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Abstract. Many older adults suffer from Alzheimer’s disease or other dementias
and have affected cognitive abilities. In general, physical exercise, cognitive
stimulation, and social engagement have been found to be beneficial for the
physical and mental health of older adults with and without cognitive impair-
ment. In an effort to address these needs, researchers have been developing
human-machine interaction (HMI) systems to administer activity-oriented ther-
apies. However, most of these system, while promising, focus on one-on-one
interaction with the computer and thus do not support social engagement by
involving multiple older adults. In this paper, we present the design and devel-
opment of a motion-based collaborative virtual environment (CVE) application
to support both activity and social engagement. The CVE task is based on a
book-sorting activity and has embedded collaborative components to encourage
human-human interaction (HHI). The system records quantitative data regarding
users’ performance, interaction frequency, and social interaction. A preliminary
user study was conducted to validate system usability and test on older adults’
tolerance and acceptance of the motion-based user interface (UI) as well as the
CVE task. The results showed the usability of the motion-based UI and system
capability to assess HMI and HHI from recorded quantitative data. The results
from post-test and analysis of audio files indicated that the system might be
potentially useful. More user study and data analysis need to be conducted to
further investigate the CVE system.

Keywords: Collaborative virtual environment (CVE)
Human-Machine interaction (HMI) � Human-Human interaction (HHI)
Elder care � Dementia

© Springer International Publishing AG, part of Springer Nature 2018
M. Antona and C. Stephanidis (Eds.): UAHCI 2018, LNCS 10907, pp. 192–204, 2018.
https://doi.org/10.1007/978-3-319-92049-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92049-8_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92049-8_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92049-8_14&amp;domain=pdf


1 Introduction

The number of older adults in the US is increasing dramatically, growing from 35
million in 2000 to an estimated 74 million in 2030 [1]. Many older adults suffer from
Alzheimer’s disease or other dementias, which affect their memory and/or other cog-
nitive skills such as communication, ability to focus, and reasoning. An additional 15–
20% older adults have mild cognitive impairment (MCI) and are at high risk of
developing dementia [2]. In addition to the prevalence, Alzheimer’s and many other
dementias are progressive and costly. In 2017, dementia cost the nation $259 billion
[2]. To date, there is no cure to slow or stop Alzheimer’s and most dementias.
Activity-oriented therapies, including regular physical exercise, cognitive stimulation,
and social engagement, have been found to be beneficial for the physical and mental
health of older adults with and without cognitive impairment (CI) and may reduce the
risk of developing Alzheimer’s disease and other dementias [1–4].

In order to mitigate the substantial emotional, financial, and physical burdens of
caregivers, researchers have been investigating applications of sensor-based technolo-
gies, virtual avatars/environments, and robotics to support the care of older adults [5].
Many systems were designed to assist older adults in aging in place by monitoring their
behaviors and providing alarms and reminders through networks of sensors [6, 7].
Animal robots, such as PARO, and telepresence robots, such as Giraff, were developed
to provide older adults with social support and reduce their stress [6, 8]. More recently,
intelligent systems have been developed to administer activity-oriented therapies.
McColl et al. developed a socially assistive robotic (SAR) system Brian to encourage
older adults with and without CI during a meal eating activity and a cognitively stim-
ulating activity [9]. Fasola et al. designed a SAR system Bandit to administer physical
exercise sessions with older adults [10]. Young et al. developed a platform consisting of
a Wii balance board and a virtual environment for the purpose of training older adults’
balance function through interacting with virtual tasks [11]. Anderson-Hanley et al.
compared the effect of stationary cycling with and without virtual reality tours on older
adults’ cognition and found that cycling with virtual reality tours had greater potential
for preventing cognitive decline [12]. Although these systems were promising in their
ability to engage older adults in activity-oriented therapies and potentially benefit their
cognitive function, the systems focus solely on one-on-one interaction with the system
and thus do not support social engagement by involving multiple older adults simul-
taneously. Without social interaction with other humans, many older adults feel socially
isolated and can suffer from apathy [13].

