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Abstract. A system is presented that enables an authorized person on ground to
transmit mission information to an airborne UAV within line of sight by using
gestural expressions of both arms without the need for additional devices on
ground. A miniaturized processing board with a discrete GPU is used to detect
the body movements via a high resolution onboard camera and to translate them
into relevant tasking information. Individual task elements are transmitted
consecutively, including numerical and non-numerical information. A context
aware gesture recognition approach is implemented to enable the reuse of
gestures for different contexts in order to maintain a small gesture set. The
system further features a bidirectional communication which allows to dispatch
visual feedbacks and to query missing information visually via a LED matrix.
Two experiments with different briefing contents in a static and dynamic setup
have been conducted to proof the feasibility under real-life conditions.
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1 Motivation

Unmanned aerial vehicles (UAV) that are being used for image intelligence purposes,
receive their command and guidance information primarily via radio link from a
ground control station or handheld devices. Without an adequate device, no access to
the UAV is possible. In extraordinary and dangerous situations, like infantryman in
unknown terrain or search and rescue personnel in disaster scenarios, this requirement
is a disadvantage, since there is no option to transfer the authority of the UAV to a third
party via alternative channels these days. New ways of interaction are starting to evolve
by using the onboard sensors in combination with gesture recognition to allow a visual
communication [1–3]. However, current solutions only utilize this visual channel for
low level commands, such as triggering an image capture [4] or telling the UAV to
move to a specific direction [5]. High level, mission briefing like communication under
real-life conditions has not been demonstrated before. This paper covers a system to
address this capability gap.
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2 System Architecture

The proposed system architecture is designed to allow an authorized person on ground
to communicate with an airborne UAV within line of sight by performing a set of
gestural expressions to transmit mission relevant details. The UAV can sense the
operator’s movements and translate them into the needed information components to
compose the mission objective on board in real-time. To fulfil this goal, the following
requirements have to be met by the system:

• The system shall be robust to a dynamic surrounding, since the flying platform will
not be steady at one place at all times.

• The hardware and software components must not exceed the payload weight lim-
itations, however ensuring that the onboard processing power is sufficient for
real-time applications.

• The deployed sensor shall be passive with a wide operational range to allow
interaction at different distance levels.

• A prompt feedback mechanism shall be included to enable a bidirectional com-
munication between the UAV and the operator. Response time shall not exceed 3 s.

The next chapters cover the relevant system components to satisfy these
requirements.

2.1 Communication Model

To map the ongoing processes during the human-to-UAV interaction a communication
model has to be designed. To understand the employed model, a few definitions have to
be made first.

Operator. A person that is instructed and authorized to send mission details to the
UAV is called in the following the operator.

Mission. A mission is a concatenation of single tasks that are processed by the UAV
consecutively to achieve a specific goal (reconnaissance, transport, etc.). These tasks
are transferred to the UAV during a mission briefing. In the current implementation a
briefing starts with a conversation start command (in this case a “Hello” gesture) and
always ends with the transmission of a “Return to” task as shown in Fig. 1.

Task. A task is a part of a mission that triggers the activation of a subsystem of the
UAV under a specific condition. A “find humans” task for instance activates the
onboard sensor system and image processing algorithm to detect persons on the ground
once the UAV reaches a defined location. That task consists of two information ele-
ments: the command (“find”) and an additional non-numerical information “humans”.
Some tasks can may also require additional numerical information (e.g. “maximum
mission time”), where others do not require any additional information at all (e.g. “take
off now”).

Context. The context is the scope of an interaction. Together with an observation and
the already received information this creates a meaning for an observation. If a com-
mand requires additional information, it defines the next context for that type of
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information. Possible contexts are for instance “direction”, “location”, “numerical
information”, “tasking” or even “none”.

Meaning. A meaning is the interpretation of an observation for a given context. Since
the capability for interpretations is ascribed commonly only to humans, this process can
be described here as a translation of an observation to a meaning using multiple
parameters for the presented system. Meanings can be for example “start conversation”,
“location of operator” or “count fingers of left hand”.

Observation. An observation is the movement or pose of the operator sensed by the
UAV. It is the interface between the human operator and the airborne system.

