
Human Genome Data Protection Using
PostgreSQL DBMS

Péter Lehotay-Kéry1(B) and Attila Kiss1,2

1 Department of Information Systems, Faculty of Informatics,
ELTE Eötvös Loránd University, Budapest, Hungary

lkp@caesar.elte.hu
2 J. Selye University, Komárno, Slovakia

kissae@ujs.sk

Abstract. There can be a data boom in the near future, due to cheaper
methods make possible for everyone to keep their own DNA on their own
device or on a central medical cloud. These are sensitive data. There are
a lot of cases, when genomes are contained in text files. The size of these
can even be 3 GB on every user. Secured data management is not solved
in these files.

By using database managers, the levels of permissions can be man-
aged, security and encryption is not the task of the user, because these are
integrated into the database manager systems. In this paper, we would
like to demonstrate, with the use of an open-source database manager
system and with some typical bioinformatical algorithms, that bioinfor-
matical methods can be solved with integrating them into the database
manager systems. With efficiency measurements we would like to present,
that the use of database manager systems can be efficient in more com-
plex environments.

Keywords: Bioinformatics · Biology · Cryptography · Databases
Genetics

1 Storing and Working with DNA

Deoxyribonucleic acid (DNA) is a complex molecule which contains the genetic
information. These are built up by nucleotides. Each nucleotide is built up by
3 components: nucleobases (adenin - A, guanin - G, citozin - C, timin - T), a
sugar called deoxyribose and a phosphate group.

In bioinformatics, we store DNA sequences as strings, which are composed
by the 4 characters for the 4 nucleobases: ‘C’, ‘G’, ‘A’ and ‘T’. Similarly, we can
store RNA and protein sequence data too.

Typical function on these datasets is string matching, when we are looking
for places, where a pattern occurs as a substring of a text, in our case a pattern of
nucleotides in a DNA sequence. For example the Boyer-Moore algorithm, when
we preprocess our pattern is a good choice on this task. But we can preprocess
c© Springer International Publishing AG, part of Springer Nature 2018
C. Stephanidis (Ed.): HCII Posters 2018, CCIS 850, pp. 71–78, 2018.
https://doi.org/10.1007/978-3-319-92270-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92270-6_10&domain=pdf


72 P. Lehotay-Kéry and A. Kiss

the genome too, using indexes: we can index with substrings, on suffix trees, on
suffix arrays or FM indexes.

Due to sequencing errors and natural variations it’s important when we work
with DNAs to be able to let a certain number of mismatches when we do match-
ing. For this case we must have approximate matching too. Sometimes it is
not enough, so we use sequence alignment, which is a way of arranging the
sequences of DNA, RNA, or protein to identify regions of similarity that may
be a consequence of functional, structural, or evolutionary relationships between
the sequences. For this, we can use dynamic programming.

Other typical function is the sequence assembly, when we align and merge
fragments from a longer DNA sequence to reconstruct the original sequence.
This is needed as DNA sequencing technology cannot read whole genomes in
one go, but rather reads small pieces of between 20 and 30000 bases, depending
on the technology used. We can use the shortest common superstring, overlap
layout consensus assembly or De Bruijn Graphs for this task [1].

In this paper, we made measurements on naive matching and Hash table
indexes.

2 Block Cyphers

PostgreSQL supports some block cypher algorithms. Block cyphers are working
with a transformation specified with a symmetric key on fixed-length groups of
bits, called block.

A block cipher consists of two paired algorithms, one for encryption E, the
other for decryption D, which is the inverse of E. Both will accept 2 inputs: an
input block of size n bits and a key of size k bits. Both will give a size n bit
output block.

Feistel ciphers split the block of plain text to be encrypted into two equal-
sized parts. The round function is applied to one half, then the output is XOR-ed
with the other half. After that the two halves are swapped. From the examined
ciphers, Blowfish, Triple DES and Cast-5 uses this method [2].

3 Related Works

There are some works already born on the topic of databases for bioinformatics.
In [3] an efficient scheme have been presented in PostgreSQL, and compared with
other scheme and with file based storage. In [4] measurements have been made
on the effectiveness of PostgreSQL compared to Cassandra NoSQL database. In
[5] where the authors used MySQL, presented scheme and queries. But none of
these say anything about data protection or user hierarchies.

The used and tested bioinformatical algorithms are taken from [1].
When encrypting genomes, We must consider that cyphers with 64-bit blocks

are vulnerable to birthday attacks because of the small block sizes [6]. However
when attacking the AES, witch uses 128-bit blocks, the key can be recovered
[7]. So perhaps there’s no algorithm which gives 100% protection, but we should



Human Genome Data Protection 73

not just store these sensitive information without any encryption. For genome
protection we also examined blockchain [8].

