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Abstract. Gait analysis is the study of human movements by analyzing tem-
poral and spatial gait features. Research has shown that Parkinson’s disease can
degenerate human mobility, thereby causing afflicted individuals to behave
differently in terms of gait characteristics. In this work, we propose an optimized
method that assists us in better distinguishing people with Parkinson’s disease
from normal subjects. The spatial-temporal gait features are extracted by using a
real U-shaped pressure-sensitive gait-sensing walkway. After pre-processing
optimizations, including nondimensionalization and normalization of the raw
features, we feed the features to an SVM classifier for training. The Particle
Swarm Optimization algorithm is adopted to optimize the classification model.
Experimental results show that the optimized method outperforms its prede-
cessor by improving the accuracy from 87.12% to 95.66%, which shows the
effectiveness of our proposed method in detecting Parkinson’s Disease patients.

Keywords: Gait analysis � PSO � Support vector machine
Parkinson’s disease

1 Introduction

Gait is the pattern of movement of the limbs of humans. Gait analysis is the systematic
study of human movements by analyzing different spatial-temporal gait parameters,
such as step length, stride speed, cadence, stance time and swing time [1]. As with
biological characteristics such as fingerprints and irises, different individuals can
exhibit different gait patterns with different gait parameters. By analyzing gait com-
ponents of patients with Parkinson’s disease (PD), Knutsson [2] found that some of
their component movements of walking are abnormal compared with their normal
counterparts (NP). Thus, gait analysis can be used as a promising tool in the assessment
of human walking pattern and in distinguishing a particular group of people, such as
PD patients, from others [3, 4]. It remains a challenge to effectively extract useful gait
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parameters. This is a classical feature selection problem that has a wide range of
applications [5, 6] and could also be regarded as a search process and various search
strategies could be applied [7].

Early simple methods, such as visual observation and paper walkway, are applied.
Although they are inexpensive and easy to implement, those methods usually fail to
obtain accurate and reliable gait features [8, 9]. With the evolution of sensor tech-
nology, more researchers than ever before have started to take advantage of it.
Vision-based and sensor-based approaches are two major categories of methods. The
choice of method depends on the data that are collected.

Vision-based approaches collect clips of recorded videos during the subjects’
walking processes. Then, gait parameters are extracted by analyzing and calculating the
key frame images of the video, or by acquiring and calculating signal information that
is generated from special sensors that are attached on key parts of the human body.

Beijer et al. [10] obtained the gait features of early PD patients using cheap
handheld cameras. They fixed the camera above the ground at a distance of 0.5 m and
all the subjects were walking away from the camera with their accustomed speeds.
Compared with the professional GAITRite electronic walkway system, it is found that
although the handheld video camera can obtain the average single step time and double
support times with high accuracy at low cost, the stability of the acquired single step
time is relatively low. Chien-Wen et al. [11] acquired image sequences of human
silhouettes from a gait video that was captured by a SONY HDR-HC3 camcorder and
extracted the intrinsic features by linear discriminant analysis.

With the continuous development of microelectromechanical system technology,
inertial sensors, such as 3D accelerometers and gyroscopes, are widely applied.
Researchers fix the sensors either on the key parts of the subject’s body or in the insole
[5, 12, 13]. Stacy et al. [12] designed a gait shoe system called GaitShoe, which has
three orthogonal accelerometers, three orthogonal gyroscopes, four force sensors, two
bidirectional bend sensors and electric field height sensors. A comprehensive analysis
of the data that are obtained by these sensors can accurately detect heel-strike and
toe-off motions and estimate foot orientation and position. Mitsuru et al. [14] built their
accelerometry-based gait analysis system with the help of one acceleration sensor that
was mounted on the human trunk. They attached the sensor to the trunk of each subject
and collected the acceleration signals of 11 healthy people and 12 PD patients. By
utilizing the cross-correlation and anisotropy properties of the signal, they could detect
the gait peaks due to stride events more accurately. Tiffany et al. [15] devised an
inertial sensor system by fixing sensors on the lower extremities. They acquired the
acceleration information of subjects’ lower limbs and converted them into computer-
generated animations. Using the generated animation to evaluate the gait freeze of
Parkinson patients, a more robust result was obtained. This approach provides a new
possibility for the frozen diagnosis of Parkinson’s gait outside the clinic. There is no
doubt that these inertial sensors can collect more accurate gait data. However, fixing the
sensors on some parts of the human body, especially the legs, will make people feel
uncomfortable and even affect their daily lives [14]. Moreover, limited battery life
makes it impossible to collect continuous data for a long period of time.

