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Abstract. How can a social robot get physically close to the people it
needs to interact with? We investigated the effect of a social gaze cue
by a human-sized mobile robot on the effects of personal space invasion
by that robot. In our 2× 2 between-subject experiment, our robot would
approach our participants (n = 83), with/without personal space inva-
sion, and with/without a social gaze cue. With a questionnaire, we mea-
sured subjective perception of warmth, competence, and comfort after
such an interaction. In addition, we used on-board sensors and a track-
ing system to measure the dynamics of social positioning behavior. While
we did find significant differences in the social positioning dynamics of
the participants, no such effect was found upon quantitative analysis of
perception of the robot. In a subsequent inductive analysis we further
investigated these results, our findings suggesting that the social cue did
play a role for the participants – particularly related to their perceived
safety.
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1 Introduction

As mobile robots are used increasingly often in everyday social settings, the
design of appropriate robot behaviors has become more and more relevant. While
the contexts can vary significantly, all these robots need to know how to position
themselves in relation to people in a way that supports the intended interaction.
Ideally, we can design robot social positioning behaviors that allow for smooth
and efficient interactions, that feel natural to the people being interacted with.

Most prior work on social positioning for robots has treated this in a static
way by trying to find the appropriate distance or positioning depending on a
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variety of factors that can be established at the beginning of the interaction.
This seems to be rooted in the idea that it should be avoided that the robot
‘gets too close’, i.e. conducts personal space invasion (PSI). For example, earlier
work has resulted in tables giving stopping distances to be used depending on
factors such as human-likeness and height of a robot [1], and suggested that
appropriate stopping distance may also depend on agreeableness or previous
experience with animals or pets of the person being interacted with [2].

At the same time, social positioning behaviors can be highly dynamic during
interactions. We can get really close, up to the point of “PSI”, to someone we do
not know well if we are sharing a secret, or if the environment is noisy, or if they
have hearing problems. Similarly, people have been found to take the percep-
tional limitations of a robot into account in their own proxemic preferences [3].
In line with the later work on social positioning in human-human interaction
(see e.g. the extensive 1987 review from Aiello [4]), this suggests that the appro-
priate interaction distance is something dynamic that can change several times
during an interaction. In all these interactions signals are given to indicate to
ones communication partner the current appropriateness of a chosen position
(social feedback cues), as we have argued previously [5].

In this work, we investigated how a mobile robot (see Fig. 1) can provide a
brief feedback cue to make the social positioning dynamic more smooth. Specifi-
cally, we tried to use a brief gaze change to allow a robot to conduct “PSI” with-
out making the interaction less comfortable for the human user. This allowed
for the investigation of the effect of using such a brief social cue on the overall
interaction smoothness and the social perception of the robot. While this specific
task was designed for research purposes, similar tasks could be used in real-life
applications, e.g. in airports, institution entrances (including university), stadi-
ums, or concert halls, where a robot could be used to provide assistance, if such
a desire is signaled by the human user. As such, our main research question can
be formulated as follows:

What are the effects of a robot’s PSI and/or gaze change on:

1. the way in which people respond to that robot’s approach by moving away
from (or towards the robot)?

2. the perception of the robot in terms of warmth, competence, and discomfort?

The remainder of this paper is structured as follows. We will first discuss related
work on PSI, gaze change, and measures of social perception, resulting in a specifi-
cation of our hypotheses (Sect. 2). We will then discuss our experimental set-up in
detail, including a description of the autonomous robot behaviors we implemented
(Sect. 3). While we did not find effects on the perception of the robot, as assessed
by questionnaire, we did find effects on participants’ behavior – which we further
investigated in our qualitative analysis (Sect. 4). Our findings show that, indeed,
even a brief social feedback cue, such as a gaze change, plays a role in how PSI
is perceived and responded to – providing an argument for the use of such social
feedback cues in designing behaviors for social robots (Sect. 5).
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Fig. 1. The experiment, as seen from the two different cameras.

2 State of the Art

Much of the existing work in social positioning for robots is based on two theories
on social positioning in humans. Proxemics, a term coined by Hall in [6], focuses
on the distances people use in social interactions. F-formations, as introduced
by Kendon [7], describe the different spatial arrangements used by people. As
proxemics and F-formations would predict, many different social situations can
be distinguished based on only position and orientation information (e.g. [8,9]).

Previous work has applied and investigated proxemics and F-formations in
the context of robotics. This work often treats social positioning as something
mostly static. For example, several authors have tried to establish the ‘appro-
priate interaction distance’ depending on a variety of factors, such as height and
human likeness of the robot [1] as well as personality traits of the person being
interacted with [2].

