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Abstract. To maintain weapons throughput on Nimitz class aircraft carriers,
aviation ordnance is transported from the magazines to the flight deck and
loaded onto aircraft in a process called “Strike Up”. This time and labor
intensive process requires multiple sailors to push weapon skids through the
aircraft carrier to staging area on the flight deck.
Augmenting sailor tasking through the use of robotic equipment is one

method to improve sortie generation rates (launching of aircraft), optimize
manpower, and lower risk to sailors. Seen in Fig. 1, weapons skids spend
extended time parked in various locations along their routes such as on elevators
or in portions of hangar decks. This work presents improvements to the authors’
previous work [1] to develop a Human Machine Interface (HMI) and the
appropriate control methods toward supervisory control for parking multiple
robotic skids in a cluttered and dynamic environment.
The HMI consists of four parts: (1) the user interface, (2) automated definition

and conflict free assignment of parking goals within a user defined parking
boundary, (3) collision free navigation with multiple differential drive robotic
vehicles, and (4) an external infrastructure-free approach to localization and
mapping.
Distribution Statement A – Approved for public release; distribution is

unlimited, as submitted under NAVAIR Public Release Authorization
YY-2018–28.

Keywords: Non-holonomic � Artificial potential fields � Autonomous parking

1 Introduction

High weapons throughput for Nimitz class aircraft carriers is one of many important
steps to maintaining a sufficient rate of aircraft launches (sortie generation rates). To
help maintain this throughput, aviation ordnance is transported from the magazines to
the flight deck and loaded onto aircraft. This process, called “Strike Up”, can take a
significant amount of time as sailors push weapons skids through a circuitous route
from the magazines to a staging area on the flight deck called the “Bomb Farm”.
Multiple sailors are needed to move a single heavy loaded skid, and as Fig. 1 shows, at
any moment, there can be many skids on deck.

The aircraft carrier deck is not only busy with weapons movement, but it is also a
dangerous environment. Sailors are continually completing tasks in close proximity to
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aircraft launching, recovering, and taxiing around the deck. The close proximity to
aircraft puts anyone on deck at risk of bodily injury, whether it is from manual labor,
loud noises, or accidents.

Optimizing and augmenting sailor tasking through the use of robotic equipment is
one method of lowering the risk of bodily harm to the sailors. Specific to weapons
transport, robotic transporters have been touted as a way of helping to improve the sortie
generation rate and optimize manpower. An example advantage of an autonomous
transport system would be for a single operator to control multiple skids all at once. In
this context, we refer to multiple skids (more than three) as a swarm. In previous works
on swarm control, little focus has been on the action of autonomously parking multiple
systems in a particular formation. Seen in Fig. 1, weapon skids spend much time parked
in various locations along their routes such as on elevators or in portions of hangar
decks. This work presents improvements on previous work [1] to develop a Human
Machine Interface (HMI) and the appropriate control methods to enable supervisory
control for parking multiple skids in a cluttered and dynamic environment. This system
could reduce the time required for a single operator or multiple operators to move the
skids and setup in or exit from areas such as elevators and storage areas.

The HMI consists of four parts: (1) Automatically defining parking goal configu-
rations for each weapon skid within a boundary, (2) the control methods for moving
multiple non-holonomic weapon skids, (3) a user interface, and (4) a localization and
obstacle detection method for the robotic systems.

The rest of this paper is organized as follows: Sect. 2 provides a brief overview of
related work in this area. Section 3 describes the four parts of the HMI system.
Section 4 presents simulation and hardware test results. Section 5 concludes the paper
with a discussion and future work.

