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Abstract. The management of future networks is expected to fully exploit
cognitive capabilities that embrace knowledge and intelligence, increasing the
degree of automation, making the network more self-autonomous and enabling a
personalized user experience. In this context, this paper presents the use of
knowledge-based capabilities through a specific lab experiment focused on the
Channel Selection functionality for Cognitive Radio Networks (CRN). The selec‐
tion is based on a supervised classification that allows estimating the number of
interfering sources existing in a given frequency channel. Four different classifiers
are considered, namely decision tree, neural network, naive Bayes and Support
Vector Machine (SVM). Additionally, a comparison against other channel selec‐
tion strategies using Q-learning and game theory has also been performed. Results
obtained in an illustrative and realistic test scenario have revealed that all the
strategies allow identifying an optimum solution. However, the time to converge
to this solution can be up to 27 times higher according to the algorithm selected.
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1 Introduction

The increasing traffic demand will lead future wireless networks to face a severe shortage
of spectrum, especially when considering the highly dense deployments of small cells
envisaged for meeting the demands of future systems. Cognitive Radio Networks
(CRN), based on the Cognitive Radio (CR) paradigm [1], will bring light to this problem.
Briefly, CR observes the environment, analyzes these observations, makes decisions to
intelligently configure certain radio parameters, and finally executes these decisions.
Analysis and decision can be supported by means of learning mechanisms that exploit
the knowledge obtained from the execution of prior decisions.

CRN concepts are also expected to play a relevant role in the context of future 5G
(5th Generation) networks [2], which should include by design unprecedented network
flexibility and highly efficient/adaptive network resource usage, including flexible
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spectrum management. Thus, the introduction of intelligence in the network will be an
important requirement. In this direction, the advent of big data analytics [3] will boost
the extraction of the meaningful information from the available data, to support the use
of cognitive capabilities both in the Radio Access Network (RAN) and in the Core
Network.

Using knowledge-based procedures and Artificial Intelligence (AI) as key elements
of cognition for supporting the optimization in future networks has been considered in
the literature for the last several years. Specific algorithms for learning time domain
traffic patterns and mobility patterns, respectively, have been proposed and analyzed [4,
5]. Similarly, in [6] a clustering strategy was proposed to identify the user’s daily motifs
and extract the personalised Quality of Service observed by a user when being connected
to a real 3G/4G network. Nevertheless, the authors believe that one important reason
for the (relatively) low penetration of AI concepts in this domain so far is due to the
difficulty for the research community in general to test (and hopefully prove the validity
of) potential solutions in realistic conditions. Clearly, AI-based knowledge discovery
models (e.g. classification, prediction, clustering) can hardly be properly assessed in
simulated environments, where many of the real-world effects are not retained. Instead,
more solid results and conclusions can be derived from implementing such mechanisms
in realistic conditions.

In this respect, WiSHFUL is a European project from the European Horizon 2020
Programme that focuses on speeding up the development and testing cycles of wireless
solutions and, therefore, it offers a great opportunity to gain access to realistic data and
measurements [7]. It defines software modules with unified interfaces that permit wire‐
less developers to quickly implement and validate advanced wireless network solutions.
The WiSHFUL project offers access to different advanced wireless testbeds, among
them the IRIS testbed at Trinity College Dublin [8].

In this context, this paper describes a specific experiment using the IRIS testbed. The
experiment focuses on the Channel Selection functionality for CRN, so that an access
point decides the most appropriate channel to use within a band that is shared among
multiple transmitters. This selection is based on a supervised classification that allows
estimating the number of interfering sources existing in a given frequency channel.
Specifically, four different classifiers have been implemented: decision tree, neural
network, naive Bayes and Support Vector Machine (SVM). Additionally, a comparison
against other channel selection strategies using Q-learning and game theory has also
been performed. In this way, this experiment contributes to expand the capabilities of
the existing WiSHFUL Intelligence framework [9] that offers an experimentation envi‐
ronment for early implementation and validation of end-to-end 5G solutions that
improve resource utilization through advanced reconfigurability of radio and network
settings.