Research on computer/SAR systems interacting with multiple older adults is still in
its early stage. Matsusaka et al. developed a SAR system TAIZO to lead physical
exercise session in front of a group of older adults [14]. TAIZO is an open-loop system
and does not have the ability to analyze older adults’ performance during interaction.
Louie et al. developed a SAR system Tangy which can play a bingo game with a group
of older adults in a closed-loop fashion [15]. The system can interact with the group as
a whole or with each individual. However, it could not capture social interaction among
the older adults. In our previous work, we developed a SAR system RAMU that could
engage two older adults simultaneously in a physically and cognitively stimulating
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activity [16]. Although social communications were observed during the interaction,
the task was not designed to promote social engagement.

In this work, we designed and developed a novel collaborative virtual environment
(CVE) that through human-machine interaction (HMI) actively supports activity and
social engagement for older adults with and without CI. In this CVE, two older adults
interact with a virtual environment through physical movements. Collaborative com-
ponents are embedded within the CVE design to encourage human-human interaction
(HHI) in addition to HMI. The CVE continuously evaluates older adults’ activity
compliance and collaboration status in order to provide feedback to keep older adults
engaged in both HMI and HHI. We believe that the CVE system with the ability to
support social engagement will be more beneficial in enhancing the overall health of
older adults than systems focusing solely on older adults’ functional ability. In this
paper, we present the development of the CVE and the preliminary user study results
on system validation and older adults’ tolerance and acceptance of the system. The rest
of the paper is organized as follows. Section 2 describes the overall system framework
and details the design and development of the motion-based CVE application.
Section 3 presents the experimental setup and procedure as well as the participants’
information. Section 4 provides the results on system usability and participants’
interaction including performance, interaction frequency, and conversation duration.
Finally, we conclude the paper in Sect. 5 with a discussion of the current results, the
limitations, and future directions.

2 System Design

2.1 Overview

The system has two main components: a motion-based CVE application and a robotic
facilitator. Figure 1 illustrates the overall system framework. Two users interact with
the CVE through a motion-based user interface (UI) using the Kinect sensor [17]. The
Data Management module is responsible for recording users’ real time interaction data.
Users’ interaction together with the change of the game state trigger audio-visual
feedback from the CVE application to support HMI and HHI. In addition, the CVE
application sends events to a physically embodied robot through socket communication
in order to provide additional feedback and facilitate HMI and HHI. A humanoid robot
NAO [18] was used to serve as an artificial intelligent (AI) player, to help users on their
motion-based cursor control and to encourage collaboration. In this paper, we focus on
the design and development of the motion-based CVE application. The CVE appli-
cation is based on a sorting activity where older adults sort books with different colors
into color-matched collection bins. The Unity game engine [19] was used to develop
the 3D book-sorting task shown in Fig. 2. Each user controls one hand cursor in the
CVE by upper body movement and hand manipulation. The subsections that follow
elaborate on the design of the motion-based UI, the models of computation used to
develop the CVE task, and the data management module.
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2.2 Motion-Based UI

We implemented a motion-based UI to introduce physical activity in the CVE task as
well as to remove the need for keyboard and mouse, which are not user friendly for
older adults. The motion-based UI is designed based on Kinect’s skeletal tracking
function and hand tracking function. The first step is to map each user’s hand joint
position to the cursor position in the CVE. This is realized by defining an interaction
box for each hand (Fig. 2) and mapping the relative positions of the hand joint with
respect to the interaction box to the cursor positions in the CVE. The positions and the
sizes of the interaction boxes are defined by each user’s left shoulder (SL), right
shoulder (SR), left hip (HL), right hip (HR), and spine base (SB) joints and are listed in
Table 1. When users move their hands to the left, the hand cursors move to the left of
the CVE, otherwise the hand cursors move to the right. Similarly, when users move
their hands down, the hand cursors move down, otherwise the hand cursors move
up. The hand cursor does not move in the third dimension unless the user is holding
onto a book. Users move books closer to them by moving their hands towards their
chest and move books away from them by moving their hands away from their chest.