2 Related Works

Formation control of multiple robotic vehicles (swarms) is a very active area of
research. Many different strategies have been developed for controlling formations of
swarms under different scenarios such as movement of a formation in a corridor or

Fig. 1. Weapon skids on elevator (Navy.mil Photos)
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amongst obstacles. A majority of these control strategies can be categorized as either
leader-follower [2], behavior-based [3], or virtual structure approach [4]. Multiple
works have utilized a potential field approach to maintain the formation of a swarm of
non-holonomic robots while moving to a target location [5–7]. Those works focused on
maintaining a consistent formation during movement or maintaining a consistent for-
mation on a predefined contour line. Multiple works have focused on mobile robotic
platforms during parking [8, 9], but those works did not address issues of parking of
multiple non-holonomic robotic platforms at the same time in close proximity to one
another.

The example of weapons movement on a carrier demonstrates a Navy specific
scenario where parking occurs multiple times during transport and there are multiple
skids. While the works listed above present strategies for the movement of a swarm
formation from point A to point B, they are not focused on the parking of formations.
A parking task involves identifying safe spaces within an area enclosed by a contour. In
this work, “safe” means clear of obstacles. A contour could be a physical construct
such as walls or painted lines on the ground, or a virtual construct such as an operator
defined virtual boundary. Ekanayake and Pathirana [10] developed a scalable control
algorithm to navigate a group of mobile robots into a predefined shape and spread them
inside while avoiding inter-member collisions. However, each robot was treated as an
omnidirectional point mass with each robot having the same mass and mobility. Their
work also did not consider dynamic obstacles within the environment.

This work builds off of previous work presented by the authors in [1]. In [1], a
convex optimization approach is presented for parking multiple heterogeneous weapon
skids within a user defined convex boundary. In this new work, methods for assigning
parking goals are presented that enable automated parking assignment in non-convex
boundaries. The previous work assigned robotic vehicles to optimized goals sequen-
tially which can lead to robots blocking each other from getting to their assigned goals
when operating in tight spaces. This new work presents a method for adaptively
reassigning robotic vehicles to appropriate goals using the Hungarian algorithm with a
formation driven cost function. We also present a path planning and navigation control
method that overcomes some of the local minimum challenges listed in [1]. Part of the
new navigation method includes a modified Reciprocal Velocity Obstacle approach
that uses assigned priorities, enabling those robotic vehicles with higher priorities to
move more freely through a formation. The previous interface has been revamped and
all operations are now conducted on a Ubuntu computer using the Robot Operating
System (ROS) toolset [11]. Notably, there is no longer a need for an overhead camera
to extract positions of each robotic vehicle as localization and mapping are all per-
formed onboard the robot using onboard sensors.

3 Autonomous Skids Parking System

Improvements on the work in [1] are implemented to address limitations. Changes to
the four components of the HMI system are highlighted in the following sections.
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3.1 User Interface

The two panels of the user interface are shown in Figs. 2 and 3. The goal of the user
interface is to enable control of one sailor the ability to select assets in one location of
the ship and to command them to move to other locations on the ship in a supervisory
function. This means that the operator is not directly controlling the robots to move
forward, left, right, etc. but is instead commanding end goals and then monitoring the
robotic vehicles as they autonomously drive to the goals. The interface was generated
using toolsets available as part of the Robot Operating System (ROS) on Ubuntu. In
particular, rqt and RViz tools were used to generate the interface and visualization.

The main functionality of the interface is to give the operator situational awareness
of the current pose of each of the robotic vehicles, the map of the environment, the
location of detected obstacles, and awareness of the planned path for each robotic
vehicle. An example of the interface can be seen in Fig. 3. The operator can select
robots either by clicking on them individually on the “map view” or by dragging a
selection boundary around the robots of interest. The parking boundary is then selected
by the operator by drawing a selection boundary on the “map view”. The operator can
select if they want the goals automatically distributed using a Stacking, Convex
Optimization, or Potential Field method. The operator can also individually assign
goals by selecting a single robot and then clicking on the desired parking goal.

After a central controller assigns the goals, each robot’s controller plans the path to
the goal and commands the robot to follow that path. At any moment, an operator can
cancel the paths of all robots by selecting the emergency stop “eSTOP” button or they
can select each individual robot to stop. The operator can also command a new goal.
Additionally, the operator can take control of any robot and drive it directly via a
joystick/game pad.

