
Analyzing Reading Pattern of Simple C
Source Code Consisting of Only

Assignment and Arithmetic Operations
Based on Data Dependency Relationship

by Using Eye Movement

Shimpei Matsumoto1(B), Ryo Hanafusa2, Yusuke Hayashi2,
and Tsukasa Hirashima2

1 Faculty of Applied Information Science, Hiroshima Institute of Technology,
2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan

s.matsumoto.gk@cc.it-hiroshima.ac.jp
2 Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama,

Higashihiroshima, Hiroshima 739-8527, Japan

Abstract. Some programming learners in the lowest achievement group
do not have even a minimum skill to read a simple program correctly.
Reading programs would be an essential programming learning. To effi-
ciently support learners in the lowest group, firstly we should conduct a
fundamental analysis of reading programs to unveil their features. There-
fore, the authors focused on eye tracking as a method to carry out the
idea. The authors have thought that utilizing eye movement helps to
clarify the reasons for making programming learning difficult. Therefore,
the purpose of this study is to investigate the possibility of learner’s pro-
gram comprehension process based on the pattern of eye movement, not
the eye distribution during reading source code. In this paper, we first
measure the data of eye movement during reading some source codes and
propose a modeling method to represent the feature of eye movement.
Then we design an experimental protocol for analyzing eye movement
based on program structure. The experiment of this paper focuses on
source codes based on four types of data dependency relationship that
can be generated by three lines of assignment statement only. As the
analysis result, we confirmed that the data dependence of each pattern
appeared as the unique eye behavior of program reading.

Keywords: Programming education · Reading · Eye tracking
Data dependency relationship

1 Introduction

Though programming has been regarded as a particularly important subject in
the special field of higher education institutions such as universities, every year
c© Springer International Publishing AG, part of Springer Nature 2018
S. Yamamoto and H. Mori (Eds.): HIMI 2018, LNCS 10904, pp. 545–561, 2018.
https://doi.org/10.1007/978-3-319-92043-6_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92043-6_44&domain=pdf


546 S. Matsumoto et al.

there are many students who cannot accept any concept of programming. Sag-
isaka and Watanabe confirmed that most of the students belonging to the lowest
group of programming comprehension level could not understand the most basic
terms and grammars [1]. The existence of learners who cannot accept any con-
cept of programming will be an especially serious problem when programming
is integrated into the curriculum of compulsory education. Therefore, investigat-
ing when and why beginning programming learner gives up would be important;
besides, programming education needs to establish an appropriate new instruc-
tional method for them.

Previous studies suggested that some programming learners in the lowest
achievement group do not have even a minimum knowledge to properly read
simple programs than writing a program consisting of dozens of lines. Reading
programs must be an essential programming skill. Therefore, in programming
introduction education, the authors think that supporting for reading programs
must play an important role. Based on this idea, in order to effectively sup-
port learners in the lowest group, firstly educational experts including us should
clarify their features from basic studies on analyzing program reading. There-
fore, the authors focused on eye movement as a method to promote this idea.
We thought that utilizing eye movement helps to unveil the reasons for making
programming learning difficult.

This paper firstly examines whether the eye tracking is useful for estimating
the reading process of programs by surveying and summarizing various results
of previous studies. Based on the knowledge of these previous studies, the pur-
pose of this paper is to investigate the possibility of learner’s program reading
comprehension based on the pattern of eye movement, not the eye distribution.
This study fucuses on programs with only assignment and arithmetic operations,
simplify the structure of programs to data dependencies, and set them as analy-
sis targets. From the data of such programs obtained by eye tracking, this study
constructs a simple Markov process model expressing eye movement patterns
as transition probabilities. By comparing the difference of transition probabil-
ities between nodes and data dependencies, this study shows the possibility of
analyzing the program reading process based on eye movement.