4 Results

We implemented the a library for bioinformatics, with processing methods work-
ing on encrypted genomes. It can easily be added and used in databases and
queries and it can be used for matching, aligning nucleotides and indexing.

Permissions can be set to data accesses and to module accesses and also user
hierarchy can be created.

We can crypt our genomes with chosen cipher algorithm.

5 Permissions

In PostgreSQL, we can use roles to manage access privileges. Roles can act as
users, groups or both. Roles can own database objects and can manage the
permissions on these objects.

Creating, dropping roles and can get the existing roles from the pg roles catalog:

CREATE ROLE name
DROP ROLE name
SELECT rolname FROM pg_roles

A fresh system always contains a predefined role, which is always superuser
and has the same name as the OS user, who initialized the cluster. Be careful, a
superuser can bypass any permission checks. As a superuser, we can create more
superusers. Being a superuser is a role attribute. The superuser has all these
privileges.

Example attributes: superuser, permission to log in, to create databases, roles
and setting the password:

CREATE ROLE name SUPERUSER
CREATE ROLE name LOGIN
CREATE ROLE name CREATEDB
CREATE ROLE name CREATEROLE
CREATE ROLE name PASSWORD ‘string’

These attributes can be modified after the creation of the role using ALTER
ROLE. Every object has an owner. Normally the owner is the role that has cre-
ated the object. By default, only the owner or superuser can do anything with
the object. Permissions must be set to change this. There are a lot of privi-
leges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES,
TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, USAGE and
ALL for all privileges. Now we won’t discuss all of these. The GRANT com-
mand can be used to set permissions. PUBLIC keyword can be used to give the
permission to everyone on the system. We can revoke privileges using REVOKE.



74 P. Lehotay-Kéry and A. Kiss

Grant and revoke privileges:

GRANT privilege ON object TO role
REVOKE privilege ON object FROM role

If we want to use groups, we must first create a role. These usually don’t have
LOGIN role. Every member of the group can use SET ROLE to temporarily use
the privileges of the group and objects created by the user role are considered
to be owned by the group. Moreover roles that have the INHERIT attribute,
automatically can use the privileges of their groups.

Add and remove roles to the group:

GRANT group_role TO role1, ...
REVOKE group_role FROM role1, ...

In our cases, superusers would be database engineers, and the genome of the
users would be stored encrypted, to not let the superuser read them without
the symmetric key: the password. The users would be the owners of their own
genomes.

6 Genome Crypting

In PostgreSQL, we can use the pgcrypto extension to encrypt genomes. This
module provides cryptographic functions, like digest() and encode() computing
the binary hash of the given data, or hmac, which works only with a key. For
password hashing we can use crypt() and gen salt() (Fig. 1).

Fig. 1. Naive matching on 792 KB encrypted genome with different divisions into rows:
x: number of rows/number of characters in each, y: time in ms



Human Genome Data Protection 75

This module supports both symmetric-key and public-key encryption. We
are using symmetric encryption, where the user will have a password and the
user will store one’s genome encrypted with that password. This encryption will
be done by pgp sym encrypt(), decryption will be done by pgp sym decrypt().

When encrypting, we chose cipher algorithm, set it with ‘cipher-algo’ option,
which provides bf, aes128, aes192, aes256, 3des, cast5. Based on the measure-
ments, overall we can say, we will generally have slower algorithms with 3des.
The others were similar. Moreover, based on the measurements, with the grow-
ing number of rows to decrypt, the distance between the basic and encrypted
algorithms will grow. But on one row the encrypted version is not much slower.
Usually we won’t use much rows.

Blowfish (bf) is a 16-round Feistel network with a 64-bit block size and a
variable key length from 32 bits up to 448 bits [9].

AES is based on the Rijndael encryption, used by some international orga-
nization like banks. Block size is 128-bit, key size 128-bit for AES128, 192 for
AES192 and 256 for AES256 [10].

Although Triple DES (3des) is slower than the others, it gives good protec-
tion, used in the electronic payment industry too. It is not a completely new
block cypher algorithm, it simple uses three DES keys, K1, K2 and K3, each of
56 bits on 64-bit blocks [11] (Fig. 2).

Fig. 2. Querying the index of a 792 KB encrypted genome with different stored kmer
lengths: x: kmer, y: time in ms

Cast5 is a 12- or 16-round Feistel network with a 64-bit block size and a key
size of between 40 and 128 bits. It is the default cipher in some versions of GPG
and PGP [12].



