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Abstract. The identification of meaningful groups of proteins has always been a
major area of interest for structural and functional genomics. Successful protein
clustering can lead to significant insight, assisting in both tracing the evolutionary
history of the respective molecules as well as in identifying potential functions
and interactions of novel sequences. Here we propose a clustering algorithm for
same-length sequences, which allows the construction of subset hierarchy and
facilitates the identification of the underlying patterns for any given subset. The
proposed method utilizes the metrics of sequence identity and amino-acid sim-
ilarity simultaneously as direct measures. The algorithm was applied on a
real-world dataset consisting of clonotypic immunoglobulin (IG) sequences from
Chronic lymphocytic leukemia (CLL) patients, showing promising results.
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1 Introduction

One of the main challenges in computational biology concerns the extraction of useful
information from biological data. This requires the development of tools and methods
that are capable of uncovering trends, identifying patterns, formingmodels, and obtaining
predictions of the system [1]. Themajority of such tools andmethods exist within thefield
of data mining. Clustering [2] is a data mining task that divides data into several groups
using similarity measures, such that the objects within a cluster are highly similar to each
other and dissimilar to the objects belonging to other clusters based on that metric. From a
machine learning perspective, the search for meaningful clusters is defined as unsuper-
vised learning due to the lack of prior knowledge on the number of clusters and their
labels. However, clustering is a widely used exploratory tool for analyzing large datasets
and has been applied extensively in numerous biological, genomics, proteomics, and
various other omics methodologies [3]. Genomics is one of the most important domains
in bioinformatics, whereas the number of sequences available is increasing exponentially
[1]. Often the first step in sequence analysis, clustering can help organize sequences into
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homologous and functionally similar groups, can improve the speed of data processing
and analysis, and can assist the prediction process.

There have been several approaches in the past, attempting to address the issue of
identifying meaningful groupings of sequences of identical lengths. While sequence
clustering has a long history in the field of bioinformatics ([4, 5]), there are few
attempts in literature that can be successfully applied to sequences of the same length.
One of the most notable approaches is the Teiresias algorithm [6, 7], that discovers
rigid patterns (motifs) in biological sequences based on the observation that if a pattern
spans many positions and appears exactly k times in the input, then all fragments (sub
patterns) of the pattern have to appear at least k times in the input. The main drawback
of this algorithm is that pairwise comparisons are employed between all the sequences
of the dataset, leading to an exponential increase in execution time and memory
requirements for large-scale datasets.

In this paper, we introduce a method for clustering amino acid sequences of
identical length, using an approach that does not demand pairwise comparisons
between the sequences, but it is instead based on the usage of a matrix that contains the
amino acid frequencies for each position of the target sequences.

2 Methodology

The proposed clustering method uses both sequence identity and amino-acid similarity
as similarity measures to form the clusters (both concepts are further defined below).
Ultimately, a binary top-down tree is constructed by consecutively dividing the fre-
quency amino acid matrix of a given cluster into two sub-matrices, until only two
sequences remain at each cluster at the leaf-level.

2.1 Binary Tree Construction

The first phase consists of a top down hierarchical clustering method. Hierarchical
clustering is one of the most commonly used approaches for sequence clustering [8]. At
the beginning of the process, it is assumed that all N sequences belong to a single
cluster, which is consequently split recursively while moving along the different levels
of the tree. Ultimately, the constructed output of the clustering process is presented as a
binary tree. The right side of the tree is expected to be much longer than the left side
due to the constraints posed by the split process; the sequences with the highest
similarity percentage at a specific sequence position are assigned to the right side,
whereas the remaining sequences are assigned to the left. The process of this phase
(Algorithm 1, Fig. 2) can be formally described in the following steps and further
detailed below:

1. Create frequency and frequency-similarity based matrix (FM, FSM)
2. Compute average identity of the matrices (id, idS)
3. Split each frequency matrix into two sub matrices
4. Update the Level matrix and the Identity matrices (Y, I, IS)
5. Check for branch break.
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Step 1: Frequency amino acid and frequency-similarity based amino acid matrix.
The first aims to construct a frequency amino acid matrix. This is defined as a
2-dimensional matrix, with number of rows equal to the number of the different amino
acids (i.e. 20 rows) and number of columns equal to the length (L) of the sequences
provided as input. Each element (i,j) of the matrix corresponds to the number of times
amino acid i is present in position j for all sequences. The count matrix (CM) contains
the absolute values, whereas the frequency matrix (FM) contains the corresponding
frequencies (Eq. 1). In addition to CM, a second frequency matrix is constructed using
the same approach, but instead of the 20 amino acids, groups of similar amino acids are
used under given schemes. As a use case in this paper, the 11 IMGT physicochemical
classes are taken into consideration, as shown in Fig. 1, and an 11 x L frequency matrix
is constructed.