3.2 Parking Goals Within Non-convex Boundaries

In [1], the authors present a convex optimization method for assigning goals for
weapon skids within a user defined convex boundary. The convex boundary require-
ment significantly limits the operator’s parking options. In the case of parking skids on
an aircraft carrier, there are scenarios where parking within non-convex boundaries
would be advantageous. For example it is beneficial to park around obstacles. To
enable this capability, a stacking method and a potential field method is implemented
for assigning goals within non-convex boundaries.

Each of the following methods use a boundary defined by the operator which is
discretized into a series of position coordinates. Inputs to the method are, the number of
vehicles to park, two dimensional bounding boxes of the vehicles, and desired end
orientation. Currently, the desired orientation is an input rather than an output of the
system for reasons described in Sect. 3.2.2.

3.2.1 Stacking Parking Method

The stacking method is a simple method of moving from the left most location of the
boundary and working along the rows and columns of the boundary to place the goals.
Each goal is chosen if there is no overlap between the goals and any previously placed
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goal (with a safety margin) such that a skid occupying the goal location would not
collide with another skid. An example of the stacking method within a user defined
boundary can be seen in the left side of Fig. 4.

Fig. 2. User control panel of the HMI. Enables user selection of robots, selection of parking
boundary, selection of parking method, and emergency stop.

Fig. 3. Selection and situational awareness panel of the HMI. Showing example of group of
robot vehicle’s path plans to assigned parking goals within a user defined boundary. Environment
is a mock representation of a section of a crowded hangar bay. (Color figure online)

Towards Autonomous Weapons Movement on an Aircraft Carrier 407



The stacking parking algorithm proceeds as follows (Algorithm 1).

Fig. 4. Parking goal distributions. (Left) Distribution using stacking method, (Middle)
Distribution using artificial potential fields, (Right) Distribution using convex optimization
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3.2.2 Artificial Potential Field Method

The artificial potential field (APF) method takes the stacking method a step farther.
Starting from the parking results of the stacking method, the APF method further
distributes the parking goals within the boundary by minimizing the total energy of the
parking goals within the defined boundary as defined by

UTotal qð Þ ¼
X

Uboundary qð Þþ
X

UpGoal qð Þ ð1Þ

where UTotal is the potential field around the centroid of the parking goal, q. UpGoal is
the potential function of the parking goal centroids pGoal. Each defined parking goal
(centroid) is treated as a “floating” point. Each point on the discretized parking
boundary, and other pGoals act as repulsive potentials to the floating parking points
whose potentials are defined by

Uboundary ¼ 0 q[ dist thresh
dist q; boundaryð Þ�1 q� dist thresh

�
ð2Þ

UpGoal ¼ dist q; p;Goalð Þ�1 ð3Þ

where Uboundary is the potential function of all the discretized points along the user
defined parking boundary and it only has value when q is within a defined distance
threshold, dist thresh. dist is the Euclidean distance function.

The induced force driving the location of each parking goal centroids is defined by

FPGoal ¼ rU qð Þ ð4Þ

After a few iterations, the parking goals move away from the boundary points and
each other. With enough time, the parking goals settle into a minimum energy point
and stop moving. It is important to note that the minimum energy point could be a local
minimum and not the global minimum. After settling, these points are determined to be
the parking goals within the user defined boundary as seen in Fig. 4.

In practice, the APF method can loop through many iterations before all the spots
settle into a local minimum. Usually close to a local minimum, the parking spots will only
making small adjustments between iterations. To prevent longwait times, a set number of
iterations is used as a threshold and the parking goals are set at the end of the iterations if a
local minimum is not achieved. It would also be reasonable to set the threshold to be
triggered when the change in overall energy between iterations is less than a set value.