Although many different methods for gait data extraction are available, it is still
necessary to find better ways of extracting those data accurately without invasion.
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In this paper, we choose a U-shaped electronic gait-sensing walkway that is based on
flexible array pressure sensors for collecting our gait spatial-temporal features. The
flexible array pressure sensor has the advantages of high sensitivity to low pressure,
fast response time and good stability, which guarantee the accuracy of the collected
data compared to the previous systems. Since the sensor is flexible, it can be applied to
various laboratory scenarios, including irregular surfaces, thereby making it immune to
extreme conditions such as illumination. In addition, the subjects don’t have to wear
any sensor devices; they only have to walk normally, thereby making it possible to
reduce the potential influence of stress of the subjects on the collected data. Moreover,
the walkway system can obtain gait data at a turning point since it is U-shaped.

Previous work has been done on collecting gait parameters of PD patients and
age-matched controls and an SVM classification model has been constructed for dis-
tinguishing PD patients with an accuracy of 87.12% [16]. However, in practice, mis-
diagnosing a PD patient as healthy or a healthy person as having PD will have a great
impact on the person. Thus, the classification model still has much room for opti-
mization. In this paper, we propose an optimized Parkinson’s disease detection method
for improving the classification performance. Spatial-temporal gait features are
extracted from the U-shaped electronic gait-sensing walkway system. Compared with
the previous model, we eliminate the influence of height on the gait features and apply
max-min normalization. Then, the Particle Swarm Optimization algorithm is applied to
optimize the parameters of the SVM classifier. Finally, we use a ten-fold
cross-validation technique to evaluate the performance of the model. Experimental
results show that the performance of the optimized model is greatly improved.

The structure of this paper is as follows: Sect. 2 details the data processing tech-
niques and PSO and SVM algorithms for building our classification model. Experi-
ments on data collection, feature extraction, and classification model construction are
described in Sect. 3. In Sect. 4, we conclude this work and discuss our future work.

2 Method

A flow chart of our method is shown in Fig. 1. It has three parts: data acquisition, data
preprocessing and classification model construction.

2.1 Nondimensionalization

By experience, compared to taller people, shorter people tend to walk with shorter step
length but higher cadence. Therefore, people of shorter stature may have closer gait
parameters to people with Parkinson’s disease than to taller normal subjects. Thus, it is
of great importance to define a “normal step length” in gait analysis. AL Hof [17]
proposed a definition of “normal step length”. He divides step length by the corre-
sponding human height, as shown in formula 1. By this treatment, the step lengths of
normal people of different heights will cluster around a fixed number. Similarly, for
other gait features, there are corresponding dimensionless formulas. For all
length-relevant features, such as stride length, formula (1) is used to eliminate the
influence of height. For speed-relevant features, such as gait velocity, formula (2) is
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employed to remove the influence of height. All frequency-related features, including
cadence, are processed by formula (3). All time-related features, including stance time,
swing time, pre-swing time, gait cycle, double support time, and turning time, are
processed by formula (4).

l̂ ¼ l
l0

ð1Þ

v̂ ¼ vffiffiffiffiffiffi
gl0

p ð2Þ

f̂ ¼ fffiffiffiffiffiffiffiffiffi
g=l0

p ð3Þ

l̂ ¼ tffiffiffiffiffiffiffiffiffi
l0=g

p ð4Þ

In the above formulas (1–4), l represents a length-related feature, v represents a
speed-related feature, t represents a time-related feature, f represents a
frequency-related feature, l0 is the height of the subject, and g represents the gravita-
tional acceleration constant. In this paper, we choose g to be 9.81.

2.2 Normalization

The data need to be normalized before the classification experiments are carried out.
Normalization is the scaling of data in proportion to a small specific interval. The main

Fig. 1. Flow chart of our method
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benefit of normalization is apparent when the features vary a lot in scale. Because of the
different nature of each parameter, some parameters tend to be very large while others
tend to be very small. When the sizes of the parameter are substantially different, if we
directly use the original parameter value for analysis, we will highlight the roles of
larger parameters in the comprehensive analysis and weaken the roles of smaller
parameters. Therefore, to ensure the reliability of the results, it is necessary to nor-
malize the data of the original parameters.

As the values of the gait features that are extracted from the experiment are pos-
itive, this experiment adopts the min-max normalization method. A linear transfor-
mation is applied to the original data to map the results to [0,1]. The specific formula is
as follows: For sequence x1; x2; x3; . . .; xn, we obtain new sequence y1; y2; y3; . . .; yn 2
0; 1½ � by

yi ¼ xi � min x1; x2; x3; . . .; xnf g
max x1; x2; x3; . . .; xnf g � min x1; x2; x3; . . .; xnf g ð5Þ