2 Design of Analysis Method

2.1 Source Code Reading

The subject of this paper is to investigate and clarify whether the program struc-
ture is detectable by the pattern of eye movement under the assumption that
programmer’s thinking process appears on the eye movement. In addition to
variable dependencies, actual source codes contain many elements not directly
related to the internal structure, such as programming language specific writing
style and algorithms. These are likely to be strongly influenced by experience.
There is a suggestion that skilled programmers have abundant knowledge of
problem domain and they use it efficiently [2]. As the first step, this paper aims
to clarify that the program structure appears on the eye movement not depending



Analyzing Reading Pattern of Simple C Source Code 547

on the learner’s experience. Therefore, actual source codes would be unsuitable
for the experimental subject of this paper. Also, if an examiner creates the exper-
imental tasks (source codes) manually, external factors other than the program
structure may be included regardless of intention. Specifically, external factors
are such as the design pattern of the program (variable name, the design of
operator, and the description of assignment statements). These external factors
should be eliminated as much as possible to clarify the eye pattern according to
the program structure. Therefore, this paper does not generate the experimental
task manually but automatically.

The source codes used as experimental tasks have no specific meaning, that
is, has no purpose of processing. They are generated with arbitrary rules and
depends only on the internal program structure. Also, they should be surely
readable even if an examinee has just the most basic knowledge about the pro-
gramming language specification and the minimum required calculation ability
enough level as needed in daily life. Source codes not depending on the knowl-
edge of problem domain will allow analysis without arbitrariness. Based on the
suggestion of iterative learning of only sequential processing which is the basis
of programming [3], even source codes including only a meaning of the internal
program structure will be able to unveil the understanding process from the
eye movement. In addition to these, to minimize the effect of memory ability,
this paper designs an experimental protocol that uses source codes composed of
concise instructions as the reading subject and allows examinees to read exper-
imental subjects many times until examinees understand enough.

2.2 Flow of Analysis

The traditional analysis method of eye movement for program reading was based
on time series data or the total amount of eye movement [4,5]. However, it is not
easy to use the time series pattern as it is and to estimate the comprehension
process of each examinee because the reading time and the reading strategy are
entirely different depending on examinee. So this paper assumes that program-
mer’s thinking behavior is similar to program slicing while reading a source code,
and based on the assumption, grasps the behavior of program reading in terms
of slicing. In other words, the assumption is that a programmer who understands
the content of program correctly reads the source code while implicitly grasp-
ing the structure and the strength of data dependency relationship, and the
comprehension process appears in the eye movement. Previous study qualita-
tively confirmed that the characteristic of the reading appears in eye movements
depending on the program structure and the nature of programmer [6]. There-
fore, this paper focuses on the fixation [7] which is a motion where gaze point
stops within a range for a period and quantifies the time series fluctuation of the
eye movement by fixation. Then, as a method for quantitatively analyzing the
quantized data, a Markov model is employed.

The examinee’s eye movement is measured during reading a source code
until he/she grasps the values of all variables after the execution of the pre-
sented source code. Experiments in this paper do not limit the reading time



548 S. Matsumoto et al.

Fig. 1. An example of a source dode and its program dependence graph

and continue to measure until the examinee satisfied. As mentioned above, the
experimental task is the source code of only simple assignment statements and
includes only data dependencies among program structures (not including con-
trol dependency relationship). Thus, we believe that the history of eye movement
can be evaluated not strongly affected by examinee’s coding skill and reading
strategy. Also, Markov model is useful for evaluating the pattern of eye move-
ment because the examinee can repeatedly read and understand the presented
source code many times until they fully understand the content.

2.3 Research of Analyzing Program Comprehension Process
with Eye Tracking

Studies on eye movement targeting programming learning have also been con-
ducted since the early 1990s [8]. Eye tracking instruments have been used to
acquire nonverbal features of beginning/experienced programmers to analyze
skill differences. However, although jumping of eye movement is common in
source code reading, it is extremely rare in reading of natural language sen-
tences [9]. Therefore, a unique method different from the analysis of general
document reading is necessary to analyze programmer’s cognitive process, but
its analysis method is not sufficiently established even at the present stage.