Interestingly, when we look at later work on social positioning in humans, it
is treated more as a social dynamic, that can change during an interaction and
that can carry communicative meaning within that interaction [4]. Information
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can be (non-verbally) transmitted about social positioning via responsiveness,
as we argued in [5], by the usage of social feedback cues.

In the literature, there are only a few examples of artificial agents utiliz-
ing social feedback cues to influence the dynamics of social positioning. Recent
work by Mead and Matarić [3] found that robots can effectively signal their
(perceptual) needs to influence the proxemic preferences of people with whom
they are interacting. Using a virtual agent instead of a physical robot, Kastanis
and Slater [10] have also investigated ways to influence the proxemic preferences
of people; they trained an agent to position itself such as to most effectively
cause participants to move to a particular position in a space. Work by Jung
et al. investigated human-robot teamwork and found that when their robots
used back-channeling, this improved team functioning, though it also decreased
perceived competence [11].

Facial features represent a key component of any social interaction, because
they are easily recognizable and offer important cues regarding the inner states
of the involved social actors. There exists a range of work in which artificial
‘facial’ features are used effectively as social feedback cues for non-mobile robots.
Consider, as an example, the Baxter robot, discussed in [12], which is equipped
with a screen which displays a pair of animated eyes and eyebrows. Even though
the animations are limited to changing the angles of the eyebrows, opening and
closing the eyes and moving the pupils, this is enough to signal to the human
user whether or not the robot has understood the task.

In addition to these animations of facial features, there has also been work
looking more specifically into the effects of different gaze behaviors. Recent work
found that users feel more at ease with a robot that maintains visual contact
while the task is being performed [13]. In contrast, in a human-human object
handing interaction, the approaching human was found to be expected to main-
tain eye contact just towards the end of the interaction [14]. Other work has
investigated and found gender effects, showing that women tend to position
themselves further from a robot if it is constantly looking at them [2].

In all, though much work remains to be done, the prior work shows that
people are sensitive to the social feedback cues used by robots and suggest that
the use of face-inspired features – specifically gaze – can be an especially effective
social feedback cue.

2.1 Social Perception Measurement

Because robots are more and more present in our day-to-day life, being able to
correctly measure the way they are perceived has become increasingly impor-
tant. Existing research shows that people have the tendency of making social
category judgments, similar to the way they do in human-human interactions,
based on the physical appearance, gender, race or nationality of the robot [15].
Furthermore, there is strong indication that people anthropomorphize robots,
assigning human characteristics to them, especially when human characteristics
are accessible and applicable [16]. As such, an interesting aspect to measure is



370 S.-D. Suvei et al.

the association of characteristics and traits based on the features or the perceived
social category membership of the robot.

Literature on social psychology has also shown that two of the main drivers
for the judgment of other humans are warmth and competence. The main reason
for this is because these attributes link to basic survival instincts − we quickly
evaluate if another person wants to harm us and if they are capable of doing
so [17]. Furthermore, different combinations of competence and warmth will
evoke an array of different other emotions, such as discomfort, pity or envy [18].
As shown in [19], there is strong indication that warmth and possibly other
social attributes are important factors that can affect the perception of a robot.
A method that offers the means to asses the central attributes implicated in
human perception of robots and how such attributes can influence human-robot
interactions is the Robotic Social Attributes Scale (RoSAS), presented in [20].
The RoSAS is a psychologically valid, 18-item scale, that was constructed using
items from the Godspeed Scale [21] combined with key ideas taken from the
psychological literature regarding social perception. The advantage of this scale
is that it is psychometrically validated and it can be used to measure different
types of robots, disregarding their purpose.

2.2 Hypotheses

Based on the existing literature on social positioning, we would expect that PSI
has a negative effect on the interaction - causing the participant to step away
and perceive it more negatively (which we will measure with the RoSAS). At
the same time, there is work suggesting that we can leverage the dynamics of
interactions to mediate this effect. More specifically, we show that by using gaze
change as an appropriate social feedback cue, the robot can make its PSI less
intrusive. Combined, this leads to the following hypotheses:

Hypothesis 1: When a robot conducts PSI without a social cue, as compared
to not conducting PSI without a social cue, we expect people to:

a. step away from it, and;
b. perceive it more negatively in terms of warmth, competence, and discomfort.

Hypothesis 2: We expect an interaction effect between PSI and social cue (gaze
change), such that the social cue ‘compensates’ for the PSI, leading people who
experience both PSI and a social cue (gaze change) to:

a. step away from it less, and;
b. perceive it more positively in terms of warmth, competence, and discomfort.