The rest of the paper is organised as follows. Section 2 presents the IRIS testbed
used for executing experiments. Section 3 discusses the considered approaches for
channel selection. The experimental results obtained with these approaches are
presented in Sect. 4, while Sect. 5 summarizes the main conclusions.
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2 The IRIS Testbed

The IRIS testbed is the reconfigurable radio testbed at Trinity College Dublin [8]. It
provides access to radio hardware that supports the experimental investigation of the
interplay between radio capabilities and networks.

The testbed employs 18 ceiling or wall mounted Universal Software Radio Periph‐
eral (USRP) N210s equipped with SBX daughterboard, reaching frequencies between
40 MHz and 4.4 GHz, and 4 other radio nodes not available within the WiSHFUL
context, as underlying radio resources. All these elements are connected to a private
computational cloud, allowing to deploy an array of computational environments. By
default, each USRP device of the testbed is associated to a Virtual Machine (VM) that
occupies 4 CPU cores and 4 GB of RAM from the computational cloud. Testbed access
was supported by jFed Experimenter suite developed by the Fed4FIRE+ EU project.

For setting up and executing the experiments with the IRIS testbed, we modify the
code and the configuration files in a remote local machine at Universitat Politècnica de
Catalunya (UPC) premises, and then we upload the files to the testbed machines, we
execute the test, and we download back the results files to our local machines. To perform
these operations, a custom made code implemented with Python programming language
that uses the WiSHFUL software framework and the Unified Programming Interface
(UPI) functions and runs on the IRIS Testbed has been created.

Two different pieces of python code, namely the wishful_controller and the agent,
have been used. The wishful_controller runs on a computer, whereas one agent runs on
each radio node. The configuration of a radio node as a transmitter or receiver is made
by the wishful_controller when the radio program is activated. The purpose of the agent
is to connect to the wishful_controller and wait for instructions (passed through UPI
calls). In turn, the wishful_controller executes the logic for controlling the experiment.

A deployment example of the experimentation framework is illustrated in Fig. 1. In
this case, a scenario with three nodes acting as transmitters (AP1, AP2, and AP3) and
three nodes acting as receivers (STA1, STA2 and STA3) is considered.

3 Experimenting Channel Selection Functionality Using the IRIS
Testbed

The experiment considered here focuses on learning the interference characterisation
and using the learnt information for supporting channel selection in CRN. Specifically,
the approach consists in analyzing the environment where a given cell (or access point)
is operating by performing both radio-frequency and performance measurements and,
based on these measurements, to characterise the observed interference in terms of the
number of interfering sources. To support this knowledge discovery, the capabilities of
the IRIS testbed are extended through the inclusion of the RapidMiner tool [10]. It is a
powerful all-in-one tool that features hundreds of pre-defined data preparation and
machine learning algorithms to support data science projects.
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3.1 Learning Interference Characterisation

The example in Fig. 1 illustrates a scenario for learning interference characterization.
Let us assume, as an example, that the receiver STA1 is connected to the transmitter
AP1 operating at a given frequency. Simultaneously, the other transmitters (i.e. AP2
and AP3) may be operating in the same frequency, thus generating interference to STA1,
or they may be operating in a different frequency, thus not generating interference. In
this scenario, the objective of the considered experiment is to apply machine-learning
based tools to smartly process the measurements performed by STA1 in order to char‐
acterize the existing interference. More specifically, it is proposed to use a supervised
classification mechanism to estimate, based on the measurements of STA1, the number
of interfering sources at a certain instant of time.

The classification is the process of finding a model or function that describes and
distinguishes data classes or concepts. The obtained model (i.e. the classifier) is then
used to determine the class to which an object belongs. The object is the entity to be
classified and it is usually represented by a tuple that includes a set of attribute values
(e.g. a tuple could be a set of measurements performed by a receiver and each of the
measurements is an attribute). The classification process assumes that the possible
classes are predefined in advance. Then, the classifier model is usually obtained from a
supervised learning algorithm that analyses a set of training tuples associated with
known classes.

