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Abstract. High throughput sequencing RNA-sequencing technologies and
modern in silico techniques have expanded our knowledge on short non-coding
RNAs. These sequences were initially split into various categories based on their
cellular functionality and their sequential, thermodynamic and structural proper‐
ties believing that their sequence can be used as an identifier to distinguish them.
However, recent evidence has indicated that the same sequences can act and
function as more than one type of non-coding RNAs with a striking example of
mature microRNA sequences which can also be transfer RNA fragments. Most
of the existing computational methods for the prediction of non-coding RNA
sequences have emphasized on the prediction of only one type of noncoding
RNAs and even the ones designed for multiclassification do not support multiple
labeling and are thus not able to assign a sequence to more than one non-coding
RNA type. In the present paper, we introduce a new multilabel- multiclass method
based on the combination of multiobjective evolutionary algorithms and multi-
label implementations of Random Forests to optimize the feature selection
process and assign short RNA sequences to one or more non-coding RNA types.
The overall methodology clearly outperformed other machine learning techni‐
ques which were used for the same purpose and it is applicable to data coming
from RNA-sequencing experiments.
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1 Introduction

Non-coding RNAs (ncRNAs) are RNA fragments that are not translated to proteins [1].
Small ncRNAs typical size is of 18–35 nucleotides (nt) and long-non-coding RNAs
(lncRNAs) can be more than 200 nt (e.g., enhancer RNA – eRNA) [2]. The transfer
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RNA (tRNA) or the ribosomal RNA (rRNA) have been the subject of several studies
and this has established their well-accepted functional roles in cells. However, over the
past few years, advances on sequencing biotechnologies and other improvements on
experimental protocols led to the elucidation of more ncRNA categories, the most
prominent being: microRNAs (miRNAs), small nuclear RNAs (snRNAs), small nucle‐
olar RNAs (snoRNAs), small inferring RNAs (siRNAs), piwi-interacting RNAs
(piRNAs), ti-RNAs, spli-RNA, tRNA fragments (tRfs) and others to be identified [3].

Recently, transcriptomics analysis using RNA-seq data has also become the state-
of-the-art procedure for identifying and annotating functionally ncRNA molecules.
However, since ncRNA transcripts are drastically different from mRNAs, the majority
of ‘general-purpose’ bioinformatics programs face limitations and are not well suited
for discovering effectively ncRNAs from RNA-seq [4]. To mitigate this problem, several
computational methods have been tailored to the needs of ncRNA data analysis.

NcRNAs were initially split into various categories based on their cellular function‐
ality and their sequential, thermodynamic and structural properties believing that their
sequence can be used as an identifier to distinguish them. However, recent evidence has
indicated that the same sequences can act and function as more than one type of ncRNAs
with a striking example of mature microRNA sequences which can also be transfer RNA
fragments. Most of the existing computational methods for the prediction of non-coding
RNA sequences have emphasized on the prediction of only one type of ncRNAs [5] and
even the ones designed for multiclassification, do not support multiple labeling and are
thus not able to assign a sequence to more than one non-coding RNA types.

For each one of the aforementioned short non-coding RNA types, a variety of
computational methods exists for their prediction [6]. These are split into the computa‐
tional methods which are designed to be specific to one type of short ncRNAs and the
ones which can predict more than one type of short ncRNAs [7]. The first category of
methods presents increased classification performances but their applicability is limited
as they cannot be used to analyze on a single run a large transcriptomic dataset and to
predict different types of short ncRNAs. Moreover, most of the methods belonging to
the second category exclude from their analysis significant types of short ncRNAs, while
others are based on data mining in existing repositories and thus they cannot extend the
current knowledge on short ncRNAs. Finally, most of these methods use the same
features for all the different types of short ncRNAs. Another important drawback of
existing methodologies is that they consider the different types of non-coding RNAs as
separate forcing every RNA sequence to be classified in only one type of non-coding
RNAs. However, as already mentioned, recent evidence has proven that this does not
hold since tRNA fragments can have the same sequence as miRNAs [8]. If we add this
fact to the previously known one that several types of non-coding RNAs are generated
from pruning other types of non-coding RNAs, as in the case of pre-miRNAs and mature
miRNAs, then a need for a multilabel computational method is raised to treat these data
effectively.

In the present paper, we introduce a new multilabel, multiclass method called Multi-
label GARF, which combines multi-objective evolutionary algorithms with multi-label
Random Forest implementations. In particular, it uses a Pareto-based multi-objective
optimization to select the optimal subset of features to be used as inputs, to select the
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most suitable implementation of Random Forests for every dataset and to optimize its
parameters. This optimization process is being guided by 7 fitness functions which are
evaluating the solutions based on the classification performance of the Random Forest
models extracted from them, and based on their simplicity in terms of the number of
selected inputs and their number of random trees. The multi-objective optimization
framework, by design avoids local optimal solutions promoting the optimal exploration
of the search space.