3 Method

To test the proposed hypotheses, we conducted a 2× 2 between-subject exper-
iment. Our autonomous robot (Sect. 3.1) approached the participant in the
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Fig. 2. The displayed social gaze cue.

context of potentially providing assistance to the user (Sect. 3.2). During the
approach we manipulated PSI by the robot, as well as the use of gaze change
as a social cue (Sect. 3.3). To collect our data, we used a questionnaire, a semi-
structured interview, and several sensors for objective measures (Sect. 3.4).

3.1 Robot

The robot used in the experiments is a human-sized mobile robot (see Fig. 1),
build within the Teresa project [22]. The system was build on top of the Giraff
robot platform, with a new shell, and additional sensors, including: two RGB-
depth cameras (Asus Xtion) and two laser range scanners (Hokuya LIDAR).
A full description of the platform can be found in the Teresa project deliver-
ables [23]. The platform is further equipped with a screen at head height, which
can be used for telepresence by showing a live feed of the remote user. For the
purpose of our experiment, the screen was used to signal the social feedback cue
in the form of a short animation which changes the gaze of the robot’s eyes, as
shown in Fig. 2.

The behavior displayed by the robot was autonomous, combining person
detection with navigation. The method works by detecting the participant in the
scene, computing his/her position in the map coordinate frame and generating
an appropriate goal position that will allow the robot to approach the human
with PSI or without, depending on the condition (see Fig. 3). Before driving to
the generated goal position, the robot displays the gaze-change animation on
the screen, depending on the condition. Four seconds after the robot reached the
goal position the LEDs on the base of the robot would light up green to signal
the end of the experiment. Our person detection algorithm was build based
on existing code and combined leg detection based on the laser range finder
data (wide range) with upper-body tracking based on the RGB-depth data (also
providing information on posture). We used map-based navigation. The map
of the environment was built beforehand, using the laser range scanners and
the Simultaneous Localization and Mapping [24] method. The robot uses the
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Fig. 3. The behavior of the robot, as displayed in Rviz. The red arrow represents the
goal position for the robot and it is computed relative to the position of the detected
participant. (Color figure online)

Monte Carlo [25] algorithm to self-localize in the map and the ROS move base
framework for navigation. The speed of the robot was limited to 1 m/s.

3.2 Task

Given our research questions, the task necessitated a form of ‘PSI’. To avoid an
effect of any additional motions, we aimed for a task in which the only required
action was a spatial positioning by the robot. For this reason, we designed a
close-up approaching task, with the purpose of potentially providing assistance
to the user. In the task, participants were told that the robot would approach
them to potentially offer assistance (see Fig. 4). While free to move around the
test area, the participants were advised to wait for the robot to approach them.

3.3 Manipulations

We manipulated two factors; approach distance [PSI/noPSI], and the giving
of a social cue [GAZE/noGAZE]. This resulted in four conditions, PSI-GAZE,
PSI-noGAZE, noPSI-GAZE, and noPSI-noGAZE.

Approach Distance [PSI/noPSI]: During the approach the robot would navigate
to a location at a given distance to the participant. To have the robot conduct
PSI (or not), we manipulated this distance. Based on the related work discussed
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Fig. 4. Overview of the experiment area.

above and pilot testing, we expected distances below 45 cm to be perceived as
a (strong) PSI. Therefore, we used a distance of 20 cm for the PSI conditions,
and a distance of 50 cm for the noPSI conditions.

Social Cue [GAZE/noGAZE]: During the approach, an animation of two eyes
would be shown on the screen of the robot. To have the robot provide a social
cue, we manipulated the apparent gaze direction of these eyes (see Fig. 2). Since
the eyes were shown on a 2D screen, we did not manipulate actual gaze direc-
tion; instead we used an emphasized animation of the pupil position to suggest
apparent gaze direction.

In our prior empirical tests, we saw that a change of the apparent gaze
direction from “to the user” to “down, in front of the user” felt like the robot
was giving a social cue – which aligns with the related work discussed above. For
the noGAZE condition, we used the eyes with a gaze “to the user”, which would
not change during the interaction. For theGAZE condition, we would start the
interaction with eyes “to the user”, changing to “in front of the user” as the
robot would start its approach. This change was fast, which meant that it could
potentially be missed if participants were not paying attention, but our informal
prior tests suggested that making the apparent gaze change slower would feel
more as awkward than as a social cue.

3.4 Measures

Objective Measures. To allow us to determine how much the participants
stepped away from the robot, we recorded the movement of the participants. For
this we used both the on-board sensors, and an external system using markers
(OptiTrack). In addition, we also collected video data.
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On-Board Sensors. For each experiment, the Xtion sensor and the laser range
scanner were tracking and recording the movement of the participant. The track-
ing data is based on the 3D sensor depth information, by computing the XY -
position of the human in the map, relative to the robot’s base, once the robot
has reached its goal position.