Figure 2 shows the communication model of the proposed system. The operator on
ground knows about the type of mission (reconnaissance mission, transport mission,
etc.) and the mission specific details. To be able to communicate these details to the
UAV, he has to split the mission into multiple single tasks in a way, to represent each
task by a set of gestural expression.
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Fig. 1. Layout of a mission briefing
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The actual display of the gesture is the gestural utterance, which is visible to the
unmanned system and hence can be observed. Both the operator and the gesture
recognition system on board the UAV are aware of the possible gestural expressions
(“arm up”, “arm down”, “arm pointing to ground”, etc.). This knowledge is imple-
mented in the Gesture Database in Fig. 2. Such gesture templates however do not
contain any meaning in the first place, instead they can be seen as a means of trans-
portation for the information itself.

The meaning of an observed gesture is assigned in a subsequent step, using the
Context Aware Translation Rule Set. It takes the current observation, context, the
gestural expression itself as well as the already received information as an input and
reasons for the meaning of the gestural expression under the given circumstances. This
way, the same gestural expression can be used for different contexts and the amount of
gestures to be memorized by the operator can be reduced.

Once the information is physically sent to the UAV via a gestural utterance, the
image data processing and gesture recognition onboard transfers these body move-
ments into observations which are then translated into meanings. If the system detects
discrepancies (e.g. expects additional information, but receives instead a different task)
it informs the operator about this conflict and asks (again) for the needed information.
Once the system has received a valid and complete set of tasks for a mission, it finishes
the conversation and starts its mission. Figure 3 illustrates this information transfer
process from the operator to the UAV. A programmatic solution for the information
processing on UAV side is described in Fig. 15 in the Appendix.

2.2 Pose Estimation

A key element for the transmission of gestural information is the detection and
localization of the operator’s body parts. This process is known as pose estimation. In a
previous study [6] a depth sensor based approach has been considered to separate the
operator from the background reliably and to find extreme points in the depth data to
detect the operator’s limbs. The results show the advantages of the additional distance
information provided by the sensor technology, but also its range limitations, which
force the operator to approach the airborne system to an uncomfortable close distance
to get within sensor range.
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Recent advances in this research domain have brought up a versatile real-time
solution [7–9] for this problem, using commonly available 2D image sensors and
avoiding the limitations of depth sensors. The open source framework OpenPose [10]
offers that functionality and supports multiple models with different accuracies and
computational demands. However, due to the high degree of parallelism used in that
method, a graphics processing unit (GPU) supporting CUDA [11] is required to
achieve a real-time processing. Essentially the selected model and the network size
determine the performance. The proposed system utilizes the model learned on the MPI
dataset [12] using a reduced network size of 288 � 144 pixel.

2.3 Authentication

As pictured in the introduction of the system architecture, accessing the capabilities of
the UAV is only allowed for an authorized person. To include a rudimentary autho-
rization mechanism, a color based approach has been selected for this system. The
person that wears a high-visibility vest, like the ones used at construction sites, is
assumed to be the operator.

To find the operator in a group of persons, the color of the clothing of each detected
person is measured at three points across its upper body part (see Fig. 4). To be robust
to changes in illumination each color measurement is converted into the HSV (hue,
saturation, value) color space and compared to a reference hue value. If all three
measurements are similar to the reference, the person is assumed to be an operator.

More elaborated methods that utilize biometrics for the authorization via face [13],
skeleton, body shape [14] or gait recognition [15] can be used for that purpose as well.
However, tests with an implementation of a deep metric learning based face recognition
[16, 17] showed, that the overall system performance decreases by a factor of about
20% for the chosen system hardware configuration. Furthermore, a face recognition
demands high requirements on image quality and resolution which cannot be met in all
use cases (especially for long-distance interactions, where the optical magnification is
not sufficient to maintain a minimum resolution of the operator’s face). Therefore, the
computationally lightweight and robust solution using special clothing for authoriza-
tion has been chosen.

2.4 Gesture Recognition

The pose estimation delivers the detected 2D joint coordinates (Fig. 4) including a
confidence value. The angles spanned by the joints hip-shoulder-elbow and
shoulder-elbow-wrist are determined and used as features for each body side. The
gesture recognition is divided into two processing chains, a static recognition for
pointing and holding type poses and a dynamic recognition for poses that change over
time.