2.3 Classification Model

Support Vector Machine. The support vector machine (SVM) algorithm was
invented by Vladimir N. Vapnik and Corinna Cortes [18] in 1993 and published in
1995. It is a powerful binary classification model for high-dimensional data with small
data sets. For problems with linearly separable training samples, a hyperplane model is
used to distinguish the samples. The parameters of the model are derived by maxi-
mizing the margin, which is the distance of the support vector to the hyperplane.
For non-linear classification problems, a kernel function is adopted to transform the
linearly inseparable samples from low-dimensional feature space into
higher-dimensional feature space. After the mapping procedure, those samples become
linearly separable. The SVM algorithm constructs the optimal hyperplane in feature
space based on the concept of structural risk minimization, which globally optimizes
the model. The SVM model is expressed in formula (6). This paper chooses a radial
basis function (RBF) as the mapping function, which is expressed in formula (7). The
code is from LIBSVM, which was developed by Professor Lin Chih-Jen from Taiwan
University [19].

min
1
2

wk k2 þC
Xn
i¼1

ni s:t: yi wTxi
� �þ b
� �� 1� ni i ¼ 1; 2; . . .; n; ni � 0 ð6Þ

K xi; xj
� � ¼ exp �c xi � xj

�� ��2� 	
ð7Þ

Particle Swarm Optimization. Particle Swarm Optimization (PSO) is an evolutionary
computational technique, which was proposed by Drs. Eberhart and Kennedy in 1995.
The algorithm is inspired by the foraging behaviors of birds. The basic strategy of PSO
is to find the optimal solution through collaboration and information sharing among
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particles in the group. PSO has a high convergence rate and has been widely applied to
algorithm parameter optimization [20], neural network training [21], fuzzy system
control and other genetic algorithms. The basic principle is shown in formula (8) and
formula (9).

v i½ � ¼ w�v i½ � þ c1 � randðÞ � pbest i½ � � present i½ �ð Þþ c2 � randðÞ
� gbest � present i½ �ð Þ ð8Þ

present i½ � ¼ present i½ � þ v i½ � ð9Þ

Each particle present i½ �ð Þ represents a candidate solution to the optimization
problem. It evolves from its own “memory term” w � v i½ �ð Þ, “self-recognition term”
c1 � randðÞ � pbest i½ � � present i½ �ð Þð Þ and “group cognitive term” c2 � randðÞ�ð
gbest � present i½ �ð ÞÞ, as shown in formula (8). A flow chart of the PSO algorithm is
shown in Fig. 2.

2.4 Performance Evaluation

To comprehensively evaluate the performance of the classification model, we need to
compare the actual label and the predicted value. Table 1 shows the confusion matrix,
which indicates the comparison results between the actual labels and predicted values.
TP (True Positive) represents the number of real patients with Parkinson’s disease who
are predicted to be PD patients; FP (False Positive) represents the number of people
without PD who are predicted to be PD patients; FN (False Negative) represents the
number of PD patients who are predicted to not have PD; TN (True Negative) rep-
resents the number of people without PD who are predicted to not have PD.

Fig. 2. Flow chart of the PSO algorithm
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We use Accuracy, Precision, Recall and F-measure to evaluate the performance,
which are expressed in formulas (10–13).

Accuracy ¼ TPþ TN
TPþFPþFN þ TN

� 100% ð10Þ

Precision ¼ TP
TPþFP

� 100% ð11Þ

Recall ¼ TP
TPþFN

� 100% ð12Þ

Fmeasure ¼ 2� Precision� Recall
PrecisionþRecall

� 100% ð13Þ

The accuracy rate is the proportion of all correct predictions in the overall popu-
lation. The higher the accuracy rate is, the better the model performs. Precision is the
ratio of true-positive predictions to all positive predictions. The recall rate is the ratio of
true-positive predictions to all actual positives. F-measure represents the weighted
harmonic mean of recall and precision. It combines the calculation results of recall and

Fig. 3. Pressure signal of one foot

Table 1. Confusion matrix

Prediction Actual
PD NP

PD TP FP
NP FN TN
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precision, and a high value of F-measure value indicates that the method of classifi-
cation is effective.

3 Experiments

3.1 Data Acquisition

The U-shaped walkway system [22] was designed by the Hefei Intelligent Machinery
Research Institute, Chinese Academy of Sciences. It is composed of a hardware system
and a software system. The hardware system has a data acquisition module and a data
transmission module. Fourteen flexible pressure-sensitive plates, 5 three-dimensional
force-measuring plates, and 1 balance tester are arranged in a U shape. Figures 4 and 5
show a diagram of the distribution of the plates and a real photo with people walking
on them respectively. The parameters of the flexible pressure-sensitive plates are as
follows: the data acquisition frequency is 100 Hz, the size is 80 cm * 80 cm, and the
pressure point density is 4=cm2. The parameters of the three-dimensional force-
measuring plates are as follows: the data acquisition frequency is 500 Hz and the size is
80 cm * 80 cm. The balance-tester plate has the same size as the other plates. When a
person walks on the plates, the system senses the pressure, which is triggered by the
change in the resistance values of the resistors that are built into the pressure-sensitive
plates.