OptiTrack. The participant was equipped with two markers (one on the back
of the chest, one on a cap), which were tracked using the OptiTrack motion
capture system using 8 infra red cameras. The robot also had a marker, located
on its screen. The system used allows sub-centimeter level precision tracking
of the position and orientation of those markers. In our set-up we found that
the system did not always reliably detect the markers, presumably because of
occlusions and reflections on the shell of the robot.

Video Recordings. Two cameras recorded the interaction, providing a side view
and a view on the face and upper body of the participant. These cameras were
also used to record the interviews.

Subjective Measures. To measure perception of the robot, we used a ques-
tionnaire and a semi-structured interview. While the questionnaire gave more
quantified data, the interview was intended to give us rich qualitative insights.

Questionnaire. The employed questionnaire asked participants to rate the robot
and their experience in terms of 18 items on a 9-point Likert scale. These 18
items follow the RoSAS and are used for the social perception analysis of the
robot [20]. They are grouped into 3 main factors, as follows:

Warmth: Happy, Feeling, Social, Organic, Compassionate and Emotional.
Competence: Capable, Responsive, Interactive, Reliable, Competent and

Knowledgeable.
Discomfort: Scary, Strange, Awkward, Dangerous, Awful and Aggressive.

Furthermore, the participants are asked to describe their interaction in at least
140 characters. To ensure the fact that the social cue was perceived correctly,
when signaled, the questionnaire also contained four manipulation checks which
asked the user to mention what was the gaze of the robot at the beginning and
at the end of the interaction, as well as the color of the LEDs. Additionally, the
questionnaire also contained questions regarding the age, gender and nationality
of the participant. The participants were also asked about their prior experience
with robots and pets.

Interview. After the experiment and filling out the questionnaire, a short semi-
structured interview was done with each participant. The two main questions
asked were about their experience and their general feeling about the robot, as
a result of the interaction. Depending on the answers, follow-up questions were
asked, as for example “What do you think is the purpose behind this behavior?”
or “How did you feel about the approach?”.
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3.5 Procedure

The participants were greeted at the entrance of the lab and were lead inside,
where the context of the experiment was explained by the experimenter. They
were then given an informed consent form, which they were asked to read and
sign. The participants were then guided to the experiment area and equipped
with the OptiTracker markers used for tracking their movements. They were
then told to wait for the robot to approach them. We emphasized that while
they were free to move, they should really let the robot approach them, and not
the other way around. The robot would then approach them to a distance of 20–
50 cm, exhibiting the behavior as appropriate for the condition the participant
was in. The participants were recorded using two video cameras. Additionally,
the OptiTracker system and the robot’s sensors (the laser scanner and the ASUS
camera) were recording their movement. After the interaction with the robot,
the participants were asked to fill in the questionnaire on the interaction, and a
brief interview was conducted by the experimenter.

3.6 Participants

We recruited 83 students and staff members from the campus of the University
of Twente. Participants were recruited using word of mouth, and adverts. For
agreeing to participate in the experiment, participants were compensated with
chocolate. The average age of the participants was 24.25 (range 18–45). 66.2% of
the participants were Dutch. 34 of the participants were women and 49 were men.
Regarding previous experience with robots, 6% of the participants have built a
robot before, 43.3% stated that they have worked with robots, 25.3% said that
they have seen robots before, 16.8% have played with a robot before and 7% had
no previous experience with robots. Additionally, 84.3% of the participants had
previous experience with pets.

4 Results

To investigate the proposed hypotheses we employ both a deductive and a qual-
itative analysis of the data available from the experiments - this means sensor
data, the OptiTracker data, questionnaire data, interview transcripts and video
data.

4.1 Deductive Analysis

As described in Sect. 3.3, the movement of the participants relative to the robot
was tracked with the help of the robot’s own sensors and the OptiTracker system.
The deductive analysis refers to the behavioral analysis shown by the partici-
pants, as measured with the help of these sensors, and to the evaluation of the
questionnaire results, as proposed by the RoSAS model.

Due to robot failures, the experiment data for 3 of the participants had to be
excluded. Additionally, for the statistical analysis of Hypothesis 2, we removed



376 S.-D. Suvei et al.

all the participants that either did not perceive the feedback social cue or that
falsely considered that there was such a cue signaled. The elimination criterion
was based on the answers that the participants gave to the two manipulation
checks regarding the robot’s gaze at the beginning and the end of the experiment
from the questionnaire. As a result, the data for 58 participants out of 83 were
used in our final investigation regarding Hypothesis 2 – 14 in the noPSI-GAZE
and the PSI-GAZE conditions, and 15 participants in each of the other two.