Figure 2 illustrates the classification process. In general terms, the classifier takes as
input a tuple of the form Xt = {xt,1, xt,2, …., xt,M} with M different measurements
performed by a receiver at time t. The objective of the classifier is to make an association
between the input tuple Xt and the class C(Xt) that specifies the number of interfering
sources at time t. For that purpose the process involves the following steps:

Wishful_controller

Control using UPI_R

UPC premises

INTERNET
To all the nodes

IRIS Testbed

AP3

Agent_Tx

AP1

Agent_Tx

AP2
Agent_Tx

STA2
Agent_Rx

STA3

Agent_Rx
STA1

Agent_Rx

Fig. 1. Example of experimentation scenario

An Experimental Assessment of Channel Selection 81



1. Training stage (off-line operation): The classification model is initially obtained by
means of a training stage consisting of a supervised learning process. The training
stage uses as input S different tuples Xj j = 1, …, S composed of measurements
performed under interference conditions that are known a priori, meaning that the
number of interferers, i.e. the class of each training tuple C(Xj), is known during the
measurements. These tuples and their associated classes are used as inputs to the
training algorithm that will build the internal structure of the classifier. The specific
training algorithm depends on the considered classification tool. The following
alternatives are considered in this study [12]: decision tree, naive Bayes classifier,
SVM and neural network.

2. Classification stage (on-line operation): The classification model obtained in the
training stage is used to estimate the number of interferers for any tuple Xt = {xt,1,
xt,2, …., xt,M} with the measurements obtained at a certain time t.

M measurements at time t

Xt={xt,1,..., xt,M} Classification 
tool

C(Xt)

Class of tuple Xt:

Training set Xj, C(Xj)
j=1,...,S

Supervised 
learning

Number of 
interferers 
at time t

Fig. 2. Classification process

In the specific experiment on the IRIS testbed, we initially create tuples Xt with
measurements of the throughput (Th) and Received Signal Strength Indicator (RSSI) at
time t, i.e. Xt = {Th(t), RSSI(t)} under different interference situations (with 0 interferers,
1 interferer and 2 interferers). During the training stage, each of these tuples and the
number of interferers for each one are used to build a classification model. Then, during
the classification stage, the model is used each time that the methodology needs to esti‐
mate the number of interferers for each new tuple of measurements.

3.2 Channel Selection

Channel selection (also denoted as carrier selection) is the mechanism used to decide
the operating channel (i.e. center frequency and associated bandwidth) of a transmitter.
A smart channel selection mechanism is relevant to facilitate the coexistence between
multiple transmitters in wireless scenarios operating in unlicensed spectrum when there
is little or no coordination between these transmitters. This could be the case of e.g. Wi-
Fi networks or unlicensed LTE (LTE-U).

The design of a proper channel selection functionality can greatly improve the overall
efficiency of a wireless system when using unlicensed spectrum, since it will impact on
the overall interference experienced by the receivers and thus on the achieved throughput
performance.

Under the above considerations, the purpose of the experiment considered here is to
use the IRIS testbed to assess a channel selection algorithm (Algorithm 1) that exploits
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the extracted knowledge from the supervised classification process for characterizing
the interference as explained in Sect. 3.1. For benchmarking purposes, a channel selec‐
tion algorithm using Q-learning (Algorithm 2) and another one using game theory
(Algorithm 3) have also been tested.

The general scenario assumes a total of T transmitters with their associated receivers
and a total of K possible frequency channels. The considered channel selection algo‐
rithms are described in the following:

Algorithm 1: Supervised Classification-Based Channel Selection Algorithm
For the supervised classification-based channel selection algorithm for the i-th trans‐
mitter, i = 1, …, T, it is assumed that the training stage explained in Sect. 3.1 has been
executed previously to build the classifier. Then, each time step, the receiver measures
the values of throughput and RSSI for all the channels. Then, the classifier estimates the
number of interferers in each of the channels. The estimated number of interferers is
averaged considering a time window of N samples. The selected channel will be the one
with minimum number of interferers. The process is subsequently repeated at the next
time steps to consider possible changes in the environment (e.g. due to channel selections
made by other transmitters) which could lead to new channel changes.