Static Gesture Recognition. To detect static gestures, a feature comparison approach
is applied. The advantage of this method is the low computational cost (since only two
features have to be compared with a reference) and the avoidance of a learning phase,
meaning that only reference features have to be defined. Figure 5 visualizes the realized
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gesture set. The inner circle represents the commands that can be followed by one or
more additional numerical or non-numerical information, displayed in the second and
third ring.

Dynamic Gesture Recognition. To detect dynamic gestures, features have to be
analyzed over time. A commonly used and proven approach for this is Dynamic Time
Warping [18]. This method is suitable for real-time processing and is included in the
Gesture Recognition Toolkit [19]. Preliminary studies have shown that the achieved
frame rate of about 4.5 frames per second (fps) however is not sufficient for the
detection of dynamic gestures performed at a common pace (i.e. the operator would
need to wave unnaturally slow to get a reliable detection of a “hello” gesture). For that
reason, dynamic gestures are not considered in the current state of system imple-
mentation. However, dynamic gestures shall be included in the next development
iteration of the system once the processing rate can be raised to 10+ fps.

2.5 Finger Detection

For the transmission of numerical information, showing and counting of fingers is a
common communication method for humans. Therefore, a hand and finger detection
has been included in the system. The implemented method is a modified version of
[20], which uses hull curve and convexity defects of a shape to find finger tips in it (see
Fig. 6). The location of the hands is estimated based on the wrist information of the
pose estimation and the segmentation is performed via skin color thresholding [21].
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Left KneeRight Knee

Left HipRight Hip

Left WristRight Wrist Right Elbow Left ElbowLeft ShoulderRight Shoulder

Chest

Head

NeckF2 F3F1 F4

Joints provided by OpenPose MPI model

Joints utilized for authorization

Features for gesture recognitionF1, F2, F3, F4

Fig. 4. Provided joints by OpenPose and their utilization in the system
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2.6 Feedback

To provide a feedback mechanism for bidirectional communication, a visual approach
has been chosen using a bright LED matrix. To give the operator an acknowledgement
for a recognized command, the translated gestural observation is displayed for two
seconds followed by a prompt in case additional information is needed or the tasking
sequence is not completed. Due to the limited available space for payload, the selected
matrix with a width and height of 32 � 8 pixels can display only five letters at a time,
hence limiting the allowed word length. Scrolling text horizontally had been tested
beforehand and showed multiple disadvantages. Waiting for the information to scroll
through extends the communication process. More importantly, it increases the risk for
the operator to overlook important parts of the message, if he turns his eyes away from
the UAV during the feedback phase. To enhance the readability further, common
aeronautical abbreviations (e.g. “CRS” for course), interrogatives or combinations of
the needed information followed by a question mark are used (Fig. 7). Experiments
under direct sunlight have proven a good readability using green LEDs for distances of
up to 75 m with normal vision.

Fig. 5. Supported gestural tasking commands and the task dependent additional information
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2.7 Hardware Design

A flying platform1 has been selected that can carry up to 6 kg of payload. It features an
autopilot that supports several automated flight modes, such as hovering, automatic
take off/landing and waypoint navigation. However, for the experiments described in
this paper the automated flight capabilities of the UAV have not been used. Instead, a
safety pilot takes over the task of keeping the UAV in an appropriate distance in front

Fig. 6. Visualization of the onboard gesture recognition and finger detection algorithm, from top
to bottom line: 1. CNTLR = Count fingers on left and right side, 2. movement status, 3. current
context, 4. Number of detected fingers and confidence for each hand, 5. S = detected observation
of static gesture recognition, D = result of dynamic gesture recognition (here none, since
operator is not moving), yellow circles = detected finger tips (Color figure online)

Fig. 7. Multicopter UAV with stabilized sensor system, processing board and LED matrix for
visual feedback

1 DJI Matrice 600 Pro.
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of the operator at this stage. The payload includes a stabilized gimbal system2 that
carries a GigE Vision camera3 with a resolution of 1920 � 1080 pixels and a 20x
optical magnification. Furthermore the gimbal hosts the main processing unit, which is
a miniaturized multicore system featuring a discrete GPU, the LED matrix4 and a
controller board5 that drives the matrix. All payload components are powered by the
gimbal system, except the LED matrix, which receives its power from the multicopter
itself due to the high current demands (Fig. 8). A WLAN connection is used only for
the startup of the onboard software modules and for debugging purposes.