For the problem of classifying the RNA sequences to non-coding RNA types, for
the purposes of the present manuscript, a new dataset was constructed with pre-miRNAs,
mature miRNAs, snoRNAs, tRNAs, tRFs, rRNAs, pseudo hairpins and random RNA
sequences. All these sequences were pairwise compared to locate similar sequences and
for some of them multiple labels were assigned by this process. For all the sequences of
the dataset, 58 sequential, thermodynamical and structural features were calculated
including most significant features from existing non-coding RNA classification
methods. The proposed solution was applied on this dataset and its performance was
compared with existing state-of-the-art multi-label methods. Multi-label GARF signif‐
icantly outperformed other methods in terms of classification performance on the testing
dataset. Its performance surpassed 60% of the very strict multi-label accuracy metric
which considers a sample to be classified correctly only if all its labels have been
predicted correctly. It is noteworthy than none of the random RNA sequences were
assigned to any of the non-coding RNA types and this makes the final predictive models
suitable for screening RNA-seq reads for non-coding RNA sequences.

2 Materials and Methods

RFAM database [9] was used to download mature miRNA (1865), pre-miRNA (2547),
tRNA (12522), rRNA (25723) and snoRNA (12522) sequences. Moreover, tRNA frag‐
ments (tRFs) were downloaded from MINTbase [10] and tRFdb [11]. In order to train
and test effectively the machine learning classifiers, the random undersampling method
was applied randomly selecting only 1865 sequences of each category to be included in
the final dataset since this is the plurality of the minority class. The produced dataset
was extended with 1865 pseudo hairpin sequences constructed following the method
described in [12] and 1865 random RNA-sequences of lengths from 20 to 200.

These sequences were pairwise compared to identify equal or similar sequences
allowing total 2 mismatches belonging to more than one categories or sequences which
can be found within other sequences. This analysis was conducted to assign multiple
labels to these types of sequences.

As a next step for all of these sequences 58 structural, sequential and thermodynamic
features were calculated using InSyBio ncRNAseq tool [13]. The final dataset was split
in training and testing set with 2/3 of its sequences being assigned to the training set and
the remaining 1/3 to the test set. This split was conducted randomly but reassuring that
1:1 proportion is maintained for every class in the dataset.

The proposed designed and implemented method is a hybrid method which solves
on parallel the problems of dimensionality reduction and multiple labels classification.
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In specific the proposed method, Multi-Label GARF, is an ensemble dimensionality
reduction technique which utilizes a multiobjective evolutionary algorithm [14] for the
identification of the optimal feature subset to be used as input to the classifiers as well
as for the selection of the most suitable type of Random Forests classifier [15] to be used
and its optimal parameters.

The multi-objective evolutionary framework used for this implementation was based
on the multi-objective evolutionary algorithm initially applied in [16] for the optimiza‐
tion of the preprocessing pipeline for the analysis of Mass Spectrometry data. This is
based on a Pareto-optimization technique to allow fast convergence to good exploration
properties and effective handling of the contradictory goals of minimizing the number
of used features, maximizing the accuracy of the classifiers and minimizing the
complexity of the classifier to achieve better generalization properties.

The algorithm starts by randomly initializing a first population of solutions which
are represented as float vectors. These vectors consist of (i) float variables for the
parameter number of random trees to be used and the minimum number of samples
assigned per leaf to control the splitting process on Random Forests, (ii) a float variable
to choose between the two alternative multi-label Random Forest algorithms (a value
greater than 0.5 indicates the selection of method 2 and a value less than 0.5 indicates
the selection of method 1) and 58 float variables for deciding if a feature will be selected
as input or not (values greater than 0.5 forces a feature to be used as input). The float
vectors of the population are initialized randomly with values from the normal distri‐
bution with mean equal to min_value + (max_value − min_value)∕2 and variance
(max_value − min_value)∕2, where max_value is the maximum allowed value of an
optimization variable and min_value is its minimum allowed value.

For the variation of the population of solutions in order to create new solutions,
crossover and mutation operators are sequentially applied. Regarding the crossover
operators, two crossover methods are used with probabilities which are also provided
by the user (45% probability for two-point crossover operator, 45% probability for arith‐
metic crossover and 10% for not applying crossover operator were used for this imple‐
mentation). For the mutation, the Gaussian mutation operator is applied since it is the
most suitable operator for the float representation scheme which is adopted in the
proposed algorithm with mutation probability 1%.

To better handle the multiple objectives of the current problem, the selection process
was based on a multi-objective optimization method. The first step is to calculate the
number of Pareto frontiers (sets of solutions where no solution is better than other solu‐
tions in the same set to all optimization goals). To calculate the Pareto frontiers, the
efficient and fast solution described in [17] was used. An initial fitness value is then
assigned to every solution equal to the reverse order of the parent front to which it has
been assigned by the previous step. Next, the method calculates solution niches by
grouping together solutions according to their similarity. The fitness values of every
solution in a given niche are divided by the variable m (average similarity of every
solution) which is calculated by performing pairwise comparisons of all solutions of the
niche calculating their geometrical distances and calculating the mean pairwise distance
of them. These fitness values are then tuned according to the number of solutions
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belonging to each niche. Roulette Wheel Selection is then used to select the population
of the next generation. The best solution passes as it is to the next generation.

