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Abstract. In this article, the efforts made by the Vocalizer project development
team to correct errors from texts generated by OCR Tesseract are described.
Vocalizer consists of a device that captures images from books, converts them
into plain texts with the aid of an OCR (Optical Character Recognition) soft-
ware. It also prepares the post-processing of the obtained text, and converts its
textual content into voice. The whole process is performed autonomously. In the
post-processing step, a modified Needleman-Wunsch algorithm was applied to
select the suggestions made by the spellchecker PyEnchant. The results obtained
were reasonable, which encourages further research.
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1 Introduction

Brazilian government made great efforts aiming at the inclusion of people with visual
impairment in the Educational System. Since 2012, Brazilian government invested in
voice scanners, which resulted in high costs, and did not fully satisfy the national
requirements.

Hence, Brazilian government launched a public call for voice scanner projects that
meet the national requirements. Feevale University (Novo Hamburgo city, Brazil) and
Pináculo company (Taquara city, Brazil) participated and won the public bid for the
development of a project called Vocalizer.

Vocalizer project aims to develop a device that provides autonomy for visually
impaired people. The project proposal includes an equipment for capturing and the
transforming images into a plain text using the Tesseract OCR software [1], a
post-processing step, which handles errors, and a final step of speech synthesis, which
uses a vocalization software. One of the goals which guide the development of the
device is that must be economically affordable.

This article describes the post-processing module and the strategy used to correct
common errors from the output of Tesseract OCR. The adopted error handling strategy
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uses a generic spell check library called PyEnchant [2]. This library provides a list of
words as suggestions for misspellings, which combined with an algorithm selects the
best word. This algorithm uses a heuristic selection based on the algorithm
Needleman-Wunsch [3], which was adapted to consider the most frequent errors gen-
erated by the OCR. This article describes, also, technical difficulties encountered during
the correction of errors, as well as the solutions adopted to reduce the error rate during
the process of obtaining the plain text used as source for the vocalization software.

2 Related Work

Volk et al. [4] used a set of regular expressions which constituted substitution patterns.
These expressions are constructed based on the analysis of an extensive corpus of
literature. These standards are used under certain conditions to minimize false posi-
tives. This approach classifies substitutions into three categories: the first is if the
substitution frequency is at least twice as high as the misspelled word in the corpus,
then substitution can be made; the second considers the options gathered for the
substitution in the corpus, hence the one with the highest frequency is chosen; and the
third category is the unconditional substitution.

Kissos and Dershowitz [5] used a module designed to generate correction sug-
gestions based on the modified Levenshtein distance, in which other primitive editing
operations (merging and division of characters), also known as alignments of 2:1 and
1:2, are used. Such method inserts in the list of suggestions situations in which
exchanges such as ‘ln’ for ‘h’, and ‘m’ for ‘nn’ occur.

Tong and Evans [6] used a bigram technique in statistical language models. The
system gets information from multiple sources including letter n-grams, character
confusion probabilities, and word bigram probabilities. Words with 4 or fewer letters
are also indexed by their letter bigrams. For example, “that” produces the following
bigrams {#th, tha, hat, at #, th, ha, t #}.

Nylander [7] used statistics to find unanticipated frequent trigrams and phonotac-
tical rules. The author did not use lexicons. She aimed at identifying errors and not
fixing them for later proofreading.

Bassil and Alwani [8] proposed the use of a post-processing context-based error
correction algorithm for detecting and correcting OCR non-word and real-word errors.
This algorithm was based on Google online spelling suggestions.

3 General Description

One of the project steps is the use of an OCR software to transform the images obtained
by the image capturing equipment into plain texts. Tesseract is the OCR software
adopted for this project. This is an open-source optical character recognition software
under the Apache 2.0 License. There are many challenges to using OCR software for
reading book pages. Thick and multi-page books can generate reading errors, in addition,
different types of lighting can make it difficult to recognize certain regions of pages as
well. Due to these factors, Tesseract cannot have 100% character recognition accuracy.

4 E. Cappelatti et al.



One of the recognition problems is the occasional swap between two letters, such as
‘a’ recognized as ‘o’, ‘f’ recognized as ‘t’, ‘c’ recognized as ‘e’, and so on. Other errors
involve replacing a group of letters with a single letter or replacing one group of letters
with another group of letters. This can be exemplified by the swapping of ‘r’ and ‘n’ by
‘m’, ‘f’ and ‘i’ by ‘h’, ‘m’ and ‘l’ by ‘n’ and ‘d’. Other recognition problems result in a
diverse range of different characters. In these cases, recovery is very difficult or
impossible.

The first effort to post-correct the OCR errors was to develop a simple routine
which uses the PyEnchant spell checking software method. Such method provides a list
of suggested words to repair a specific misspelling. However, two problems were found
with this approach. Primarily, the first word suggestion is not usually correct, but in
another position of the suggested words list. Thus, choosing the first word from the list
has become out of question. Secondly, in others cases, the suggested words list did not
even contain the correct word. Considering this, any word choice would be wrong.
Therefore, two others problems had to be addressed: (1) identify which words in the list
is most appropriate to replace the word mistakenly recognized by the OCR and
(2) increase the chances of the correct word being present in the suggestions list.