3 Analysis Technique

3.1 Program Slicing

Program slicing is a technique that focuses on the dependency relationship
between sentences in a program and extracts a set of sentences having depen-
dency with a specific sentence, and the extraction result is called as a slice [10].
A slice is a part directly or indirectly related to information a programmer wants
to know. The slicing technique has mainly used to narrow the sentence including



Analyzing Reading Pattern of Simple C Source Code 549

bugs in a procedural language and has achieved various developments such as
static slicing and dynamic slicing [11]. Program slicing has also been reported
to be important for debugging [12]. Therefore, an appropriate slicing skill will
enable efficient work to quote existing sentences or to find bugs. Many learners
have had a hard time finding a mistake in source codes. This work considered
to be extraneous (inefficient) cognitive load. Proper slicing skill will enable pro-
gramming learners to efficiently reduce non-essential work like scanning descrip-
tive errors and to concentrate on essential learning like designing algorithm. As
a means to quantify the slicing skill, the eye tracking would be effective. When
reading a source code, we can assume that the learner implicitly makes a thought
similar to slicing [13]. Although there are some studies focusing on slicing skill
for programming education [14,15], the authors cannot find a research trying
to estimate slicing skill from eye movement. If we can evaluate the slicing skill
from eye movement, the analysis result will realize more appropriate instruction
according to learner’s skill level. Specific methods of program slicing include
static slicing and dynamic slicing. The slice extraction process and its feature
related to this paper are described below.

Static Program Slicing. In static program slicing, source code is analyzed
statically and a dependency between statements is extracted. When the follow-
ing conditions are satisfied for the statements s1 and s2 in the source code p,
the statement s2 depends on s1, and the relationship is defined as the control
dependency relationship.

– s1 is the control statement.
– The result of s1 determines whether s2 is executed or not.

When the following conditions are satisfied, the statement s2 depends on s1,
and the relation is called as data dependency relationship.

– In s1 the variable v is defined.
– There is at least one route which does not redefine the variable v in s1 to s2.
– The variable v is referenced in s2.

Program Dependence Graph. From the above dependency relationships, we
can draw a program dependence graph (PDG) [16]. PDG is a directed graph in
which edges represent dependency relationships between sentences, and nodes
are statements such as control statements and assignment statements. The direc-
tion of the directed edge is expressed in the opposite direction to the direction
of dependence in order to make it easy to grasp the flow of the program. An
example of PDG is shown in Fig. 1. Figure 1(b) is a PDG created from slicing
with the static slicing criterion (20 outputs) for the source code of Fig. 1(a). In
Fig. 1(b), each node represents a row.



550 S. Matsumoto et al.

There are two types of dependency relationship, data dependency relation-
ship, and control dependency relationship. In this paper, we focus only on the
data dependency relationship. Programming skill to follow control syntax is con-
sidered to be highly dependent on knowledge. A learner who has not enough skill
of control syntax would be difficult to follow the dependency relationship among
variables involving the control syntax. Therefore, in this paper, we focus only
on the data dependency relationship composed only of the most fundamental
dependency relationship between variables. Figure 1 shows an example of data
dependence graph in which a data dependence is expressed as a directed graph.

Fig. 2. Definition of the region of each line

3.2 Eye Tracking Technique

The movements of human’s eyes when reading a document is roughly divided
into two patterns [17]. One is a behavior called “Fixation” that gazes one point
for about 100 to 500 ms, about 200 to 300 ms on average. The other is a quick
movement called “Saccade” of about 30 ms that is a move from fixation to the
next fixation. Saccade can be further categorized according to its characteristics
such as the behavior of reading forward sentences (forward-reading) and the
behavior of returning to previously read sentences (regression).