Algorithm 2: Q-Learning-Based Channel Selection Algorithm
Q-learning is a type of Reinforcement Learning (RL) technique [13] where learning is
achieved through the interaction with the environment, so that the learner discovers
which actions yield the most reward by trying them. In this way, each transmitter
progressively learns and selects the channels that provide the best performance based
on the previous experience. In the considered algorithm, described in detail in [14, 15],
each transmitter i stores a value function Q(i, k) that measures the expected reward (i.e.
throughput) that can be achieved by using each channel k according to the past experi‐
ence. Whenever a channel k has been used by the transmitter i, Q(i, k) is updated
following a single state Q-learning approach with null discount rate and learning rate
αL. Based on this, the channel selection decision-making follows the softmax policy with
temperature τ.

Algorithm 3: Game Theory-Based Channel Selection Algorithm
In this algorithm, the channel selection problem is modelled as a game in which each
transmitter/receiver pair is a player and the actions made by each player are the selected
channels. Specifically, here we consider the Iterative Trial and Error Learning-Best
Action (ITEL-BA) algorithm described in [16]. In ITEL-BA, each transmitter retains a
benchmark action aB,i(t) (i.e. a benchmark channel to select) and the corresponding
benchmark reward rB,i(t) as a reference to evolve the action selection strategy. The
reward is measured as the obtained throughput averaged during a time window of N
samples. At a certain time, a channel is chosen depending on the so-called mood of the
player, which basically captures the degree of satisfaction of the player with the current
benchmark action and benchmark reward. The mood mi(t) of player i at the beginning
of time step t can be content, discontent, hopeful or watchful. The general idea is that a
content player will be selecting the benchmark action most of the time, and will occa‐
sionally experiment with new actions according to a probability ε << 1 called explora‐
tion rate. Instead, a discontent player will try out new actions frequently, eventually
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becoming content. The hopeful and watchful moods correspond to transitional situations,
triggered by changes in the behavior of other players (or in the environment), and they
will facilitate updates in the values of the benchmark action and reward to cope with
these changes. The reader is referred to [16] for a detailed specification of the ITEL-BA
algorithm.

4 Results

The evaluation of the channel selection algorithms is performed using the set-up of the
IRIS testbed illustrated in Fig. 1. It is considered that 3 nodes act as APs (AP1, AP2,
AP3). Each APs has an associated receiver (STA1, STA2, STA3). There are 3 possible
channels to select: Channel #1: 2890 MHz, Channel #2: 2900 MHz and Channel #3:
2910 MHz.

Initially, all the APs transmit on Channel #1. Subsequently, each AP can change
channel being used according to the different channel selection algorithms explained in
Sect. 3.2.

4.1 Algorithm 1: Supervised Classification-Based Channel Selection

Different executions are performed for each of the considered classifiers. The algorithm
is tested with an averaging window of N = 50 samples. The results shown in Figs. 3, 4,
5 and 6 depict the channel number selected by each AP as a function of the number of
channel selection decisions for the decision tree, naive Bayes, SVM and neural network
classifiers, respectively. It is observed that, although all the APs start with the same
Channel #1, in all the cases the APs are able to switch to a channel that is estimated by
the classifier to be free of interferers. As a result, the system is able to find an optimum
configuration in which each AP uses a different channel and correspondingly there is no
interference. It is also worth observing that the naive Bayes and SVM classifiers are able
to switch to a channel free of interferers very quickly, in just one channel selection
decision. In the decision tree, naive Bayes and SVM classifiers, AP1 switches to Channel
#3, AP2 switches to Channel #2 and AP3 remains in the same Channel #1. This solution
is kept for the rest of the execution and no further changes are performed. In turn,
focusing on the behavior of the decision tree classifier (see Fig. 3), it is observed that,
due to the lower accuracy of this classifier, it requires a few more decisions to reach the
optimum configuration in which each AP uses a different frequency. For example, it is
observed that, at the beginning, AP3 makes a wrong decision by switching temporarily
to Channel #3, which is being used by AP1, but then it moves to Channel #1. As for the
neural network classifier, which also has lower accuracy, Fig. 6 reflects that, at the
beginning, the APs quickly find a solution with different channels (i.e. AP1 using
Channel #3, AP2 using Channel #2 and AP3 using Channel #1). However, after some
time, AP2 makes a wrong decision and switches to the Channel #1 used by AP3. This
situation is solved after 10 further decisions, when AP3 switches to Channel #2.
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Fig. 3. Selected channel with Algorithm 1 and Decision Tree classifier for each AP