Computing Distance (Lower)body-robot (From On-Board Sensors).
We used the data from the Xtion sensor (RGB-depth) and the laser range scan-
ners to determine the displacement of participants during the interaction. To
do so, we first used the person tracking (see Sect. 3.1) based on a combination
of both sensors. This resulted, for each time-stamp, in the position of the par-
ticipant relative to the robot. Since some of detections were based only on the
leg-detection from the laser range scanners (due to the participants moving out-
side the field of view of the camera), we used only the position on the floor plane.
From this time-stamped list of positions, we then selected the 3 or 4 s of data to
use based on the time-stamp at which the robot reached its goal position and
stopped its movement. Within this subset, we then found the participant’s mini-
mum and maximum distance to the robot. The displacement was then calculated
as the difference between this minimum and maximum. For 10 participants the
data from the on-board sensors was not of sufficient quality to reliably compute
the displacement.

Computing Head Distance to the Robot (From OptiTrack Data). We
additionally used the data from the OptiTrack system to compute displacement
of the participants during the interaction. Where the on-board sensors computed
position based on center of mass (with Xtion) or on position of legs (with laser
range finders), the OptiTrack allowed us to instead track head position. Addi-
tionally, with the OptiTrack only for 1 participant the data from the on-board
sensors was not of sufficient quality to reliably compute the displacement. The
OptiTrack system did occasionally detect the location of markers wrongly, pre-
sumably because of reflections. For this reason, we first smoothed the tracked
positions, using a 500-frame moving average (data recorded at 120 fps). We man-
ually coded the end of each robot approach based on the speed profile of the
robot, and used a time window from the end of the approach until 4 s later.
Within this time frame, we then computed the minimum and the maximum dis-
tance on the floor plane between the (smoothed) position of the marker on the
base and the (smoothed) position of the marker worn on the participant’s head.
The displacement was then calculated as the difference between this minimum
and maximum.

Scoring Competence, Warmth, and Discomfort from Questionnaire
Data. A principal components analysis (PCA) was run on the 18-item RoSAS
questionnaire results. The suitability of PCA was assessed prior to analysis.
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All variables had at least correlation coefficient greater than 0.3, but Kaiser-
Meyer-Olkin measure for three items was below 0.5; Awkward (0.439), Dan-
gerous (0.474), and Scary (0.477). We thus ran the PCA excluding these three
items, resulting in an overall Kaiser-Meyer-Olkin measure of 0.830. Bartlett’s
test of sphericity was statistically significant (p = .000).

PCA with Varimax orthagonal rotation revealed four components that had
eigenvalues greater than one, which together explained 71.660% of variance
(39.130%, 16.964%, 8.764%, and 6.801%). The interpretation of the data was
in some respects consistent with the constructs that RoSAS intended to mea-
sure. The first component was very close to the construct ‘Competence’ from
the RoSAS, with the main items loading onto it being Competent, Knowledge-
able, Capable, Reliable, Responsive, and Interactive The second component was
close to the construct ‘Warmth’ from the RoSAS, with the main items loading
onto it being Compassionate, Feeling, Happy, Emotional, and Social. We did not
find a single component that was close to the construct ‘Discomfort’ from the
RoSAS, though the 3rd and 4th component seem to capture differing aspects
of it. The 3rd component –with Responsive, Interactive, Social, not Aggressive,
and not Awful loading onto it– we would label as ‘Discomfort-Appropriateness’.
The 4th component – with not Awful, Organic, and not Strange loading onto
it– we would label as ‘Discomfort-Weirdness’.

Hypothesis 1: Effects of PSI vs noPSI (noGAZE). A Mann-Whitney
U test was run to determine if there were differences in stepping away and
perception of the robot between PSI-noGAZE and noPSI-noGAZE (hypothesis
1). Distributions of the variables were similar, as assessed by visual inspection.

For moving away, as computed from the OptiTrack data, there was a statis-
tically significant difference in the median score (U = 44, z =−2.662, p = .008,
n = 29) between PSI-noGAZE (.83 m) and noPSI-noGAZE (.47 m). There was
no statistically significant difference for stepping away as computed from the
on-board sensors (U = 60, z =−.693, p = .488, n = 24), or for perception of the
robot in terms of warmth (U = 121, z = .353, p = .724, n = 30), competence
(U = 152, z = 1.641, p = .101, n = 30), discomfort-appropriateness (U = 132.5,
z = .832, p = .405, n = 30), or discomfort-weirdness (U = 121, z = .354, p = .723,
n = 30). We found the exact same pattern of results when including the par-
ticipants who wrongly perceived the social cue, with a significant different
median score on stepping away, as computed from the OptiTrack data (U = 97,
z =−2.427, p = .015, n = 38) between PSI-noGAZE (.80 m) and noPSI-noGAZE
(.48 m).