Measured raw data of eye movement contains many noises. To efficiently ana-
lyze the data of source code reading and evaluate these, only the characteristic
patterns of eye movement while reading is considered to be available. There-
fore, previous studies have usually observed only the history of the transition
between each line a programmer gazed. Salvucci et al. proposed three methods
to collate eye tracking data and process model: target tracing method, fixation
tracing method, and point tracing method [18,19]. In the method of Salvucci
et al., human’s work is described by rule sets consisted of regular grammars
and is defined as a process model. Then, by automatically matching the eye
tracking data with the process model, their method estimated the executed pro-
cess model. In the fixation tracing method, Hidden Markov Model (HMM) [20]



Analyzing Reading Pattern of Simple C Source Code 551

is combined to map to each state, and the whole process model is expressed.
By giving fixation points to the obtained HMM, the selected process model is
probabilistically calculated.

Based on the knowledge of Salvucci et al., this paper focuses on the tran-
sition of fixation from the features of eye movement and processes measured
data similar to the retention tracking method. In this paper, the process model
corresponds to each line of the program, and we try to construct a thinking
model from the transition between processes. First, focusing only on the fixation
motion in eye movement, we can obtain the time series of filtered eye positions.
To extract the filtered eye data, these paper employes i-vt fixation filter which
is a technique to extract only the fixation [21]. To analyze programmer’s com-
prehension process, the transition data from a line to another line is necessary.
Therefore, the eye movement is converted to the transition of gazed lines, i.e.,
fixations are converted based on the range of lines. Figure 2 shows the method
to define the row range and the details are as follows. First, in order from the
top line, the minimum range of rectangle is determined for each line in which
characters are written. Next, the row range is identified by adding the values of
pixels corresponding to 1/2 of each line space to the place around the obtained
minimum rectangles. This row range enables us to transform the raw data of eye
movement into the series of the gazed line.

3.3 Markov Process

Markov process is a stochastic process in which future predicted values are deter-
mined only by current observations. In this paper, we use a simple Markov
process determined by only the last state among them. By considering a part of
source code including a process as state and the transition between parts as edge,
we construct the state transition model and regard it as the learner’s thinking
model. Markov property certainly exists in the transition of eye movement [22].
The target of this paper is only the transition between the lines in source code.
Therefore, it is not necessary to emphasize that there is a hidden state between
the output symbol string of the observed eye movement and the internal cogni-
tive process. Based on this reason, we adopt simple Markov model, not Hidden
Markov model. Also, even in the gaze movement, we focus only on the transition
of eyes from one row to another, so we do not think about the transition to the
same state. For example, the eye transition according to each line Fig. 3(c) is
represented by a simple Markov process as Fig. 4. The edge from node 1 to node
2 in Fig. 4 represents the probability of transition to the second line from the
first line in the case when gaze line is staying on the first line.



552 S. Matsumoto et al.

Fig. 3. Flow of processes for measured eye movement

Fig. 4. Simple Markov process of eye movement



Analyzing Reading Pattern of Simple C Source Code 553

4 Experiment

4.1 Protocol

We conducted experiments with examinees who are third, fourth grade, and
graduate students majoring informatics and have already learned the basics
of programming, such as the foundation of C language, Java language, and
the foundation of the algorithm. Regarding the achievement results related to
programming, the skill levels of examinee were uniform. This paper conducted
experiments in a room where the inside was invisible from the outside to make
examinees relaxing. Besides, this paper gave enough consideration to make all
examines concentrate on the experimental subject. The first experiment was con-
ducted with 15 people and the second experiment was conducted with 15 people.
In the second experiment, we performed on the same 14 people as the first exper-
iment, i.e., one examinee was different from the first experiment. The reason for
dividing the experiment into two was to confirm the result of the first experi-
ment and to clarify whether it is a general trend or not by acquiring the data
of different subjects. In this paper, we focused on the source code consisted of 3
lines as experiment subjects. All source code was composed only of basic assign-
ment statements and did not include instructions such as increment/decrement
and compound assignment operators. The used operators were only arithmetic
and surplus operation, and it consisted only of simple statements calculatable in
his/her head. In addition, we informed examinees beforehand that all types of
variables are integers in advance. There are four kinds of combinations of data
dependency relationship in the case of three lines of source code. All source codes
were automatically generated for each data dependency relationship and used
for experiments. In the first experiment, the examinees addressed 12 subjects
(3 source codes for each data dependency). The experimental time was about
10–15 min. In the second experiment, the examinees addressed the 8 subjects (2
source codes for each data dependency). In order to measure the eye movement,
X2-30 Eye Tracker produced by Tobi Technology Inc. was used. Examples of the
source code used in the experiment is shown in Fig. 5.