FM ¼ CM=N ð1Þ

Step 2: Compute Identity. The identity is a similarity metric that is computed for
each cluster based on the corresponding amino-acid frequency matrix. This metric,
calculated as a percentage, indicates how compact the cluster is. Its maximum value
(100%) corresponds to the case when the number of unique sequences that belong to a
cluster is equal to one. The overall identity is equal to the average identity of each
position in the given sequence (Eq. 2), and it is produced based on the CThr matrix,
that contains only the elements of the amino acid matrix (CM) that correspond to amino
acids that appear more than once in the corresponding column (Eq. 3).

id ¼
XL

j¼1
max CThr ; j½ �ð Þ=N

� �
=L ð2Þ

CThr½i; j� ¼ CM i; j½ �; if CM i; j½ �[ 1
0; if CM i; j½ � � 1

�
; i ¼ 1; ::; 20; j ¼ 1; ::; L ð3Þ

Steps 3–4: Split of Frequency Matrices. Each cluster is divided into two distinct
subsets according to the following criteria and in the order that they are listed:

Fig. 1. The 11 IMGT Physicochemical classes for the 20 amino acids [9]. (Color figure online)
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1. Select the element of the frequency amino acid matrix with the highest percentage.
An example of the division of cluster0 using this criterion is shown in Fig. 3.

2. If there exist more than one columns of the frequency amino acid matrix that
contain the same highest percentage value, the selection is applied using the entropy
criterion, defined below.

3. In the case where more than one columns exhibit the exact same entropy value,
criterion 1 is applied to the frequency similarity amino acid matrix.

4. In the case of non-unique columns, criterion 2 is applied to the frequency similarity
amino acid matrix.

5. If the number of columns is still more than one, one column from the above sub
group of columns is randomly selected.

Fig. 2. Block diagram of the tree construction.

Fig. 3. The division of Cluster 0 using the first criterion.
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Entropy criterion. The entropy is computed for each column of the frequency matrix
and represents the diversity of the column. A lower entropy value indicates a more
homogeneous column, therefore the column with the lowest entropy value is selected
during the splitting process.

E½j� ¼
X20

i¼1
k; j ¼ 1; ::; L; where k ¼ 0; if FM i; j½ � ¼ 0

1; if FM i; j½ � 6¼ 0

�
ð4Þ

Step 5: Branch Breaking. Acluster is no further divided into subsets when the
number of sequences that belong to the cluster is less than 3.

2.2 Software Implementation

The algorithm outlined in the paper is implemented in R, a programming language that
is widely used for statistical computing, graphics and data analytics. In order to produce
an interactive and user-friendly tool, thus making it easier for users to interact with the
data, the analysis, and the visualization of the results, an R Shiny application was built
using the shiny package. In practical terms, a Shiny App is a web page/ UI connected
to a computer running a live R session (Server). The users can select personalized
parameters via the UI. These parameters are passed on to the Server, where the actual
calculations are performed and the UI’s display is updated according to the produced
results.

R Shiny applications consist of at least twoR scripts; the first one implements theUser
Interface (ui.R) by controlling the layout of the page using html commands and other
nested R functions, and handles the input parameters provided by the users. The second
script implements the Server (server.R) and contains essential commands and
instructions on how to build the application and process the data. Except from those two
essential scripts, a helper script is defined (helpers.R), which includes all the func-
tions needed for further processing of the data and achieving the desirable plot formats.

Apart from the shiny package, several other packages have been utilized in order
to add further functionality to the application and visualize the produced results.
Indicatively, the DiagrammeR, data.tree and collapsibleTree libraries
were very useful towards the visualization of the constructed tree. The latter is more
interactive and gives the user the opportunity of collapsing branches and focusing on
the branch or level of interest. Another special graph of our application is the logo
graph, which contains the common letters of a specific cluster or level and can be
produced through the use of the ggseqlogo library. Finally, our R Shiny Application
is publicly available from the following URL:

https://github.com/mariakotouza/H-CDR3-Clustering.
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Algorithm 1: Binary Tree Construc on

N: Number of sequences
ΤL: Number of tree levels
Y: The Level matrix
I: The IdenƟty matrix of FM
IS: The IdenƟty matrix of FSM
Input: (X: Vector Nx1)
Output:   (Y: Table NxΤL, I, IS: Table NxΤL) 
1. Ini aliza on: 
1.1 Put all sequences into cluster C0