Fig. 1. System framework overview.

Fig. 2. Two users were interacting with the CVE. (Color figure online)
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The second step is to determine which hand is currently controlling the cursor and
to allow book manipulation by simple hand gestures. We designed a hierarchical state
machine (HSM) to handle hand switching and hand manipulation (Fig. 3). The current
control hand is determined by the relative positions of user’s left and right hands and
interaction boxes. The left hand is interacting (LHI) if its position is within or around
the left hand interaction box, similarly for the right hand. When there is no hand cursor
and LHI event occurs, left hand is the current control hand that moves the cursor. If
only the right hand is interacting (RHI), right hand is set as the current control hand. In
the case that both LHI and RHI events occur, the hand that was interacting with the
system is set as the current control hand. Kinect’s hand state detection algorithm returns
five possible hand states, which are closed, lasso, not tracked, open, and unknown.
Initially, the left or right hand cursor is in release state. If closed or lasso hand state
event is detected, the cursor state takes the transition to grip state. If open hand state is
detected, the cursor state becomes release state. Cursor movements together with hand
manipulations enable users to grip, move, and release virtual objects in the CVE
through physical movements.

Table 1. Definition of interaction box.

Axis Left hand Right hand

X xmin ¼ SRx � 1:15 � 2 � SRx � HLxð Þ
xmax ¼ SRx � 0:15 � 2 � SRx � HLxð Þ

xmin ¼ SLx þ 0:15 � 2 � HRx � SLxð Þ
xmax ¼ SLx þ 1:15 � 2 � HRx � SLxð Þ

Y ymin ¼ HRy þ 0:7 � SRy � HRy
� �

ymax ¼ SRy þ 0:7 � SRy � HRy
� � ymin ¼ HLy þ 0:7 � SLy � HLy

� �

ymax ¼ SLy þ 0:7 � SLy � HLy
� �

Z zmin ¼ SBz � 0:5, zmax ¼ SBz zmin ¼ SBz � 0:5, zmax ¼ SBz

Fig. 3. User interface model.
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2.3 CVE Task Design

Main Task. For the purpose of supporting social engagement, we embedded collab-
orative components in the task so that users have to communicate with each other by
verbally exchanging information or physically moving books. The virtual space is
divided into two interaction areas, marked by the red and green vertical lines (Fig. 2).
Different users’ left and right interaction boxes are mapped to different interaction
areas. The red cursor can move freely to the left of the green vertical line whereas the
green cursor can move freely to the right of the red vertical line. As a result, the virtual
space in between the red and green vertical lines is accessible by both users. The red
cursor cannot move books inside the green collection bin, and the green cursor cannot
move books inside the red collection bin. We refer to the virtual space that is accessible
by only the red cursor as red only area (ROA). The green only area (GOA) is defined in
the similar way. Notice that some red books are in GOA and some green books are in
ROA. These books are designated as ‘team bonus’ books. Implicit rules for collabo-
ration are attached to these books by varying the scores of the books. If the users
collaborate, the score of the book increases. Otherwise, the score of the book decreases
or remains low. When the green cursor moves a red team bonus book from GOA inside
the red square, it is easy for the red cursor to collect the book. Such a move is called a
collaborative move. When red cursor moves a green book away from green cursor’s
interaction area, i.e., inside ROA, the green cursor is not able to collect the book and
the move is called a competitive move. The restricted interaction areas together with
the team bonus books form the collaborative components in the CVE task.