76 P. Lehotay-Kéry and A. Kiss

Bad news about encrypted genomes that we tried some measurements using
encrypted hash indexes too, in classical hash table style. But it was slower than
the naive match because of the lot of rows and the lot of decryption.

We can solve this issue, if we put an index of a whole cell into a single cell.
We convert the index into a json string and we encrypt that whole index into
one cell.

In the hash index we store every kmer of the genome in sorted order and for
every kmer the offsets.

Then when querying the index, we convert back, decrypt and process the
index of the cell.

We can see that, our results are depend very much on how we chose k.
Without encryption k= 6 is the best, but with encryption k = 7 is the best. Here
3Des is the slowest, too. But differences comes out much more on the cipher
algorithms. Now we can clearly see that AES is the fastest, BF is the second,
CAST5 is the third.

7 Genome Compression

We can use compression algorithms too, we can set the compress algorithm with
‘compress-algo’ option, which provides ZIP or ZLIP compressions. They usually
have really similar compression result. We can also set the compression level with
‘compress-level’ option. PostgreSQL has some basic compression mechanisms
(Fig. 3).

Fig. 3. Compression of 792 KB genome with different divisions into rows: x: number
of rows/number of characters in each, y: overall table size in KB



Human Genome Data Protection 77

What we can see here, we tried to store a 792 KB excerpt from the human
genome in multiple ways. When we stored the whole in a single cell, the com-
pression worked, but as we have divided the genome into more cells, and put
smaller parts into the cells, the size grew, and in the end, became bigger than
the source file. We can see that too, ZIP worked a little better on small parts,
but ZLIB was a little faster in decompression.

With the basic compression mechanism we had the index table on 4,300 KB,
but we could make it smaller with zip and zlib to 2,850 KB.

With the basic postresql compression, the whole 3,205,606 KB human genome
has been stored on 1,181,802 KB, with ZLIB it has been decreased to 939,851 KB,
with zip, it has further decreased to 939,835 KB.

8 Future Work

We are planning to extend the library with further functions, like faster up
indexes, and will make it available it for free usage on more platforms. Moreover,
we will compare the features of this PostgreSQL solution with solutions in other
database manager systems. We will develop an online test user interface too. We
will include the usage of blockchain on bioinformatical data.

Acknowledgment. The project was supported by the European Union, co-financed
by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

References

1. Bockenhauer, H.-J., Bongartz, D.: Algorithmic Aspects of Bioinformatics. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71913-7

2. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2014)

3. Lichtenwalter, R.N., Zorina-Lichtenwalter, K., Diatchenko, L.: Genotypic data in
relational databases: efficient storage and rapid retrieval. In: Kirikova, M., Nørv̊ag,
K., Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 408–421.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66917-5 27

4. Aniceto, R., Xavier, R., Guimarães, V., Hondo, F., Holanda, M., Walter, M.E.,
Lifschitz, S.: Evaluating the Cassandra NoSQL database approach for genomic
data persistency. Int. J. Genomics 2015 (2015)

5. Rice, M., Gladstone, W., Weir, M.: Relational databases: a transparent framework
for encouraging biology students to think informatically. Cell Biol. Educ. 3(4),
241–252 (2004)

6. Bhargavan, K., Leurent, G.: On the practical (in-) security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 456–
467. ACM (2016)

7. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 19

https://doi.org/10.1007/978-3-540-71913-7
https://doi.org/10.1007/978-3-319-66917-5_27
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19


78 P. Lehotay-Kéry and A. Kiss

8. Mytis-Gkometh, P., Drosatos, G., Efraimidis, P.S., Kaldoudi, E.: Notarization of
knowledge retrieval from biomedical repositories using blockchain technology. In:
Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered
by pHealth and Connected Health. IP, vol. 66, pp. 69–73. Springer, Singapore
(2018). https://doi.org/10.1007/978-981-10-7419-6 12

9. Schneier, B.: Description of a new variable-length key, 64-bit block cipher (Blow-
fish). In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 191–204. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-58108-1 24

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04722-4

11. Barker, E.: SP 800–67 Rev. 2, Recommendation for Triple Data Encryption Algo-
rithm (TDEA) Block Cipher. NIST Special Publication 800:67 (2017)

12. Adams, C.: The cast-128 encryption algorithm (1997)

https://doi.org/10.1007/978-981-10-7419-6_12
https://doi.org/10.1007/3-540-58108-1_24
https://doi.org/10.1007/978-3-662-04722-4

	Human Genome Data Protection Using PostgreSQL DBMS
	1 Storing and Working with DNA
	2 Block Cyphers
	3 Related Works
	4 Results
	5 Permissions
	6 Genome Crypting
	7 Genome Compression
	8 Future Work
	References