We investigated the use of the vertices on the geometric shape of the vehicles to use
as repulsive potentials. In this case, the sum of the forces on each vertex contributes to
the resultant centroid force acting on the floating point parking goal. While this did
achieve a minimum energy state, the resulting parking goals for the vehicles give the
appearance of disorder as seen in Fig. 5. Instead, we chose to plan on a formation basis
with constant orientation to increase operator’s confidence.
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3.3 Adaptive Goal Assignment Using Hungarian Algorithm
with Formation Driven Cost Function

In [1], final parking goals are assigned sequentially to the robot swarm, regardless of
the location of those robots with respect to the parking goals. For example, parking
goal One would be assigned to robot vehicle One, parking goal Two would be assigned
to robot vehicle Two, and so on. This leads to inefficient movement of the robotic
group within the parking boundary because no attention is paid to the amount of
movement that the assigned parking goal requires from each robotic vehicle. Many
times this means that there is considerable amount of avoidance maneuvers taking
place to keep robots from crashing into each other within the parking boundary. Also,
this leads to scenarios where one robot will reach its parking goal and end up blocking
all other robots from reaching their assigned parking goals as seen in Fig. 6. To

Fig. 5. Comparison between distributing parking goals using artificial potential fields via robot
centroids (left) vs. robot geometric vertices (right). The robots are of varying sizes.

Fig. 6. Example of parked robots blocking other robots from reaching their assigned goals.

410 J. Hing et al.



alleviate this problem, we implemented an adaptive goal assignment method that uses
the Hungarian algorithm to assign the proper parking goals for the robotic vehicles.

The Hungarian algorithm is a combinatorial optimization algorithm that solves the
problem of assigning m agents to n tasks [12]. It minimizes the overall costs in
assignment based on a user defined cost function. In our case, the agents are the robotic
vehicles and the tasks are the parking goals.

Optimization cost functions can include a precomputed estimate of distance trav-
elled, time taken for each robot to reach the various parking goals, and/or Euclidian
distance. For example, an intuitive computationally cheap approach would be to choose
Euclidean distance such that the parking assignments are set based on minimizing the
total distance of the group of robots from the goals. However, there are still very basic
scenarios where this approach can lead to a robot blocking another robot from reaching
its assigned goal, even when recalculating new assignments at every time step. A sim-
ple example of this is shown in Fig. 7.

The cost function used in this work is based on minimizing the cost to move the
group of robots from the current shape of the formation to the final shape of the parked
goals at a current instant in time. It is important to note that this cost function is not
dependent on the real world distances between the robots and actual parking goals.
Instead, the centroid of the parking formation as a whole is superimposed on the
centroid of the current robot formation. It is the Euclidean distances of the robots to
these superimposed parking goals that is used in the cost function for the Hungarian
algorithm goal assignments. At each instant in time, goal assignments are calculated
and sent to the robotic group. This cost function alleviates the problem of robots getting
to their assigned goals and blocking others from passing through.

Fig. 7. Hallway example where the total cost (Euclidean Distance) for Robot 1 to Goal 2 and
Robot 2 to Goal 1 is identical to the Robot 1 to Goal 1 and Robot 2 to Goal 2. It is arbitrary which
goal the Hungarian Algorithm will assign with a Euclidian distance cost function, leading to
cases when robots are blocked.
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The goal assignment algorithm proceeds as follows (Algorithm 2).

3.4 Navigation with Path Planner and Reciprocal Velocity Obstacles
Using Priorities

In [1], navigation is achieved through the use of an artificial potential field frame work
to drive a non-holonomic robotic vehicle (differential drive system). The system works
well in many cases to drive the robotic vehicles to their goals while avoiding each
other. It also has the added benefit of enabling a robotic skid to drive through and out of
formations. However, the downside to this method is that it only works in scenarios
where a local minimum is not reached. For example, Fig. 8 shows two robots swapping
positions within two formations. Potential fields will not succeed as the robots will get
stuck in the corners of the rooms due to a local minimum condition.