The CVE was modeled by timed automata and HSMs to support both continuous
and discrete events, state hierarchy, and concurrency. There are models for displaying
audio-visual feedback, for online analysis of users’ interactions, for movement and
score of books, for determining when a book is selected by which user, and for socket
communication. It is not possible to present all the models, instead we focus on the
HSM model for the books. Figure 4 illustrates the top level model that describes how
users change book positions and scores. The Book Manager state keeps track of the
number of red and green books in the CVE, spawns new books, and removes collected
books from the bins. The Book Position Adjustment state gradually shifts the books
inside the camera view of the CVE in the event users drop the books at the boundaries
to guarantee enough visibility of books. Each book has its own concurrent state
machines, one for controlling the position and movement of the book, and one for
controlling the score of the book. Initially, books are spawned at four locations in the
CVE. Users grab a book by moving their hand cursors onto a book and closing their
hands (grip cursor state). A selected book is highlighted and moves in the environment
following the user’s hand cursor. Another user cannot grab and move the book that is
currently highlighted. When the book is in move state and release event is detected, the
selected book drops onto the virtual floor by gravity. If the book drops in a
color-matched bin, it is collected and removed from the scene (collect state). Other-
wise, it stays on the floor (stay state). The release event in Fig. 4 occurs if the user open
his/her hand (release cursor state) or the distance between cursor and the book center is
above the threshold (200 in pixels). Although a moving book always follows the
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position of cursor, when the user tries to move the book below the virtual floor, release
event is triggered and the book goes back to stay state. The initial score for each book is
5 points. For team bonus books, collaborative move event increases the score to 10
points and competitive move event decreases the score back to 5 points. The countdown
timer state records the remaining interaction time and would end the task after 6 min.
There are 6 normal books and 10 team bonus books. Users can achieve a maximum
score of 80 points without collaboration and a maximum score of 130 points with
collaboration. To win the game, they need to receive at least 100 points.

Post-test Task. The post-test (Fig. 5) is designed to explore users’ behaviors when
they perform a similar task (book sorting) with unknown information. Users see
yellow books and a yellow bin but are not aware of the new collaborative rule that
they have to move the same book simultaneously (or together) in the same direction.
We were interested to see whether users would communicate with each other to figure
out the unknown piece of the task. If they cannot move any yellow books half way
through the interaction (3 min in total), the robotic facilitator gives them a hint by
asking them to try moving the book together. No score is associated with the yellow
books, instead we record how far users move yellow books together and how many
books are collected.

Fig. 4. Hierarchical state machine (HSM) describing movement and score of books.
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2.4 Data Management

The data management module records users’ interactions with the CVE application and
with each other. These data are stored in csv format in real time and are indexed by
timestamps. The performance data file logs the number of books collected for each
book type and by each user, the number of collaborative and competitive moves by
each user, the time to finish the task, and the total score. The user interaction file logs
the motion-based cursor control of each user. These include the interaction hand (left or
right), the hand state, the position and type of selected book, and the screen position of
the hand cursors. In addition, we record users’ conversations as audio files. Audio files
are later transcribed to analyze the content of the conversation. All the data are stored in
data buffers and written locally when buffers are full or the task ends.

3 Experimental Design

A small user study was conducted with two pairs of older adults. The study was approved
by the Vanderbilt Institutional Review Board. Before the experiment, participants
completed the Montreal cognitive assessment (MoCA© Version 7.1) [20] to evaluate
their cognition. Participants’ information is shown in Table 2. In the experiment room,

there were two chairs, two web cameras, two microphones, a Kinect, a 32-in HDmonitor
and a NAO robot on the table. An experimenter operated the CVE system and observed
older adults’ interaction through a one-way mirror in the observation room (Fig. 6).
Participants sat approximately two meters away from the monitor and at a 30% angle

Fig. 5. Post-test task. (Color figure online)

Table 2. Participant data.