2.8 Software Design

The Robot Operating System (ROS) [22] serves as communication infrastructure for all
software modules. The software is organized in three major processing nodes (Fig. 9):

Image Acquisition. This node communicates with the GigE Vision camera and pro-
vides the received image data to other nodes.

Pose Estimation. This node receives image data and publishes the detected joints to
the network. The implementation is a modified version of [23].

VisCom. This is the main node of the visual communication system and is divided
into different processing modules. Since the pose estimation node provides its results
depending on the order of detection, the person tracking module assigns the received
skeletal data to each person across frames. The operator authorization module deter-
mines the authorized person in the image and forwards its joint data to the gesture
recognition module. This module calculates the features and performs the static and

Gimbal

Miniaturized Processing 
Board with discrete GPU LED Controller BoardCamera

GigE USB 2.0

SPI

Mul copter Data
PowerDC/DC Converter

+18V

+5V

+12V

+12V

WLAN

32x8 LED Matrix

CAN

Fig. 8. Involved hardware on board the UAV

2 Nvidia Jetson TX2 with Connect Tech Astro carrier and breakout board.
3 Sony FCB-EH6300.
4 Adafruit Flexible 8 � 32 NeoPixel RGB LED Matrix.
5 Arduino Mega 2560.

326 A. Schelle and P. Stütz



dynamic gesture recognition. The recognized observations for both body sides are then
combined with the results of the finger detection module and forwarded to the com-
municator module. This handles the translation of observations, context, available
gestures and already received information to a mission relevant meaning. Furthermore,
this module controls the visual feedback signals by dispatching display commands to
the LED controller board via a rosserial arduino node, which acts as an interface
between both boards. The actual control of the LED matrix is performed by the
FastLED library [24].

3 Experiments

Two experiments have been conducted to test the system performance under real life
conditions. Multiple missions with different numbers of tasks and objectives were
defined for testing with briefing durations from 32 to 209 s. One of them is shown in
Table 1. Parts of the communication process are depicted in the image sequences in
Figs. 10, 11 and 12.

VisCom Node

ROS

Image Acquisi on Node

Pose Es ma on Node

Rosserial Arduino Node

Person Tracking Module

Operator Authoriza on Module

Communicator Module

Finger Detec on Module

Gesture Recogni on Module

Image Processing Board

ROS

LED Controller Board

Arduino FastLED

Rosserial Arduino Node

Fig. 9. Software nodes and modules on board the UAV

Gestural Transmission of Tasking Information to an Airborne UAV 327



Table 1. Exemplary mission

Meaning Context Observation for arm Feedback Question
Left Right

Conversation
start

None Hanging L-shape up HELLO TASK?

Fly Task Pointing out Pointing out FLY TO?
Course Direction Palm touching

other palm, low
Palm touching other
palm, low

CRS C-

1 Numerical
information

Hanging Pointing to chest, 1
finger visible

C 1-

2 Numerical
information

Hanging Pointing to chest, 2
fingers visible

C 12-

2 Numerical
information

Hanging Pointing to chest, 2
fingers visible

C 122 DIST?

for 1 km Numerical
information

Hanging Pointing to chest, 2
fingers visible

1 km THEN?

Find Task Hanging 2 fingers pointing to
eyes

FIND WHAT?

Human Additional
information

Pointing to chest Pointing to chest HUMAN THEN?

On first
detection

Task L-shape up Hanging 1. DET DO?

Drop bottle Additional
information

Hanging L-shape down DRP B THEN?

Return to Task L-shape down L-shape down RET LOC?
My location Direction Hanging Pointing to ground URLOC OK

Fig. 10. Operator starting the mission briefing with airborne UAV, UAV asks for a task
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3.1 Static Performance

The first experiment was conducted with a static platform to test the system perfor-
mance under optimal conditions without lateral and horizontal movements. For that, the
payload had been detached from the flying platform and mounted on the roof of a van
in a height of about 2.5 m. The operator was standing in a distance of 20 m away from
the van and commanded multiple missions with different numbers of tasks.

3.2 Dynamic Performance

The second experiment included the whole UAV with the stabilized system mounted
underneath the flying platform and hovering in a height of 2 to 3 m above the ground to
evaluate the influence of the platform movement on the detection and recognition
capabilities. The distance between the UAV and the operator was about 22 to 25 m.
Fluctuations resulted from windy conditions on that day.