Figure 6 shows the experimental situation. The examinee read the presented
program and answers the values of all variables after its execution. Each source
code was presented in an irregular order, and the examinee was not informed
the type of data dependency. We finished gaze measurement at the time when
the examinee answered the values of all variables. The timing of answer was free.
For example, at the time when the value of only one variable in the presented
program is found, it is possible to answer its value. The examinee continued
reading until he/she had the correct value for all variables. We paid attention
to examinees in advance so as not to respond at a venture. The source code was
displayed at the 12.1-in. display with fullscreen. Regarding display setting of the
source code, the left margin was 100 px, the upper margin was 40 px, the font size
was 50 px, and the line spacing was 150 px, which were empirically determined
but the comfortable settings for us. The flow of the experiment was as follows.



554 S. Matsumoto et al.

Fig. 5. Source codes used in the experiments

Fig. 6. A picture showing actual condition of the experiment

1. Each examinee was given to explanation about the experimental method such
as the presentation method of the subject, the answer method, the experimen-
tal time, things to keep in mind when reading source code (do not close your
eyes, do not move your face, and keep proper posture). After the confirmation
of essential matters, calibration was performed (about one minute).

2. We explained the detail of the subject and do a preliminary exercise of the
experiment with the examinee (about two minutes).



Analyzing Reading Pattern of Simple C Source Code 555

3. We measured the data of eye movement one by one. After receiving the exam-
inee’s answer, we ended the measurement (about 10–30 s per question).

4. After completing the experiment of one question, we prepared a sufficient
time break (about 10–30 s). After the break, went to the next question. We
presented the problem in the same way as the above procedure and finished
when performing all the tasks.

4.2 Result

Markov models were generated for each reading task from the eye movement data
of each examinee. As the targets of this paper were four types of data dependency
relationship. This paper calculated the averages of the transition probabilities
of Markov model between nodes for each Type as shown in Fig. 7. In Fig. 7, the
transition probability from the node i to the node j is represented as i → j, and
the error bar indicates upper and lower limits of the population mean (infinity)
with 99% reliability when assuming t-distribution. Also, the probability of each
data structure is indicated by a solid line, and the average of the probabilities
of all data structures is connected by a broken line. From the result of Fig. 7,
it can be confirmed that the features corresponding to the data dependency
relationship were reflected the eye movement. We can observe that there are some
edges with the large difference from the average, and this pattern of difference
corresponds to the data dependency relationship.

The basic reading strategy in all experimental tasks consists of the scanning
operation for the whole from the top to the bottom to understand the data

Fig. 7. Average probabilities in Markov model of all participants



556 S. Matsumoto et al.

dependency relationship, and the reading operation based on the structure after
returning to the top. Uwano et al. showed three patterns on the programmer’s
eye movement: behavior to view the entire code from the top to the bottom
immediately after the review started, behavior to check the declaration part of
variables when each variable is first referenced, and behavior to check the previ-
ous line containing a variable when the variable appears [4,5]. While correlating
Uwano’s findings and time series of examinee’s eye movement, we qualitatively
considered the reading strategies of each structure. The basic flow of each struc-
ture depended on the order of variables to be identified, and this difference affects
the eye movement.

Considering the data structure of Type A, it is supposed that this common
reading strategy is based on a flow of understanding while identifying variable
values in order from the top after scanning. Therefore, it can be predicted that
the transition probabilities of the 1st to the 3rd line and vice versa can be
lowered. In the result of Fig. 7, as expected, the transition from the 1st line to
the 3rd line and the transition from the 3rd line to the first line, both of which
have no data dependence, were lower than these pair transitions. The transition
from the 3rd line to the 1st line was significantly lower, and it can be said that
it was a tendency strongly influenced by the structure even if considering the
regression (the action to return to read the sentence already read).