To address this drawback, we used a path planner based on Dijkstra’s algorithm
[13] to plan the route for each robot to their assigned parking goals. The path planner
takes in the map of the environment, the goal (i.e. assigned parking goal), and all
detected obstacles, and then calculates an optimal path to the goal. Parts of robots
detected by other robots are treated as detected obstacles. The potential fields approach
from [1] is then used to drive the robotic vehicle to follow the path generated by the
Dijkstra’s algorithm as seen in Fig. 3 by the green lines extending from each robot to
the assigned parking goal.

3.4.1 Reciprocal Velocity Obstacles Using Priorities

A Reciprocal Velocity Obstacle (RVO) approach using priorities is implemented to
enable a robotic system to move through existing formations. An example of an RVO

412 J. Hing et al.



implementation is shown in Fig. 8. The reason for this capability is to handle scenarios
when a single weapon skid within a formation (e.g. a skid in the middle) is needed to
go elsewhere. This capability will also allow for skids or sailors to walk through the
parked formation without having to move each skid individually. The skid needing to
leave the formation, or needing to get through the formation, is given a high priority
(i.e. more authority to occupy a space) and other skids move out of the way.

RVO is a technique that has been widely used for safe navigation among moving
obstacles [14]. In very simple terms, each moving robot looks at other robot positions,
velocities, and geometric shape, and uses that information to determine the best
velocity to avoid a collision. The description and mathematical formulation of the RVO

Fig. 8. Time lapse images of two robots swapping places within parking formations using RVO.
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algorithm can be found in [14]. In addition, they outline how the behaviors extend with
priority, called general reciprocal velocity obstacles. A graphic showing a velocity
obstacle determination can be seen in Fig. 9.

3.5 Robot and Obstacle Localization

In [1], positions of the robot and obstacles are extracted from images obtained from a
top down camera viewing the operational environment. On an aircraft carrier, the
weapon skids traverse through many areas of the ship including the hangar bay and on
the deck. It would be difficult to build an external imaging infrastructure onto the ship
that would allow for complete visual tracking of the robotic assets at all times. In this
work, a mapping and localization approach using only onboard sensors (i.e. LiDAR,
camera) to the robotic vehicle itself is implemented to eliminate the restrictions of
needing a top down camera.

3.5.1 Onboard Localization and Mapping

Localization of the robotic vehicles using onboard sensors requires information about
the system’s operating environment. Typically, a simultaneous localization and map-
ping (SLAM) approach is utilized to build up information (i.e. map) about the oper-
ational environment. In this work, the SLAM approach called “GMapping” developed
by [15] is used to build a map of the operational environment for the robotic systems.
For weapons movement on the aircraft carrier, it is not unreasonable to believe that a
rough blueprint of the various areas of the ship could be fed to the robotic skids prior to
operations, thereby lessening the workload of SLAM. Along with this, the robotic skids
can be continuously running GMapping to update the maps should major obstacles
change (e.g. cargo pallets placed or moved).

If a general map of the operational environment exists, the robotic skids only need
to localize within that map. An algorithm called Adaptive Monte Carlo Localization
(AMCL) is used to localize the robotic vehicles. AMCL uses a particle filter to track the
pose of the robot against the known map as described in [16].

Obstacles within the environment are detected by each robotic vehicle’s onboard
sensors. This obstacle information is used to update a robot’s local map. A central
controller uses each robot’s location to manage parking assignments and sends those

Fig. 9. Robots (circles) trying to get to their assigned goal (star). Velocity resulting from RVO is
the closest velocity to the direct velocity without entering the velocity obstacles.
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assignments back to the appropriate robots. Each robot then uses its local map, which
includes detected obstacles, to plan appropriate paths to the assigned goal.