Hypothesis 2: Effects of Approach Distance x Social Cue. We conducted
two-way ANOVAs to examine the effects of approach distance and social cue on
our different measures. We suspect that our sample was a bit too small, as for
some of these measures, we found outliers (as assessed by boxplot), residuals that
were not normally distributed (assessed by Shapiro-Wilk), and no homogeneity
of variances (Levene’s test).
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We found no statistically significant interaction effects of approach distance
and social cue for any of our measures; not on our measures of stepping away,
and neither on our measures of robot perception. Subsequent analysis of main
effects also did not find a significant main effect for any of the constructs used
to measure the perception of the robot.

We did find a statistically significant main effect of approach distance on
stepping away as measured by OptiTrack (F(1,53) = 8.070, p = .006, partial
η2 = .132) between PSI (mean .796 m± .070 m) and noPSI (.521 m± .071 m),
as shown in Fig. 5b. No significant main effect was found for social cue
(F(1,53) = .051, p = .551, partial η2 = .007).

We also found a statistically significant main effect of social cue on step-
ping away as measured by on-board sensors (F(1,44) = 8.246, p = .006, par-
tial η2 = .158) between GAZE (.060± .013) and noGAZE (.111± .013), as
seen in Fig. 5a. No significant main effect was found for approach distance
(F(1,44) = .034, p = .855, partial η2 = .001).

To test our assumption that participants who did not see the cue should be
excluded, we investigated if this effect on stepping away would also occur when
comparing, within the subset of PSI-GAZE participants, people who perceived
the social cue with people who did not. Though it should be noted that this
was a very small sample (n = 18), we did find a similar effect of perceiving the
social cue (.048± .054) or not (.161± .117) on stepping away as measured by
the on-board sensors (U = 55, z = 2.218, p = .027).

Fig. 5. The statistical analysis of the sensor data. The values represent the average
movement in meters.

The statistical results show that the social cue has significant effects on the
positioning dynamic. The OptiTrack data shows that in the case of PSI, the
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participants lean backwards (thus moving their head more) to ensure a comfort-
able interaction distance. Additionally, as shown by the on-board sensors data,
when PSI is conducted and no social gaze cue is provided, there is a significant
increase in the lower-body movement of the participants.

4.2 Qualitative Analysis

Our deductive analysis showed that the robot behavior had effects on the non-
verbal reactions of our participants. However, much to our surprise, we found no
particular effects on social perception of the robot as measured by the question-
naire. To further investigate if other aspects could have played a role, we performed
an inductive analysis, based on the responses of the participants in the conducted
semi-structured interviews. Additionally, we used this analysis to derive manage-
rial recommendations for the robotic system and the tested social cue.

The selected analytical method is a mixture of hermeneutics, as proposed
by [26]. This method allows for study interpretation and content analysis in
order to establish categories which can be counted and linked. In order to over-
come the problem of ’anecdotalism’ regarding the results of the analysis, we
used a ’triangulation of methods’ technique [26]. Therefore, in our analysis we
used a combination of the open questions from the questionnaires, interview
transcripts and non-verbal behaviors of the respondents as observed from the
videos. Additionally, we also used other available sources (positioning informa-
tion from OptiTrack and on-board sensors, statistical interpretations, and the
quantitative questionnaire data) to interpret the different findings.

When coding and analyzing the set of interviews, the starting point of the
investigation were the three factors proposed by RoSAS scale: Warmth, Compe-
tence and Discomfort. However, because we systematically found cases that did
not fit any of the three initial factors, new categories (emerging from the data)
were created, in order to produce a holistic interpretation of all the phenomena,
in a comprehensive data treatment [26]. As a result, the hermeneutics analyti-
cal approach led us to the inductive categories of Incompetence, Problems and
Solutions and Intentionality.