1.2 Compute the frequency amino acid matrix FM0 

1.3 Compute the frequency similarity based amino acid matrix FSM0 

1.4 Compute IniƟal IdenƟty id00, idS00

1.5 Compute IniƟal Entropy E0 and ES0 

2. Itera on: 
Repeat for every new cluster-i 

*.1 Compute the level that Ci belongs to
Criteria for Division 

*.2 Select celli of FMi or FSMi according to the following criteria:
*.2.1 Elm ← the elements of FMi with the maximum value 
*.2.2 if Elm.length < 2 then
*.2.3 celli ← Elm 
*.2.4 Go to step *.3

end if
*.2.5 Elm ← the elements of Elm with the minimum value of Ei 

*.2.6 if Elm.length < 2 then
*.2.7 celli ← Elm 
*.2.8 Go to step *.3

end if
*.2.9 Elm ← the elements of Elm with the maximum value of FSMi 

*.2.10 if Elm.length < 2 then
*.2.11 celli ← Elm 
*.2.12 Go to step *.3

end if 
*.2.13 Elm ← the elements of Elm with the minimum value of ESi 

*.2.14 if Elm.length < 2 then
*.2.15 celli <- random element of Elm

end if 
Division 

*.3 j ← index of the leŌ child of node-i (Ci) 
*.4   Put the sequences that belong to celli into cluster Cj

*.5 Put all the other sequences into cluster Cj+1

*.6   Compute the frequency amino acid matrixes FMj and FMj+1

*.7   Compute the frequency-similarity based amino acid matrixes FSMj and FSMj+1

*.8   Compute IdenƟty idj, idj+1, idSj and idSj+1

*.9   Compute Entropy Ej and Ej+1

*.10 Fill in column Y[ ,level] with Cj or Cj+1

*.11 Fill in column I[ ,level] with idj or idj+1 and column IS[ ,level] with idSj or idSj+1

*.12 Check if we have reached leaf 
End

3. return Y, I
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3 Results

Our method was applied on a real-world dataset comprising 123 clonotypic
immunoglobulin (IG) amino acid sequences (deduced from the corresponding IG gene
rearrangement sequences) from patients with chronic lymphocytic leukemia (CLL). All
sequences utilized the IGHV4-34 gene with 111 (90.2%) being assigned to 6 distinct
biologically relevant groups (subsets), and had an identical length of 20 amino acids.
These subsets are characterized by the presence of common amino acid sequence
patterns within the VH CDR3 of the clonotypic IG. Subset #4 is a major subset and
patients belonging to this subset display an indolent clinical course, while the other
subsets are minor. In detail, 101 sequences were assigned to subset #4, 2 to subset
#207, 2 to subset #4-34/20-1, 4 to subset #4-34-16, 2 to subset #4-34-18 whereas 12
sequences carried heterogeneous receptors and, thus, were not assigned to any subset.

Through the application of our tool, a binary tree with 19 levels was constructed
(Fig. 5). The average value and the standard deviation of each level’s identity using the
20 amino-acid and the 11 IMGT Physicochemical classes are summarized in Table 1.
The table shows that the identity value increased towards the leaves of the tree.
Notably, when the 11 classes were used instead of the individual amino-acids, the total
identity value was a little higher as expected.

Table 1. Average and standard deviation identity and similarity value of the clusters of the 19
tree levels.

Identity Mean
Value

Identity Standard
Deviation

Similarity
Mean Value

Similarity Standard
Deviation

Level.0 0.000 NA 0.000 NA
Level.1 5.000 0.000 7.500 3.535
Level.2 38.750 41.708 41.250 39.660
Level.3 34.166 33.078 37.500 31.741
Level.4 37.500 25.083 41.500 25.500
Level.5 55.500 31.837 61.000 28.848
Level.6 71.875 29.753 79.375 23.969
Level.7 65.833 31.211 71.666 26.204
Level.8 66.666 26.394 72.500 22.079
Level.9 68.125 23.594 78.125 19.628
Level.10 70.833 24.579 77.500 18.907
Level.11 73.750 20.310 80.000 16.903
Level.12 75.000 15.811 80.500 14.615
Level.13 79.583 15.877 84.166 13.953
Level.14 80.416 13.221 83.333 12.851
Level.15 85.000 12.792 86.250 13.164
Level.16 86.250 111.505 87.083 11.957
Level.17 87.500 9.414 88.750 8.822
Level.18 93.750 7.723 94.166 7.334
Level.19 98.000 4.216 98.000 4.216
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In more detail, both Average Identity and Average Similarity values are equal to
zero at the root of the tree and they almost consistently increase at each level, reaching
the value of 98 percent on level 19. At any given point, the Average Similarity value is
equal or greater than the Average Identity value, which is reasonable assuming that
every similarity group contains one or more individual letters. Regarding the Identity
Standard Deviation and Similarity Standard Deviation, it can be observed that both
have an initial value of NA at the root, they are slightly increased for levels 1 and 2 and
then their values decrease for every level until reaching the leaves. This is an expected
outcome of the process, since the standard deviation is a measure of how spread out
numbers are. Finally, the Identity Standard Deviation is equal to or greater than
Similarity Standard Deviation, because the number of individual letters is greater than
the number of similarity groups and therefore the amount of spread is higher.