3.1 Selecting the Best Word from the OCR Tesseract List of Suggestions

Each word recognized by the Tesseract OCR application was submitted to PyEnchant
spell checking software. For each word that resulted in an error code by the software, a
suggestion list was formed by the suggest() method of the checker object. Then it was
necessary to choose which word from the list was the closest to the word identified as
wrong by PyEnchant. Table 1 shows examples of lists suggested by PyEnchant for
words identified as errors.

In order to establish the distance between each word in the list and the word with
errors, the first hypothesis is the use of Levenshtein algorithm to calculate distances [9].
This algorithm defines ‘distance’ as the minimum number of unit operations required to
transform one string into another. However, due to the high substitution frequency,
such as ‘c’ by ‘e’ when compared to others such as ‘c’ by ‘:’, and the high substitution
frequency between groups of letters by a single letter, such as ‘r’ and ‘n’ by ‘m’, in
addition to substituting groups of letters by other groups of letters, this algorithm was
discarded.

The second hypothesis is Needleman-Wunsch algorithm [3]. It has weights for
positive and negative identifications, as well as for gaps. Nevertheless, the algorithm

Table 1. Examples of word lists suggested by PyEnchant.

Wrong
word

Correct
word

List of suggested words

Deseubra Descubra ‘desabra’, ‘descubra’, ‘dessaibra’, …
Lmpõe Impõe ‘lampie’, ‘limpe’, ‘limpo’, ‘lumpo’, ‘limpou’, ‘limpei’, ‘empoe’,

‘impõe’, …
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had to be modified to accommodate different substitution probabilities, and to consider
substituting groups of letters for one letter or groups of letters for other groups of
letters. The issue of the substitution of letters groups had already been identified by
Volk et al. [4]. A different approach which uses substitution patterns elaborated using
regular expressions, was adopted by them.

The Needleman-Wunsch global alignment algorithm constructs a matrix of E
scores using the dynamic programming technique for two sequences A and B. As the
algorithm advances, the score matrix is filled with the optimal alignment score between
the m first characters of A, and the n first of B. This score is determined as the largest
value among the threefold calculated values: E[i − 1, j] + g, E[i − 1, j − 1] + p(i, j),
and E[i, j − 1] + g, where g is the punctuation for the insertion of a gap, and p(i, j) is a
function that returns a value, if the letters match, and a different value, if they mismatch
[10]. A table of typical scores for the Needleman-Wunsch global alignment algorithm
can be seen in Fig. 1.

Thus, the alignment scores were elaborated considering the substitutions made, and
taking into account the occurrence and frequency of the letter sets identified in the
corpus analysis. Firstly, previous statistics of the most common substitutions were
found. In order to do this, a set of pages from books was typed, so text files could be
compared with the text returned by the OCR. A Python script for text comparison
returned the words which differed from where the most common substitutions were
extracted. The substitutions frequency determined the score value used in the algo-
rithm. In addition, common substitutions among groups of letters were identified, and
formed a scoring basis for these groups. Figure 2 shows an excerpt from the scoring
table using the modified algorithm.

Fig. 1. Typical score table used in the Needleman-Wunsch algorithm

Fig. 2. Scores used in the modified algorithm.
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The alignment algorithm was modified to consider not only one letter but also
2-letter sequences in its score. As the algorithm advances the score matrix gets filled. It
takes into account the current character, but in some cases the subsequent character as
well. As in the original algorithm, once the scoring matrix is obtained, one moves from
the lower right position towards the upper left position, inserting gaps when necessary.
The score is obtained in accordance with three possible cases:

(1) if there is a match, the score for it is added to the total score of the alignment;
(2) if there is a gap, the score for it is added, however, if there are more than two gaps

in a row, the scores from the second gap are considerably higher;
(3) if there is a match between a letter and a group of letters or a group of letters and

another group of letters, the score is obtained from a scoring table, according to
the occurrence frequency established for those letters.

The score for the word from the spell-checker suggestions list is then determined.
The word with the highest score in the list is the one which will be chosen for the
substitution.

For example, by applying the alignment in the word ‘dinasua’ the following list is
obtained:

[dina sua, dina-sua, dinas, Danúsa, dinasta, dinastia, dianas, dionas, donas, duinas, dunas,
dionísia, donosa, násua, Dinís, danas, densa, densa-a, dinamia, dines, dinos, Dinísio, dônias,
danesa, danosa, densai-a, diénias, duanas, Diana, danais, densai, diana, danasse, densou-a,
dincas, dindas, dingas, disnas, diapausa, dinda-a, NASA, Nasa, densou, dienos, diense, dina,
diniés, disa, difusa, rinusa, danasse-a, dinastas, disna, dissana, dana-as, dana-se, dassa, densada,
densara, densava, dense-a, denso-a, diesa, diesa-a, diosa, disué, nassa, densa-o, dindou-a,
danou-as, dana-a, dana-os, diesai-a, dindasse-a, danou-a, diesou-a, dinda-se, dane-as, dano-as]

In this case, word ‘dinastia’ got the highest score and the correction is successful.
However, this is not always the case. Sometimes the word poorly recognized by OCR
also exists in Portuguese, hence the algorithm does not detect the need for correction.
There are also cases in which a Portuguese word is more similar to the wrong one than
the word in the original text. For instance, the word ‘gorros’ recognized by the OCR as
‘gurros’ achieves higher scoring in the element ‘guarros’ of the list. This is because a
gap scores less negatively than a mismatch.