The common reading strategy of Type B has, firstly, the motion to under-
stand the instructions in order from the top after scanning. Next, since there is a
dependency relationship between the 3rd line and the 1st line, there is a motion
to read returning to the 3rd line once confirming the 1st line. In other words,
it can be predicted that there is the reading motion including the reciprocating
motion between the 1st line and the 3rd line in addition to the flow of the read-
ing of Type A. As expected, the shape of the result of Type B was similar to
Type A, but the transition probabilities between the 3rd line and the 1st line
was increased as compared with Type A.

The common reading strategy of Type C is as follows. After scanning, there
is a reading motion to check the 3rd line, move the center of sight to the 3rd line,
and repeat minute round-trip with the 1st line and the 3rd line to identify the
value of the variables. Therefore, the transition probabilities from the 1st line
to the 2nd line and vice versa are considered to be lower than the other three
structures. In the result of Fig. 7, as expected, the transition probabilities from
the 1st line to the 2nd line and vice versa were lower than the other structures.

In the case of Type D, the value of the 3rd line is determined after the value of
the variable is determined in the 2nd line. Therefore, after scanning, the common
reading strategy of Type D consists of the motions to repeat minute round-trip
with the 1st line and the 2nd line, move the center of sight to the 3rd line, and
repeat minute round-trip between the 3rd line and the 1st line and between the
3rd line and the 2nd line. Type D has the most complicated structure among
the four patterns of data dependence. That is, it can be predicted that Type
D follows a reading strategy that includes all reading motions of other data
structures together. In the result of Fig. 7, the overall probability average and



Analyzing Reading Pattern of Simple C Source Code 557

Fig. 8. Comparison of each structure’s average probability



558 S. Matsumoto et al.

Type D probability were almost similar. Therefore, as expected, the reading of
Type D was undoubtedly the result of adding together all reading motions of
other data structures.

As the overall tendency, the transition probabilities of the 1st line from the
2nd line and the 1st line from the 3rd line were lower than other. The reason
might be that the 1st line in many cases was a definition sentence, and it was
relatively easy to compare with the content of the 3rd line.

Next, Fig. 8 shows the result of comparing the average of transition probabili-
ties between nodes i, j for each structure. The error bar of Fig. 7 indicates upper
and lower limits of the population mean (infinity) with 99% reliability when
assuming t-distribution. The probability of each data structure is connected by
a solid line, and the probability generated by combining all examinees’ eye data
is connected by a broken line. The purpose of combining all examinees’ data is
to examine only the influence of the data dependency relationship from the eye
movement without relying on each examinee’s feature. From Fig. 8, all the transi-
tion probabilities of all examinees were within confidence intervals. Furthermore,
the difference of structure certainly appeared in the difference of transition prob-
ability. Therefore, we confirmed that general tendency of eye movement accord-
ing to the structure could be shown by combining all examinees’ data when
analyzing the difference in the reading pattern according to each structure.

As for the transition probability between nodes 1 and 2 shown in Fig. 8 (a),
Type C without dependency relationship between nodes 1 to 2 is significantly
lower than other structures by Tukey-Kramer test (p < 0.01). Similarly, for the
data dependency relationship between nodes 1 and 3 shown in Fig. 8(b), Type A
without dependency relationship between nodes 1 and 3 was significantly lower
(p < 0.01). Also in Fig. 8(c), Type C without dependency relationship between
nodes 2 and 1 was significantly lower (p < 0.01) than Type A and B, but
there was no significant difference with Type D. In Fig. 8(d), Type B without
dependency relationship between nodes 2 and 3 had the lowest probability, but
there was an only significant difference with Type C (p < 0.01). Between nodes 3
and 1 shown in Fig. 8(e), Type A, which has no dependency relationship between
nodes 3 and 1, had the lowest probability. Type A was significantly lower than
Type B and D (p < 0.05), and was also significantly lower than Type C (p <
0.01). Between nodes 3 and 2 shown in Fig. 8(f), Type B with no dependency
relationship between nodes 3 and 2 had the lowest probability, but there was
a significant difference from other structures. From the above, it can be said
that the features of each structure appeared in the transition probability of
eye movement, and the effectiveness of the proposed modeling method and the
usefulness of the eye movement for estimating the reading process were clarified.

