding experience and have a working knowledge of
Java. A total of 45 participants were recruited. The final sample consisted of 11 (24.4%)
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females and 34 (75.5%) males, with a mean age of 29.13 years (SD = 6.57), and a mean
of 6.69 (SD = 4.99) years of programming experience, respectively. Participants
received 10.00 USD for participation in the study, which was paid through Mturk’s
worker payment system.

2.1 Measures

Trustworthiness and Trust Assessments
Perceived trustworthiness was measured with a single item asking participants, “How
trustworthy is the code?” Participants responded using a 1 to 7 Likert-type scale
(1 = strongly untrustworthy, 7 = strongly trustworthy). Trust in the code was measured
with a single item asking participants whether they would use the code or not.

Personality Measures
Propensity to trust (PT) was measured with the eight item Propensity to Trust scale
[17], which contains items measuring beliefs about everyday phenomena. Participants
responded on a Likert-type scale (1 = strongly disagree, 5 = strongly agree), a = .66.
The Suspicion Propensity Index – I [16] was used to measure trait suspicion. Partici-
pants evaluate eleven fictional vignettes on four Likert-type sub-scales (1 = strongly
disagree, 5 = strongly agree), two of which we implemented in the present study:
(1) uncertainty and mal-intent, a = .78, measuring one’s propensity to view the
motivations of others as malicious, and (2) uncertainty and cognitive activity, a = .73,
measuring one’s propensity to seek out and reflect on information about a referent they
are unsure about. Trait suspicion scores were calculated as the sum of the two facets, as
recommended by Calhoun et al. [16].

2.2 Stimuli

Stimuli consisted of images of Java code artifacts which were taken from publically
available open source Java code repositories on GitHub.com. Each artifact selected
from the overall code. Artifacts were complex enough to require review to fully
understand, but simple enough to be reviewed within approximately 10 min by an
experienced reviewer. Artifacts had 4.4% to 78.3% of their lines commented. The
commenting percentage range is reflective of the expectations Java programmers have
when reviewing code samples. Some samples need very few comments for large,
straight-forward sections, while other samples need long, multi-line comments for more
complex, possibly smaller, code segments. The artifacts were cleaned by removing
existing or references to authorship, which could influence participant trust. Cleaning
resulted in the removal or rewriting of unusual comments, as well as adjusting the code
in accordance with Java style guides [18]. This allowed us to separate the most
common commenting errors into three categories: style, validity, and placement.

The artifacts were then reviewed by outside reviewers to ensure that no additional
errors were present. The artifacts were separated such that there were two code sam-
ples, each with minimal or heavily degraded style, validity, and placement. Style
degradations resulted in adding in old code which was commented out, commenting
only some of the defined functions, or not using proper Java style for long comments.
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Validity degradations included adding new or modifying existing comments to be
incorrect (e.g., possibly indicating a code change or multiple editors), to lack useful
information, to include information relating to code that needs to be added, and to be
irrelevant. Placement degradations altered comments in ways that were against Java
conventions and included comments which were overly verbose for simple concepts.

Each artifact was displayed to participants through an online portal that collected
their responses to the trust and personality assessment questions. All stimuli were
presented to the participants in the form of images of the code, with syntax highlighting
consistent with the default highlighting of Eclipse, a widely used Java development
program.

2.3 Procedure

Participants were administered the initial surveys and then provided written instructions
for the upcoming task. Each participant was then given 18 different Java classes
ranging between 29 and 390 lines of code. Participants were asked to evaluate their
perceived trustworthiness of each Java class and then decide whether they would use
the code. Upon completion of the code evaluation task, participants were provided
remuneration for their time.

3 Analysis and Results

A generalized estimating equation approach was used for the primary analysis to
account for the repeated measures design and model the binary outcomes [19]. A model
building approach was used, successively adding and selecting those variables that
improved model fit using Wald v2 tests and comparing Quasi-information criterion
statistics (QIC) [20]. An exchangeable correlation structure was chosen to model the
residual correlation between the repeated measures.

An initial null model was run with only an intercept as a predictor to compare
successive models, QIC = 935.90. Model 1 consisted of the main effects of the four
factors, style, validity, placement, and order of stimulus presentation. None of the main
effects were significant, and the factors did not provide significant explanation of the
variance in reuse over the null model, Wald v2 (4) = 3.24, p = .520, QIC = 941.00,
and were excluded from further analyses. Model 2 regressed trust intentions onto
perceived trustworthiness. Trustworthiness, Wald v2 (1) = 132, p < .001, QIC =
373.88 was a significant predictor of reuse intentions supporting H1. Model 3 added
PT as a covariate to the model. The addition of PT was only marginally significant,
Wald v2 (1) = 2.81, p = .093, QIC = 373.64, failing to support H2. PT was thus
dropped from further analyses, and H4 was not tested. Model 4 added trait suspicion as
a main effect with trustworthiness. Trait suspicion significantly increased the amount of
variance explained in use, Wald v2 (1) = 7.22, p = .007, QIC = 369.76, supporting H3.
Model 5 included the main effects of trustworthiness and trait suspicion, along with
their interaction. The inclusion of the interaction term significantly changed the model,
Wald v2 (1) = 6.50, p = .011, QIC = 366.12, supporting H5. The intercept for the
model was not significant, b = 1.75, v2 (1) = 0.31, p = .579. Trustworthiness as a
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main effect was also not significant, b = 0.08, v2 (1) = 0.01, p = .912. The main effect
of trait suspicion had a significant negative influence on reuse intentions, b = −1.79, v2

(1) = 8.65, p = .003. The main effect was qualified with a two-way interaction. The
interaction between trustworthiness and trait suspicion was positively significant,
b = 0.38, v2 (1) = 6.50, p = .011.

4 Discussion and Conclusion

The current study explored trustworthiness perceptions, personality, and the interaction
of the two as predictors of trust (i.e., code reuse). As expected, trustworthiness per-
ceptions accounted for significant variance in code reuse. PT was not a significant
predictor. These findings may be due to the scale focusing on the general beliefs about
others trustworthiness, rather than computer mediated behaviors such as code review.
Suspicion propensity had a significant negative effect on use intentions. When
reviewing software, a developer may not yet understand the code, inducing uncertainty
with regard to its trustworthiness and reliability. Developers that tend to address this
uncertainty by seeking out and processing information about the code, while also
perceiving the potential for malicious intentions in the code, will be less likely to reuse
the code. The current study also found an interaction effect between trustworthiness
perceptions and trait suspicion. The effect was positive, suggesting that trait suspicion
strengthens the relationship between perceived trustworthiness and trust. From an
information processing perspective, results indicate that trustworthiness perceptions are
trust-relevant information about a referent that the trustee can use to inform their trust
decisions. Those that are naturally higher in suspicion, and therefore cognitive acti-
vation, should have a higher propensity to systematically process information in the
face of uncertainty. These results also support Mayer et al.’s [1] hypothesis that
individual differences moderate the trustworthiness-trust relationship. The study con-
tributes to the current literature by providing new insight for the trust process. The
study also suggests that an understanding of a developer’s personality may be useful
for personnel selection for software development teams.
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