Fig. 4. Selected channel with Algorithm 1 and Naive Bayes classifier for each AP

Fig. 5. Selected channel with Algorithm 1 and SVM classifier for each AP

Fig. 6. Selected channel with Algorithm 1 and Neural Network classifier for each AP

4.2 Algorithm 2: Q-Learning-Based Channel Selection

The set-up for this execution is the same as for Algorithm 1, with all the three APs
working initially in Channel #1. The Q-learning algorithm is configured with learning
rate αL = 0.1, while the temperature parameter τ is initially 0.15 and is reduced in each
decision following a logarithmic cooling approach as explained in [14]. Figure 7 depicts
the evolution of the channels selected by each AP with the successive channel selection
decisions. It is observed that after some fluctuations associated to the probabilistic
behavior of the softmax decision-making criterion finally the experiment converges to
a solution where each AP has selected a different channel. Specifically, after
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convergence AP1 operates with Channel #2, AP2 with Channel #1 and AP3 with
Channel #3. The maximum number of decisions taken by an AP before converging in
this case is 15.

Fig. 7. Selected channel numbers with Algorithm 2 (Q-learning) for each AP

4.3 Algorithm 3: Game Theory-Based Channel Selection

Again, the set-up of the network is the same as in the previous cases. The game theory-
based algorithm is configured with an averaging window of N = 50 samples and explo‐
ration rate ε = 0.01. Figure 8 represents the evolution of the channel selected by each
AP as a function of the number of channel selection decisions. It can be observed how
this algorithm is also able to converge to an optimum solution where all the APs operate
in a different channel, i.e. AP1 in Channel #3, AP2 in Channel #1 and AP3 in Channel
#2. In this case, the maximum number of decisions made by an AP before reaching the
optimum solution is 27 (for the case of AP1).

Fig. 8. Selected channel numbers with Algorithm 3 (game theory) for each AP

5 Conclusions

This paper has presented an experiment focusing on the channel selection functionality
for Cognitive Radio Networks (CRN), so that an access point decides the most appro‐
priate channel to use within a band that is shared among multiple transmitters. This
selection has been based on a supervised classification that allows estimating the number
of interfering sources existing in a given frequency channel. Specifically four different
classifiers have been considered: decision tree, neural network, naive Bayes and Support
Vector Machine (SVM). The channel selection algorithm exploits the estimation of the
number of interferers to decide the most convenient channel to be used by a transmitter.
Furthermore, a comparison against other Channel Selection strategies using Q-learning
and game theory-based mechanisms has also been performed. Results in a scenario with
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3 pairs of transmitter/receiver APs have revealed that all the considered algorithms for
channel selection converge to an optimum solution where all the pairs operate in a
different channel. Furthermore, it has been observed that the fastest convergence is
achieved with the SVM and Naive Bayes classifiers, while the Game Theory and Q-
learning based approaches exhibit slower convergence.

Acknowledgements. This work has been done using the IRIS testbed available through the
WiSHFUL Platform. This work has been partly supported by the Spanish Research Council and
FEDER funds under RAMSES and SONAR 5G grants (ref. TEC2013-41698-R and
TEC2017-82651-R).

References

1. Mitola III, J.: Cognitive radio: an integrated agent architecture for software defined radio.
Ph.D. dissertation, KTH Royal Institute of Technology (2000)

2. El Hattachi, R., Erfanian, J. (eds.): NGMN 5G White Paper. NGMN Alliance, February 2015.
https://www.ngmn.org/fileadmin/ngmn/content/down-loads/Technical/2015/NGMN_5G_
White_Paper_V1_0.pdf

3. Chih-Lin, I., Liu, Y., Han, S., Wang, S., Liu, G.: On big data analytics for greener and softer
RAN. IEEE Access, August 2015. http://ieeexplore.ieee.org/document/7210136/