3.2 Improving the List of Suggestions by PyEnchant

In some situations, the list of suggestions does not have the correct word. This is due to
some reasons: the modified word recognized by Tesseract, or the initial letters word
change, makes PyEnchant SpellChecker provides a set of suggestions far from the
desired word. In order to solve this issue, a heuristic routine was implemented. First, it
identifies sets of letters that can be unambiguously replaced by other word set from
Tesseract identification. Then, the word identified by the modified Tesseract is sub-
mitted once more to PyEnchant, which results in a second list of suggestions. The first
list of suggestions is then concatenated with the second and submitted to the modified
Needleman-Wunsch algorithm. The highest scoring word is then chosen. Experiments
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performed revealed significant improvement in the OCR error correction rate. Figure 3
shows the Vocalizer post-processing steps.

The heuristic routine contains an identified set of likely modifications. These are
usually at the beginning or at the end of the words and are performed to obtain a second
list of the spelling checker. Examples of likely substitutions are ‘gcnc’ by ‘gene’ at the
beginning of words, and ‘enlo’ by ‘ento’ at the end of words.

An example which illustrates the heuristic routine can be seen as follow. The word
erroneously identified by OCR was ‘Cncurrcgada’. The correct word should be ‘en-
carregada’. When submitted to the PyEnchant spellchecker the return is the following:

[Cancricida, Cancrocida, Cancericida, Concrecionada]

The correct word is not in the list and the reason is that both the beginning and the
end of the word are incorrect. The heuristic routine changes ‘rcgada’ by ‘regada’ by
supplying the spell-checker with a new word: ‘Cncurregada’. This resulted in a second
list provided by PyEnchant:

[encarregada, encarregadão, encarregado, concretada, concurvada, encarregadas, encargada,
encarregado-a, encarregadura, encarregar, encarrega-a, encarregara, encarregava, encorrugida,
encarregai-a, encarregado-o]

The lists are concatenated, and the following list is obtained:

[encarregada, encarregadão, encarregado, concretada, concurvada, encarregadas, encargada,
encarregado-a, encarregadura, encarregar, encarrega-a, encarregara, encarregava, encorrugida,
encarregai-a, encarregado-o, Cancricida, Cancrocida, Cancericida, Concrecionada]

Once processed by the algorithm, it returns the word ‘encarregada’. In some cases,
success is not achieved because words more similar syntactically may punctuate more,
and its depends on how bad the word identified by OCR is damaged.

Fig. 3. Post-processing steps
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4 Results

Seven books were scanned, resulting in an initial set for testing algorithm. For each
book a set of 20 pages was correctly typed so amount of errors could be evaluated. An
evaluation of the text obtained by OCR was made comparing with the original text
generating the number of different characters found. From these differences, the esti-
mated difference was between 1.085% and 2.679% for texts in Portuguese and 4.77%
for text with words in a foreign language.

Regarding the study, words separated by spaces or attached to each other were not
considered because they were not treated by the algorithm. In addition, words which
were so damaged that no recovery effort would be possible, such as ‘|:`lânicos’ when
the correct word would be ‘britânicos’, were not treated. Further evolution of the
algorithm should be considered for these cases. Some tests results are shown in
Table 2.

If words considered extremely damaged were taken into account, the success
percentages would decrease. Nevertheless, this issue must be addressed in a better
reading and illumination images capturing. During the project, the reading improved
considerably, nearly eliminating these situations.

5 Conclusions

Results obtained were reasonable, especially after inclusion of the heuristic routine in
the algorithm to repair the words before a second submission to the spell checker.
Considering the errors caused by the OCR were less than 3% for Brazilian literature
texts, and 4.77% for texts with words in another language, the algorithm was capable
of providing a text which was possible to be understood reasonably by visually
impaired people. Further studies should be carried out aiming the treatment of words
broken between spaces and words attached to others. The corpus used to create the
substitution base should be expanded as more books are scanned and handled with the
OCR tool.

Table 2. Percentage of success in applying the algorithm.

Number of letters
with error

Example
Wrong word/correct word

Percentage of success

1 ‘‘deseubra’/‘descubra’ 48.96%
2 ‘dinasua’/‘dinastia’ 31.18%
3 ‘Cncurrcgada’/‘Encarregada’ 11.32%
>3 ‘biblioteca’/‘biblimcca’ 8.81%
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