As an effort for reading source code, Orlov et al. proposed a method to convert
a source code into an abstract semantic element and model an eye movement
using HMM [23]. However, Orlov et al. concluded that his achievement is only one
guideline because they could not obtain a result clearly supporting the validity
of the model. On the other hand, this paper could obtain meaningful results from



Analyzing Reading Pattern of Simple C Source Code 559

the approach similar to Orlov’s one. Therefore, the findings of this paper would
be valuable for further expansion and application of the Markov model-based
method.

5 Conclusion

This paper investigated the possibility of estimating learner’s program compre-
hension process during reading based on the pattern of eye movement, not the
eye distribution. From the viewpoint of program slicing, the internal structure
of the program was restricted to the data dependency relationship, and the fea-
tures of eye transition at lines of source codes were clarified. First, we got the
eye movement during programming reading process and proposed its modeling
method. Then, based on the program structure, we designed an experimental
protocol to analyze the eye movement during reading source code. This study
constructed programs with only assignment and arithmetic operations, simpli-
fied the structure of programs to data dependency relationship, and set them
as analysis targets. From the data of such programs obtained by eye tracking,
this study constructed a simple Markov process model to express eye movement
patterns as transition probabilities. This paper used four kinds of combinations
of data dependency relationship in the case of three lines of source code at
the experiment. Some source codes were automatically generated for each data
dependency relationship and used for experiments. By comparing the differ-
ence of transition probabilities between nodes and data dependencies, this study
showed the possibility of analyzing the program reading process based on eye
movement. As a result, we could confirm the influence of each pattern’s data
dependency relationship as the peculiar behavior of program reading.

Although the experimental subjects in this paper were simple, we were able
to show the tendency of eye movement based on data dependency relationship.
Therefore, based on the result of this paper, in the future, we will identify the
eye trend of learners who have a difficulty to read a source code. The analysis
will be possible to discriminate learners who are out of the criteria, standard
eye movement depending on data dependency relationship, and to instruct an
efficient reading method. Also, the increase of the size and complexity of program
will contribute to elucidating the implicit thinking process which was difficult to
clarify by conventional methodology alone.

Acknowledgments. This work was partly supported by Japan Society for the Pro-
motion of Science, KAKENHI Grant-in-Aid for Scientific Research(C), 16K01147,
17K01164.



560 S. Matsumoto et al.

References

1. Sagisaka, T., Watanabe, S.: Development and evaluation of a web-based diagnostic
system for beginners programming course. J. Jpn. Soc. Inf. Syst. Educ. 27(1), 29–
38 (2010). (in Japanese)

2. Pennington, N.: Stimulus structures and mental representations in expert compre-
hension of computer programs. Cogn. Psychol. 19, 295–341 (1987)

3. Okamoto, M., Terakawa, K., Murakami, M., Ikeda, K., Mori, M., Uehara, T., Kita,
H.: Computer programming course materials for self-learning novices. In: Proceed-
ings of World Conference on Educational Multimedia, Hypermedia and Telecom-
munications, vol. 2010, no. 1, pp. 2855–2861 (2010)

4. Uwano, H., Nakamura, M., Monden, A., Matsumoto, K.: Exploiting eye movements
for evaluating reviewer’s performance in software review. IEICE Trans. Fundam.
E90–A(10), 317–328 (2007)

5. Uwano, H., Nakamura, M., Monden, A., Matsumoto, K.: Analyzing individual
performance of source code review using reviewers’ eye movement. In: Proceedings
of the 2006 Symposium on Eye Tracking Research & Applications, pp. 133–140
(2006)