4. Pérez-Romero, J., Sánchez-González, J., Sallent, O., Agustí, R.: On learning and exploiting
time domain traffic patterns in cellular radio access networks. Machine Learning and Data
Mining in Pattern Recognition. LNCS (LNAI), vol. 9729, pp. 501–515. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-41920-6_40

5. Sánchez-González, J., Pérez-Romero, J., Agustí, R., Sallent, O.: On learning mobility patterns
in cellular networks. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp.
686–696. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44944-9_61

6. Sánchez-González, J., Sallent, O., Pérez-Romero, J., Agustí, R.: On extracting user-centric
knowledge for personalised quality of service in 5G networks. In: IFIP/IEEE International
Symposium on Integrated Network Management - 2nd International Workshop on Analytics
for Network and Service Management, Lisbon, Portugal, May 2017

7. WiSHFUL. http://www.wishful-project.eu/
8. IRIS Testbed. https://iris-testbed.connectcentre.ie
9. D10.1 Design of software architecture for intelligent control and showcases. http://

www.wishful-project.eu/sites/default/files/images/WiSHFUL_D10.1_Lead_iMinds_R_PU_
2015-12-23_Final.pdf

10. RapidMiner. https://rapidminer.com/
11. Pérez-Romero, J., Sallent, O., Ferrús, R., Agustí, R.: Knowledge-based 5G radio access network

planning and optimization. In: International Symposium on Wireless Communication Systems
(ISWCS), Poznan, Poland, August 2016

12. Han, J., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Elsevier, New York
City (2006)

13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

14. Sallent, O., Pérez-Romero, J., Ferrús, R., Agustí, R.: Learning-based coexistence for LTE
operation in unlicensed bands. In: International Conference on Communications
(Workshops), IEEE ICC 2015, 8–12 June 2015, London, United Kingdom. pp. 2307–2313
(2015)

An Experimental Assessment of Channel Selection 87

https://www.ngmn.org/fileadmin/ngmn/content/down-loads/Technical/2015/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/fileadmin/ngmn/content/down-loads/Technical/2015/NGMN_5G_White_Paper_V1_0.pdf
http://ieeexplore.ieee.org/document/7210136/
http://dx.doi.org/10.1007/978-3-319-41920-6_40
http://dx.doi.org/10.1007/978-3-319-44944-9_61
http://www.wishful-project.eu/
https://iris-testbed.connectcentre.ie
http://www.wishful-project.eu/sites/default/files/images/WiSHFUL_D10.1_Lead_iMinds_R_PU_2015-12-23_Final.pdf
http://www.wishful-project.eu/sites/default/files/images/WiSHFUL_D10.1_Lead_iMinds_R_PU_2015-12-23_Final.pdf
http://www.wishful-project.eu/sites/default/files/images/WiSHFUL_D10.1_Lead_iMinds_R_PU_2015-12-23_Final.pdf
https://rapidminer.com/


15. Perez-Romero, J., Sallent, O., Ferrús, R., Agusti, R.: A robustness analysis of learning-based
coexistence mechanisms for LTE-U operation in non-stationary conditions. In: 82nd
Vehicular Technology Conference, IEEE VTC 2015-Fall, 6–9 September 2015, Boston, MA,
pp. 1–5 (2015)

16. Pérez-Romero, J., Sallent, O., Ahmadi, H., Macaluso, I.: On modeling channel selection in
LTE-U as a repeated game. In: Wireless Communications and Networking Conference, IEEE
WCNC 2016, 3–6 April 2016, Doha, Qatar (2016)

88 A. Umbert et al.


	An Experimental Assessment of Channel  Selection in Cognitive Radio Networks
	Abstract
	1 Introduction
	2 The IRIS Testbed
	3 Experimenting Channel Selection Functionality Using the IRIS Testbed
	3.1 Learning Interference Characterisation
	3.2 Channel Selection

	4 Results
	4.1 Algorithm 1: Supervised Classification-Based Channel Selection
	4.2 Algorithm 2: Q-Learning-Based Channel Selection
	4.3 Algorithm 3: Game Theory-Based Channel Selection

	5 Conclusions
	Acknowledgements
	References