Pair ID Participant ID Age Gender Cognition MoCA score

Pair 1 P01 83 Female MCI 23
P02 72 Female Normal 27

Pair 2 P03 71 Female MCI 25
P04 77 Female Dementia 21
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toward each other. When a single participant played the game with the robot, one chair
was positioned directly in front of the table. The experimental procedure had five com-
ponents or games (Fig. 6). Each participant first interacted independently with the system
and then pairs of participants played with each other. In the Practice game, the robot
taught participants how to interact with the system by arm movement and hand manip-
ulation. The length of the Practice depended on how long it took for participants to
become familiar with the motion-based UI and collect their first book. Participants then
played the main task alone with the robot as the second player. After two older adults
completed the single user games, they were paired to play the main task together. They
first took turns to play the game and then played simultaneously. Lastly, they completed
the post-test to finish the whole session. The first pair of participants finished the session
in one visit, and the second pair finished single user games in the first visit and paired
games in the second visit.

4 Results

4.1 System Usability

The system worked as designed. For the main task, every collaborative move triggered
a rewarding sound and every competitive move triggered an unpleasant sound. Books
were spawned correctly, and the movement and score of books followed the HSM
model described in Fig. 4. For the post-test task, the yellow books moved in the CVE
according to design. When only one participant grabbed a book or two participants
tried to move books in different directions, the yellow books did not move. All data
files were recorded correctly. Unity was not responsive at the end of one game; for that
game the data files were recorded up to the point when the system froze. In the practice
game, robot NAO taught participants how to interact with the system step by step

Fig. 6. Experimental setup and procedure.
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following the action order in Table 3. When participants successfully performed one
action, NAO proceeded to teach the next action. We computed the time duration for
participants to learn each motion-based actions. Participants were able to learn most
actions quickly, within one minute, and took about a minute to collect one book
successfully. P01 took longer to move a book up and down and collect a book. The rest
of the participants took longer to move book forward. From the audio files, participants
asked questions like “What am I moving up and down?”, “Is backward this way and is
forward this way?”, “This way or that way? When you say forward.” This indicates that
participants got confused about the instructions related to depth in the virtual envi-
ronment. There was no need for operator assistance once participants were familiar
with the motion-based UI. There were times participants struggled to master move book
forward action. The depth in the CVE is relatively hard for older adults to perceive
correctly. Due to the fact that normal aging or Alzheimer’s disease may affect older
adults’ sensitivity to depth [21, 22], the motion-based actions related to depth in virtual
environment can be challenging for older adults.

4.2 Interaction Data

Table 4 gives the results of participants’ main task performance and their interaction
frequency as quantified by hand and book movements in the CVE. Collect and col-
laboration are the number of books collected and the number of books increased score
due to collaboration, respectively. Potential collaboration is the number of times par-
ticipants tried to collaborate but failed to move books into red or green squares. The
main reason is that they failed to perform the move book forward action correctly. This
action is relatively hard as shown in Table 3. Hand movement is the normalized
accumulated cursor movement per minute. Averaged book distance is the mean value
of the travel distance of books moved by participants. Book movement is the accu-
mulated book movement per minute. These three metrics were calculated as indicators
of participants’ interaction frequency. If participants were not engaged with the CVE
task, they were less likely to interact with the system and all the indicators would have
low values. Due to the small sample size, we are unable to draw any conclusions by
comparing the results in Table 4. On average, participants’ collaboration decreased

Table 3. Time takes for older adults to learn motion-based actions.

Order Actions P01 (s) P02 (s) P03 (s) P04 (s)

1 Activate motion-based UI 15.687 6.807 6.815 6.800
2 Switch hand 14.155 15.122 24.788 15.264
3 Grab book 20.761 20.593 20.097 20.100
4 Move book left to right 29.180 30.590 30.220 43.695
5 Move book up and down 99.514a 16.134 15.772 31.388
6 Move book forward 18.295 90.755b 96.861a 103.697a,b

7 Move book backward 32.717 18.859 37.101 57.502
8 Collect book 68.502a 62.304 57.252 NA
areceived help from experimenter; bconfused about system instructions.
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when playing together, however, potential collaboration complemented the difference.
In fact, it is easier to play with the robot than play with another human. When playing
with another human, participants need to worry about their own part of the task as well
as their peers’ performance. The interaction frequency are similar for all the main task
games, single or dyad. Note that in take turns game, each participant interacted about
half the total interaction time. Therefore, hand movement and book movement indi-
cators of take turns are relatively low compared to that of the other games. P03 and P04
performed poorly during take turns game. Take turns game is the first task on their
second visit to the lab. P03 did not perform well initially. Since the turn switches after
one user successfully collects a book or makes a collaborative move, P04 had very few
interaction with the CVE and therefore also collected fewer books.