We thus ended up with a total of six categories: Warmth represents the
respondent’s positive feelings regarding the interaction; Discomfort relates to
the respondent’s feeling of uneasiness regarding the interaction with the robot;
Competence reflects the participant’s feeling that the robot is considered to have
the skills necessary to perform the task of the experiment; Incompetence is the
opposing category, where the robot is considered as not having the appropri-
ate skills; The category of Intentionality contains those quotations in which
the respondent shows signs of appreciating specific intentions of the actions per-
formed by the robot; The final category, Problems and Solutions, is a managerial
theme where the respondents evaluate problems in the robot and give possible
solutions for them. All these categories have an interpretative quality used to
reflect how the participant’s understanding and interpretation of the robot are
influenced by the experiment.
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Table 1. Frequencies of the different encoded categories from our inductive analysis,
in each of the different conditions

Case Warmth Competence Discomfort Incompetence Intentionality Problems

and

Solutions

PSI-GAZE 7 8 38 17 5 11

PSI-noGAZE 13 7 39 23 3 14

noPSI-GAZE 24 26 33 12 12 18

noPSI-noGAZE 10 9 23 19 3 18

Because it follows a constructionist approach, the used triangulation method
is limited by the fact that it has to accept the idea that an interview and its
meaning is negotiated between the respondent and the interviewer and therefore
accepts that different sources of data may bring different truths or interpreta-
tions, as discussed in [26]. This happens due to the fact that the truth generated
through each interview is negotiated in its context and therefore its conclusions
may not be repeated through a different source of data [27]. In order to address
this limitation, additional measures where taken in order to ensure the validity of
the results, as advised by [26,27]. These measures follow the refutability princi-
ple presented in [26] which seeks for critical thinking when analyzing data, using
a constant comparative method. To this end, the analysis of the data focused
initially on a smaller part, comprised of only a few of the conducted experiments
and interviews, where their findings were systematically compared and discussed
amongst the coders, in order to ensure that all the cases and any possible devi-
ations are covered and explained accordingly in the established analysis [28].

After we established our categories, independent coders coded the data, and
we measured their agreement to establish the reliability of our analysis [28].
For the first two coders, we found a very strong inter-rater agreement (Cohen’s
kappa = 0.81). We wish to report that when a third coder also coded 20% of
the selected interview transcripts, the inter-rater agreement was much lower
(Cohen’s kappa = 0.45). This surprised us, though there are several possible
explanations – e.g. it might have been caused by the third coder using only the
transcripts. An alternative explanation is an effect of culture (similar to what
was discussed in [29,30]), as the third coder lived in the Netherlands, while the
first two coders both lived in Denmark. Given these results, including the strong
inter-rater agreement between the first two coders, we discarded the codes of
the third coder; we used only the codes of the first two coders for our further
analysis.

In the following paragraphs we offer a detailed description of the outcomes
of our analysis (see Table 1 for an overview).

Warmth: Regarding the perceived warmth of the interaction, the qualitative
results show a clear impact of the social cue. This impact can be observed through
the increased number of opinions regarding positive points on the interaction,
that is then described as nice, fine, natural and friendly. When the PSI is added
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to the interaction, the respondents see an incoherence of those signals and there-
fore the positive effect of the cue shrinks. Therefore, since the gaze can be viewed
as an element that shows the robot’s perception of the human, when the PSI
occurs some participants interpret this as a malfunction of the robot, as stated
in the following: “Mhm ... but the point that it is looking down, I think, I mean
... I doubt it is working ok...” (Interview 83)

Competence: Regarding ’competence’, the results are conclusive regarding the
social cue when it is not accompanied by PSI. The perceived skills relate to the
speed, the closeness, the natural movement and the robot’s ability to “see” the
human. The expressed opinion regarding the skills and therefore competence of
the robot triples. An example of this can be seen in the following extract: “The
closeness is fine. How it drives towards you, the speed... the distance was ok, the
rest was ok.” (Interview 44)

Discomfort: When no social cue is signaled and there is PSI, the robot is perceived
as to be lacking the necessary skills relating to the adequate closeness, speed, dis-
tance and in general is perceived as dangerous: “So, it felt like a bit dangerous, that
it did not perceived you well, so it can drive over you.” (Interview 13)

Incompetence: Other less objective faults are attributed to the robot when there
is no social cue and there is PSI, for example the time in response is perceived
as slower and as having the inability to properly locate the human: “the robot
approached me after a while, but he seemed to be kind of aiming a little bit next to
me, so it wasn’t really completely approaching and looking in the right direction.”
(Interview 57)

Intentionality: A surprising result of the experiment is the fact that the social
cue increases the impression of the robot as having intentions. The perceived
intentionality decreases if there is PSI, but even in that case it scores higher
than without the social cue. “It felt like he then saw me, just standing there and
turned towards me and came towards me and then turned a bit when it was in
front of me to look more directly at my face.” (Interview 60)

Problems and Solutions: Some of the most relevant findings for the managerial
implications in the cases in which the social cue was signaled are linked to the
fact that the robot also displayed a task bar on the screen, which disrupted the
image of the face of the robot: “Well it really was a robot. I think the eye was
not sophisticated enough to bring some human feelings, to me. Especially because
there was also taskbar next do in his eyes, so. That kind of broke the image of a
face” (Interview 32).