Figure 4 shows the logos of four clusters from four different levels of the tree. The
size of each amino-acid indicates the percentage of its occurrence at the specific
position of the CDR3 sequence, whereas the color of the amino-acid represents the
IMGT Physicochemical class it belongs to. The color code used for the logo figures is
consistent with the color scheme shown in Fig. 1.

Subset #4 is the largest subset in the present data series comprising 101 clonotypic
IG sequences. Most of them (93/101, 92%) formed cluster 13, at level 4 of the clus-
tering process, with level 0 being the root of the tree. Cluster 13 also included 3
non-subset IG sequences. The identity and similarity rates of this cluster were 20% and
30%, respectively. The CDR3 of cluster 13 is 20 amino acids long and consisted of 4
conserved positions and 16 positions that are characterized by variability. Subset
#4-34/20-1 consisted of 2 clonotypic IG sequences. These sequences were grouped
together at level 9 (cluster 57) with high identity and similarity rates (80% and 95%,
respectively). Only 4 positions of the CDR3 were encoded by different amino acids: A

(a) Cluster 13            (b) Cluster 57

(c) Cluster 31 (d) Cluster 39

Fig. 4. CDR3 region logos of four clusters of different levels of the tree.

196 S.-F. Tsarouchis et al.



R Y _ _ V V T A _ _ N Y Y Y Y G M D V. More uniform groups and less variability at a
position level is noticed at higher levels of clustering. Consequently, identity and
similarity rates increase from one level to another. Subset #4-34-16 consisted of 4
clonotypic IG sequences. Three out of 4 IG sequences (75%) were grouped together at
level 5 forming cluster 31 with 45% identity and 50% similarity. Cluster 31 also
included a non-subset IG sequence. At the next level of clustering (level 6) the
sequences assigned to subset #4-34-16 (3/4, 75%) formed cluster 39 with higher
identity and similarity rates (70%|80%). Six positions were characterized by variability.

Fig. 5. The binary tree with 12 levels and values for each cluster with the format [cluster id,
number of cluster sequences, identity, similarity]
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4 Discussion

In this study, we applied a new clustering technique to 123 immunoglobulin (IG) se-
quences of the CDR3 region from patients with chronic lymphocytic leukemia (CLL),
all of which express the IGHV4-34 gene. This is a hierarchical method that constructs a
top-down binary tree by iteratively breaking the amino-acid frequency matrix into two
sub-matrices and using identity and amino-acid similarity as measures for the clus-
tering. The results of this analysis showed that the identity value increases as one
transitions from the root towards the leaves of the tree. In the case when the 11 IMGT
Physicochemical classes were used instead of the 20 individual amino-acids, the
identity value was a little higher as expected.

The proposed method can extract patterns from the clusters at the different tree
levels. For example, the pattern that corresponds to cluster 13 (as shown in Fig. 4a) is _
R _ _ _ _ _ _ _ _ _ _ Y _ Y _ G _ _ _, whereas the consensus pattern of cluster 39
(Fig. 4d) is _ _ _ V V P A A _ _ P _ Y Y Y Y G M D V. These patterns can be directly
used by biomedical experts in order to evaluate the cluster and infer potential mean-
ingful interaction at the amino acid level. In our case, clustering is performed to
discover previously unknown patterns (unsupervised learning) and then, as a next step,
sequence labeling can be performed to assign new sequences to the existing classes.

Future steps involve the application of graph theory on the produced tree, in
conjunction with string distance metrics, in order to further refine the clustering process
and uncover potential connections between different clusters/ nodes of the tree.
Moreover, additional testing will be required, especially focusing on large-scale
datasets and optimizing the code for speed and memory usage.
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