In terms of the post-test task, P01 and P02 collected one yellow book without help
from the robotic facilitator. They moved two yellow books, one had a travel distance of
4.0 and the other had a travel distance of 5.3. P03 and P04 received a hint from the
robot to move book together and were able to collect one yellow book. They moved
three books in total. The moving distances were 6.2, 1.4, and 6.9 respectively.

Participants talked with each other a lot. Their conversation mostly focused on
helping each other with how to move and collect books, how to increase the score of
the book, and remind their peers what hand cursor they were controlling. We computed
the amount of HHI by counting the time duration they talked directly to each other. The
results are listed in Table 4.

5 Discussion and Conclusion

We developed a CVE system for the purpose of supporting activity and social
engagement for older adults with and without CI. For activity engagement, we
designed a motion-based UI using Kinect to involve older adults’ in physical move-
ment, and developed a book-sorting task to involve older adults’ in cognitive activity.

Table 4. Participants’ performance, interaction frequency, and conversation duration.

Play with robot Play together - take
turns

Play together -
simultaneous

P01 P02 P03 P04 P01 P02 P03 P04 P01 P02 P03 P04

Collect 8 7 8 7 8 7 3 3 8 6 8 8
Collaboration 4 1 4 2 0 2 0 0 0 1 1 2
Potential
collaboration

0 2 1 0 4 2 0 1 4 2 2 1

Hand movement 13.2 22.0 9.4 10.7 5.5 15.3 1.1 3.7 18.1 16.0 12.6 7.5
Averaged book
distance

13.8 16.0 4.7 9.1 12.6 13.0 13.9 5.2 7.8 10.8 9.7 9.1

Book movement 64.6 100.2 33.0 48.6 29.3 73.5 6.9 14.7 64.8 75.5 39.8 37.0
Conversation
duration (s)

NA NA NA NA 59 62 16 47 48 75 55 75
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For social engagement, we designed collaborative rules to encourage social commu-
nication between older adults. Older adults have to collaborate with each other in order
to win the game. The system records quantitative data regarding participants’ indi-
vidual and collaborative performance, their interaction frequency with the CVE system,
and logs audio data for offline analysis of their social interaction in the form of
conversation.

A preliminary user study was conducted with two pairs of older adults. The sample
used for the current study is obviously too small to draw any conclusion on the ability
of the system to benefit older adults. However, the current results provide insights on
the usability and older adults’ acceptance of the motion-based UI and the CVE task.
The results indicate the difficulty of depth perception and control in virtual environment
for older adults. Older adults enjoyed the collaborative virtual game and some indicated
their preference to play with another human than with the robot. The results also
demonstrate the ability of the CVE system to collect quantitative data needed to assess
older adults’ performance, interaction frequency, and social communication. Audio
data analysis and participants’ post-test performance further show promising results
that participants were capable of collaboration without knowing the rules and they were
talking with each other during game playing.

In the future, we intend to conduct more experiments and collect other modalities of
data such as gaze in order to systematically evaluate HMI and HHI. We are also
interested in the content of the conversation. The content could help guide the design of
better collaborative components as well as system feedback. In addition, we plan to
design 2D task instead of 3D task to remove the depth in the collaborative game. The
new task will have different difficulty levels to accommodate older adults with different
cognition level.

Acknowledgement. This work was supported by the National Institute of Health Grant 1R21AG
050483-01A1.
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