6. Kashima, T., Matsumoto, S., Yamagishi, S.: Knowledge acquisition with eye-
tracking to teach programming appropriate for learner’s programming skill. In:
Proceedings of the Third Asian Conference on Information Systems, pp. 287–292
(2014)

7. Rayner, K.: Eye movements in reading and information processing: 20 years of
research. Psychol. Bull. 124(3), 372–422 (1998)

8. Ihantola, P.: Notes on eye tracking in programming education. In: Eye Movements
in Programming Education, pp. 13–15 (2014)

9. Crosby, M., Stelovsky, J.: How do we read algorithms? A case study. IEEE Comput.
23(1), 24–35 (1990)

10. Weiser, M.: Programmers use slices when debugging. Commun. ACM 25(7), 446–
452 (1982)

11. Agrawal, H., Horgan, J.: Dynamic program slicing. In: SIGPLAN Notices, vol. 25,
no. 6, pp. 246–256 (1990)

12. Nishimatsu, A., Nishie, K., Kusumoto, S., Inoue, K.: An experimental evaluation
of program slicing on fault localizaion process. IEICE Trans. Inf. Syst. 82(11),
1336–1344 (1999). (in Japanese)

13. Ishio, T., Kusumoto, S., Inoue, K.: Debugging support for aspect-oriented program
based on program slicing and call graph. In: Proceedings of 20th IEEE International
Conference on Software Maintenance, pp. 178–187 (2004)

14. Inazumi, H., Takeuchi, S.: How to learn programming technique by using program
slicing. Aoyama Inf. Sci. 29(1), 51–78 (2001). (in Japanese)

15. Yoshida, H., Tateiwa, Y., Yamamoto, D., Takahashi, N.: A code review navigator
with chunking and slicing for assembly programming exercise. IEICE technical
report, vol. 109, no. 335, ET2009-81, pp. 169–174 (2009). (in Japanese)

16. Ottenstein, K., Ottenstein, L.: The program dependence graph in a software
development environment. In: Proceedings of ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, SDE
1, pp. 177–184 (1984)

17. Rayner, K.: Eye movements in reading and information processing, 20 years of
research. Psychol. Bull. 124(3), 372–422 (1998)



Analyzing Reading Pattern of Simple C Source Code 561

18. Salvucci, D., Anderson, J.: Automated eye-movement protocol analysis. Hum.-
Comput. Interact. 16(1), 39–86 (2001)

19. Ohno, T.: What can be learned from eye movement?: understanding higher cogni-
tive processes from eye movement analysis. Jpn. J. Cogn. Sci. 9(4), 565–579 (2002).
(in Japanese)

20. Juang, B., Rabiner, L.: The segmental k-means algorithm for estimating the param-
eters of hidden Markov models. IEEE Trans. ASSP 38(9), 1639–1641 (1990)

21. Olsen, A.: The Tobii I-VT Fixation Filter, Tobii Technology (2012)
22. Iwao, T., Mima, D., Kubo, H., Maejima, A., Morishima, S.: Analysis and synthesis

of eye movement in face-to-face conversation based on probability model. Inst.
Image Electron. Eng. Jpn. 42(5), 661–670 (2013). (in Japanese)

23. Orlov, P.: Primary investigation of applying Hidden Markov Models for eye move-
ments in source code reading. In: Eye Movements in Programming Education II:
Analyzing the Novice’s Gaze, pp. 18–20 (2015)


	Analyzing Reading Pattern of Simple C Source Code Consisting of Only Assignment and Arithmetic Operations Based on Data Dependency Relationship by Using Eye Movement
	1 Introduction
	2 Design of Analysis Method
	2.1 Source Code Reading
	2.2 Flow of Analysis
	2.3 Research of Analyzing Program Comprehension Process with Eye Tracking

	3 Analysis Technique
	3.1 Program Slicing
	3.2 Eye Tracking Technique
	3.3 Markov Process

	4 Experiment
	4.1 Protocol
	4.2 Result

	5 Conclusion
	References