3.5.2 Shared Mapping for Common Reference Frame

A common reference frame for all information being received is an important aspect of
the central controller to coordinate the movement of a swarm. It will be a challenge on
an aircraft carrier to guarantee the exact known location of every robot at boot up,
making it difficult to define a common reference frame. When a map of the operational
environment exists, the reference frame of the map is then shared by all robots that are
localizing themselves within that map. However, in scenarios where a map of the
environment does not exist prior to operations, a map needs to be created by the robotic
systems. Using GMapping, a local reference frame to the robot creating the map is
used. The central controller then needs to take this local reference frame and make it a
global reference frame shared by all the robotic vehicles.

There are a few approaches that could be used to generate a global shared reference
frame. A couple examples are: (1) Robotic vehicles traversing the same areas can use
AMCL to localize within the map created by another robot. (2) Robotic vehicles can
visually see each other from afar and can use visual features to create a commonly
shared reference frame.

4 Results and Discussion

The new interface and control methods were tested in hardware using two robotic
vehicles and in simulation using multiple simulated robotic vehicles. The simulation
setup was demonstrated at the Department of Defense Lab day held at the Pentagon
where visitors were able to select simulated robots and command them to park in user
defined boundaries. The simulated environment, shown in Fig. 3 is a generalized
representation of a crowded hangar bay with staging areas and elevators for the robotic
skids to park on. With minimal instruction, visitors were able to use the interface with
ease and were able to successfully park the simulated robots in many different types of
user defined boundaries without collisions and without inter-robot obstruction. The
hardware tests used two robots due to laboratory resources limitations but the operator
was able to command the robotic systems around a pre-mapped environment using the
developed interface without the use of any overhead camera system. An example of the
hardware test is shown in Fig. 10.

RVO with priorities enabled multiple differential drive robotic vehicles to move
through and into formations. An example simulation result can be seen in Fig. 8 where
two robots swap locations within parked formations. It was also tested in hardware with
two robots passing by each other without colliding as shown in Fig. 11. The bottom
starting robot is given a higher priority than the top starting robot. The top robot takes a
larger avoidance route because of this. RVO shows promise as being a good method for
performing local obstacle avoidance. The RVO implementation, as written in this work,
grows linearly with respect to the number of robots.
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5 Conclusions and Future Work

This work presents improvements over the previous HMI and artificial potential field
approach to parking multiple autonomous differential drive skids. The improvements
enabled the control of multiple robotic systems by a single operator in a wider range of

Fig. 10. Hardware demonstration of user interface and robot control. Two robots are
autonomously navigating to the assigned goals.

Fig. 11. Hardware demonstration of RVO. Two robots commanded to pass each other. One with
higher priority that the other. (Right) Time lapse showing lower priority robot taking larger
avoidance route due to RVO with priorities.
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environment scenarios and without the need for an overhead camera to extract pose
information of the robotic systems.

Now that the majority of the functionality of the operator interface and robotic
control system is in place, one of the next steps will be to conduct a formal evaluation
of operator performance when controlling multiple robotic vehicles using the interface.
There is also technical work needed to enable the control methods to work for oper-
ating robotic skids with different steering mechanism (e.g. Ackerman steering). The
goal assignment methodology in this work requires that the geometry of all parking
spots be the same size and defined by the largest bounding box of the robotic vehicles
in the commanded group. This enables the adaptive shifting of parking assignments
without concern that a larger robot could be assigned to a space that it can’t fit into.
Future work can investigate goal assignments that take into account varying robotic
vehicle sizes (addressed by our APF methodology) and the appropriate sequence at
which they should be filled.

In general, there are many additional elements of the autonomous vehicle system
that need to be further developed before an autonomous weapon skid is fielded. As
stated in [17], there are aspects of the human system interface, monitoring and diag-
nosis, planning and decision, sensing and perception, and networking and collaboration
that have to be addressed at the vehicle management system level, the mission man-
agement system level, and the command and control system level to field a safe and
successful autonomous system. This work touched on much of the vehicle management
system level and a small bit in the mission management system side. There are many
other elements that need to be addressed in future work to transition this technology.
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