Fig. 11. Operator tasking UAV to fly to a specific direction, UAV responds with question

Fig. 12. Operator tasks UAV to perform an action on the first detection of a human, UAV asks
for the action
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3.3 Results

The experimental results were assessed regarding two major aspects: performance of
pose estimation and the response time from the beginning of a gestural movement to
the feedback display.

Performance of Pose Estimation. Choosing the appropriate network size for the pose
estimation is an accuracy-performance tradeoff (see explanation in chapter 2.2). The
larger the size is, the higher the detection rate for small objects gets, but at the same
time the processing rate drops significantly. On the other hand, decreasing the network
size improves the processing rate, but demands bigger objects in the image frame. The
chosen size of 288 � 144 pixels requires an operator height of about 85% of the frame
height for a reliable pose estimation with a sufficient accuracy for the gesture recog-
nition. This can be achieved by a closer hovering next to the operator (not recom-
mended for safety reasons) or a higher optical magnification, that has been selected
here. Due to the inference of the convolutional neural network approach, a measured
average processing delay of 0.74 s is involved for every frame for the used processing
board at maximum CPU and GPU clock rates.

Response Time. To reduce the false positive rate, most of the implemented algorithms
use a circular buffer and a confidence value c� 0:8. Hence, given a buffer size of b ¼ 5
and a mean processing performance of �f ¼ 4:5Hz, a first detection in an ideal use case
can be expected after:

T ¼ c� b
�f

¼ 0:�8 s ð1Þ

Figures 13 and 14 show the response times for various non-numerical and
numerical gestural commands for the static respectively airborne system. All time
measurements start in neutral pose, i.e. both arms are hanging, and stop once the LED
matrix displays a feedback. So, this measurement includes the transformation from the
neutral pose to the final gesture.

The static setup represents the ideal situation with no vehicle movements and an
optimal resolution of the operator. Thus, most non-numerical commands are recog-
nized after an average duration of 1.4 s (delay of pose estimation not included), while
the numerical commands are decoded with a much greater delay. The reason for this
can be found in the implemented color based hand and finger detection, which is
sensitive to self-shadowing and skin color-like objects close to the area around both
wrists. If these objects occur in that area or shadows cover the hands significantly, the
false detection rate tends to rise considerably. The minimum confidence constraint
extends then the detection phase and results in a delayed feedback, which misleads the
operator to question the correctness of his gestural utterance. For that reason, briefings
have been aborted after 15 s of no feedback display.
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Fig. 13. Response times for gestural commands from first movement to display for static setup,
delay of pose estimation not included

Fig. 14. Response times for gestural commands from first movement to display for airborne
setup, delay of pose estimation not included
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As expected the airborne setup shows longer average response times. The main
reasons are the constant changes in distance to the operator due to manual UAV
control and windy conditions, resulting in fluctuations of resolution. Furthermore, the
non-optimal positioning of the operator within the frame lead to partial cut offs of the
head or the feet of the operator, as the possibilities of the safety pilot to control the
multicopter and the gimbal system at the same time were limited. Nevertheless, most
non-numerical gestural commands fluctuate around an acceptable response time
of 2 s.

4 Conclusion

The presented system allows an authorized person on ground to transmit mission
briefing information to an airborne UAV by using his arms and fingers. The
developed context aware gesture recognition method delivered promising results in
first real-life experiments, helping to keep the false detection rate low and to reduce
the amount of gestures to memorize for the operator. Using a bright LED matrix for
visual feedback turned out to be a convenient way to improve the communication
process and to reduce the uncertainty about the system state. The required robustness
against the movement of the flying platform was proven, under the assumption that
the operator stays within the image frame. The tradeoff between accuracy and pro-
cessing rate demands a specific operator resolution. For that reason, the image
framing is essential, especially when using optical magnification and operating the
UAV in manual mode. These limitations will be taken care of in future steps by
handing off the authority for the operator framing to a software tracking module. To
improve the recognition of numerical information, more computational power will be
added to enable more advanced and light invariant methods for finger detection.
Finally, the integration of the autopilot into the system will allow the execution of the
commanded tasks from the mission briefing.

Appendix

See Fig. 15.
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