Fig. 4. U-shaped walkway illustration
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All the flexible pressure-sensitive plates are connected with one another via a power
cable and a network cable. The power cable is connected to the regulated power supply
and the network cable is connected to the multi-port router. The data that are collected
by the sensor are transmitted to the host computer via the router and processed by the
software system. The data transmission is based on TCP/IP client server mode. The
original data format is shown in Table 2. Together, the plate number, row number, and
column number determine the unique coordinates of each pressure point on the
walkway. In this way, we can obtain the pressure values of all the pressure points of the
walkway and the corresponding time information. Figure 3 shows the pressure signal
of one foot during a walking procedure.

3.2 Feature Extraction

The raw pressure signals that are collected by the hardware system are transmitted to
the PC host computer. These raw pressure signals need to be processed by the software
system to generate the final useful gait features. We recruit 42 patients with Parkinson’s
disease and 93 age-matched normal controls. All of them come from Hospital Affiliated
to Institute of Neurology, Anhui University of Chinese Medicine. All subjects took no
medications and gave informed consent within 24 h. All of them are asked to walk at
their accustomed pace under the supervision of two doctors (Table 3).

The first step is to obtain footprints (shown in Fig. 6) of each subject by means of
signal analysis and an image processing method. Then, we use those footprints to
calculate the spatial and temporal features. The spatial and temporal features of all gait
parameters come from the UPDRS-III scale, which was proposed by the Rancho Los
Amigos (RLA) Medical Center in California, USA. These parameters are as follows:
step length, stride length, gait velocity, cadence, stance time, swing time, pre-swing
time, gait cycle, and double support time. To consider the gait abnormalities that
Parkinson’s disease patients may have when they are turning, we added two additional

Fig. 5. Real photo of U-shaped walkway with people walking on it

Table 2. Original data format

TimeID PlateId RowNo ColNo Pressure
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time features of turning at the two tuning points of the U-shaped walkway. Finally, 22
features were extracted. To increase the number of samples, some of the subjects were
required to walk multiple times. The final number of samples is 242 (159 PD samples
and 93 normal control samples).

3.3 Experimental Results

The experiment is divided into two parts. In the first part, we use the PSO algorithm to
find the optimal combination of SVM parameters. The default parameters of PSO are
set as follows: c1 ¼ 1:5; c2 ¼ 1:7, number of particles N = 20, and the number of

Fig. 6. Footprints of one normal subject (left) and one PD patient (right)

Table 3. Twenty-two gait features

Physical features Spatial-temporal gait features Turning time features

Age
Gender
Weight (kg)
Height (cm)

Step length (cm)
Stride length (cm)
Gait velocity (m/s)
Cadence (steps/s)
Stance time (ms)
Swing time (ms)
Pre-swing time (ms)
Gait cycle (ms)
Double support time (ms)

Turning time 1 (ms)
Turning time 2 (ms)
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iterations is set to 100. We use the three-fold cross-validation accuracy of the SVM
classifier as the evaluation criterion. Figure 7 shows the fitness line that was obtained.
According to the figure, after 100 iterations, the best fitness of the PSO algorithm is
94.8413%. The corresponding parameter values, namely, c = 3.7396 and g = 9.5743,
are chosen for the SVM model.

In the second experiment, we use the parameters that were acquired by PSO to train
the SVM model using ten-fold cross-validation. The examples are randomly divided
into 10 subsets of equal size and we train the SVM classification model 10 times. Each
time, we choose one subset of the examples for testing and use the other nine subsets
for training, and obtain one set of results, which consists of a performance evaluation
matrix, accuracy, precision, recall and F-measure. Finally, we average the ten sets of
results and treat the average results as the final performance evaluation results, which
are shown in Table 4. Comparing to its predecessor model without PSO optimization,
the new model’s performance is significantly improved: accuracy, precision, and
F-measure are increased by 8.54%, 7.39 and 2.04%, respectively, while recall remains
approximately the same at 63.53%.

4 Conclusions

In this paper, we extract effective gait features from a U-shaped gait-sensing platform
that is based on flexible pressure-sensitive sensors. Then, we nondimensionalize the
raw features to eliminate the influence of height on the gait parameters and carry out

Fig. 7. Fitness line

Table 4. Results

Model Accuracy (%) Precision (%) Recall (%) F-measure (%)

SVM 87.12 89.63 64.29 74.74
PSO-SVM 95.66 97.02 63.53 76.78
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data preprocessing using max-min normalization. Finally, we construct an SVM
classification model, whose parameters are optimized by the PSO algorithm. The
accuracy of the model is as high as 95.66%, which indicates that the optimization
algorithm can improve the classification performance effectively. Our future work will
include determining the prevalence of Parkinson’s disease using a multi-class classi-
fication algorithm and collecting more features to improve the performance of the
classifier.
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