Another common concern of the respondents was how to deploy the robot
in a place with many people. The proposed solution, as shown in the following
quote, is to ensure the minimum quantity of movements of the robot as to ensure
its safety to a potential crowd surrounding it: “... maybe like the fact that he
could move like with you, but on the other hand if it gets too much, people will
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freak out, maybe. So it was properly good that it just stays there and doesn’t do
too many movements.” (Interview 32)

For the cases in which no social cue is provided, the topics brought up by
the respondents change. The speed and space become major topics, as they
are perceived as more relevant problems to handle before worrying, for example
about how the face is displayed on the screen. One possible suggestion for dealing
with the PSI is adding a voice or a sound to the robot, as a form of signaling
the interaction that is about to happen. One such example is given in: “Like it
really doesn’t have any reasons to stand that close to my face. Like, if it at least
have been talking to me or had another way of notifying me that it saw me and
what it’s intention was, maybe it would have been more ok. But now it was a bit
random.” (Interview 49)

All in all, the analysis shows that, even though PSI is the main source of
discomfort of the experiment carried out, the social cue decreases the level of
discomfort of the participants. The main purpose attributed to the social cue is
regarding safety, since the participants consider that the robot perceives their
presence and therefore they trust in the fact that it will stop in an appropriate
manner for the interaction. For example, the following quote reveals the concern
of a participant that was not exposed to the social cue: “I actually didn’t have
the idea that he was seeing me, so that was also the reason that I stepped aside.
Because I thought: Ok he does not see me, he will just roll this way” (Interview
37). This indicates that a social gaze cue can be used to improve the perception
of the overall interaction and safety of the robot.

5 Conclusions and Discussion

In this paper, we investigated if personal space invasion by a robot can be made
more ‘smooth’ by introducing social gaze cues. We manipulated both personal
space invasion and the use of social gaze cues, in a between-subjects set-up.
To investigate the effects on the interaction dynamic, we measured distance to
the robot, both of their lower body (using on-board sensors), and of their head
(using a tracking system). To investigate the effects on the way in which the robot
was perceived, we used a questionnaire with items on warmth, competence, and
comfort.

We found significant main effects of our manipulations on the positioning
dynamic; (1) participants increased their head distance after the approach more
when the robot got close to them, i.e. conducted PSI, and (2) participants
increased their lower body distance after the approach less when the robot gave
a social gaze cue. This suggests that different aspects of people’s positioning
dynamic reflect different things. One interpretation, that was further supported
by our inductive analysis, is that the social gaze cue increases peoples’ feeling of
safety, reducing the need to step back – and that people will lean back to ensure
a comfortable interaction distance.

Given the richness of this kind of positioning data, and the promising results,
a more comprehensive analysis of movement could be an interesting direction for
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future work. We found it valuable to find that the different sensors we used, on-
board and a tracker, yielded different aspects of stepping away, focused on lower
body and head, respectively. Beyond stepping away after an approach, there is
a range of other movement aspects that could be extracted, e.g. stepping away
during an approach, or orientation of body or head. When doing so, it would
be important to keep limitations such as sensor noise in mind, and to avoid
looking for significant results (which is also why we deliberately limited our own
analysis).

To our surprise, we found no significant effects of our manipulations on the
questionnaire intended to measure the way in which participants perceived the
robot – especially since the used approach distances were well above and below
what is perceived as PSI in the literature, but also since we did find an effect
on the interaction dynamic. A possible cause is that, during the experiment, the
participants had sufficient space and time to adjust their position (by stepping
back or to the side) and thus weaken the effect that the personal space invasion
could have on them and their perception of the robot. This would be in line
with our idea that aspects of the interaction dynamic can influence perception
of PSI. Additionally, since our participants were not native in English, they may
have missed some nuances in the meaning of different items, perceiving them as
“similar” – for example Capable/Competent or Strange/Awkward. This would
of course have an impact on the “strength” of these descriptors.

To further explore the perception of the robot, we conducted a qualitative anal-
ysis based on the semi-structured interviews, the open questions from the ques-
tionnaire, and the video recordings. We identified various categories in which the
comments of our participants could be encoded, including discomfort and inten-
tionality. While our findings were rich and qualitative (see Sect. 4.2), we will here
discuss one specific pattern; when the social cue was signaled, there was a sense
among participants that the robot was aware of their presence, and, as a result,
participants would trust its actions more – also when it conducted PSI.

Overall, our findings show that social cues might indeed be used to make
personal space invasion by a robot more smooth, especially in terms of the
interaction dynamic and perceived safety.
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