The total fitness value is calculated with the weighted sum of the optimization goals
with the weights pre-defined by the user. The specific fitness functions (FF) which were
used for multi-label GARF algorithm were the following:

FF1 =
1

1 + Number of selected features
FF2 = Classification Accuracy
FF3 = Hamming Loss Classification Metric

FF4 =
1

1 + Number of trees used by Random Forests

FF5 =
Average number of samples per node Split in Random Trees

Total Number of samples
FF6 = Recall Classification Metric
FF7 = Precision Classification Metric

Fitness function 1 aims at the minimization of the selected features in order to
increase the interpretability of the classifier. Fitness functions 4 and 5 were used to
promote solutions which lead to simpler models to present better generalization prop‐
erties. The rest of the fitness functions are employed to increase the algorithm’s classi‐
fication performance.

The algorithm was terminated when the population of solutions is deemed as
converged (the similarity among the solutions surpasses a predefined threshold) or when
the maximum number of generations is reached.

The multi label Random Forest classifiers implementation was based on sklearn
python library [18] using two different approaches regarding the function used to
measure the quality of a split in the process of generating the trees of random forests.
The first method is called Gini and uses the Gini impurity function [19] and the second
method uses the information gain function [20].

The overall pipeline of the multi-label GARF is depicted in Fig. 1.
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Fig. 1. Flowchart of proposed method: multi-label GARF

3 Experimental Results

All features of the dataset were arithmetically normalized to the interval [−1, 1] and
missing values were imputed using KNN-Impute method [21]. Then the Multi-label
GARF and other multi-label methods were used to train multi-label classification models
using the training dataset. The trained classification models were applied on the testing
dataset and Table 1 presents the Accuracy and Hamming-Loss metric for every model.

The state of the art multi-label models which were used for comparison reasons were
the Random Forest implementation of sklearn library, the extra trees algorithm [22], the
multi-label KNN [23], a Decision Tree algorithm [24] and the Binary Relevance algo‐
rithm [25]. For all these algorithms, all features were used as inputs and they were tested
using their default parameters.
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Regarding the Multi-label GARF algorithm, after extensive testing in the training
set, a population of 50 individuals was used and a maximum number of 200 generations
was set for the termination criterion. Further increase in the number of generations did
not improve the results. Mutation Probability was set to 1%. Moreover, during its training
phase internal 5-fold cross validation was applied using the training dataset. In order to
take into account, the stochastic nature of this method we run the experiments 25 times
and the results of Table 1 are the mean values together with their standard deviation
(SD). The goal significances for the fitness functions 2, 3, 6, 7 were set to 1.5 and for
the other goals to 1. By this way we are setting for the final ordering of the solutions,
classification performance to be twice as significant as the goals of minimizing the
classification model’s complexity.

The best solution uncovered by Multi-label GARF method among all runs used the
Gini metric for splitting criterion on the random tree nodes, 8637 number of random
trees, 3 as minimum number of samples assigned per leaf and 27 features were selected.
Moreover, a closest examination on the results indicated that none of the random RNA
sequences was assigned to any of the non-coding RNA types by the multi-label GARF
method.

Multi-label GARF significantly outperformed the other examined methods in terms
of classification performance on the testing dataset. Its performance was over 60% of
the very strict multi-label accuracy metric which considers a sample to be classified
correctly only if all its labels have been predicted correctly. None of the other examined
methods presented accuracy more than 30%.

Finally, it is noteworthy than none of the random RNA sequences were assigned to
any of the non-coding RNA types and this makes the final predictive models suitable
for screening RNA-seq reads for non-coding RNA sequences.

4 Discussion

Predicting and classifying short ncRNAs is of crucial importance for systems biology
and translational medicine to: (i) allow the prediction of new ncRNA molecules for
human or other not well studied organisms (including the human microbiome), (ii) ease
the analysis of high throughput sequencing experiments by allowing for the efficient

Table 1. Comparative results on the classification of non-coding RNA sequences using the
proposed technique and other existing machine learning techniques compatible with multi-label
datasets.

Method Accuracy (mean − SD) Hamming-Loss Metric
(mean − SD)

Multi-label GARF 61% − 0.3461 0.051 − 0.002529
Random forest 28% − 0.0002 0.010 − 0.000061
Extra trees 12% − 0.0002 0.009 − 0.000062
Multi label KNN 1% − 0.0008 0.010 − 0.000006
Decision tree 29% − 0.0004 0.010 − 0.000007
Binary relevance 22% − 0.0005 0.012 − 0.000005
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identification and quantification of non-coding RNAs without the need of analyzing
them separately by modifying samples with specialized libraries and (iii) enable the
understanding of ncRNAs functionality. To the best of our knowledge, most existing
methods are offering prediction of very limited number of non-coding RNA categories
with most of them emphasizing on miRNAs. Moreover, all existing methods do not take
into account the fact that some sequences may be assigned to more than one ncRNA
categories while some ncRNA sequences are being generated from pruning other
ncRNAs.

In the present work, we have attempted to overcome these difficulties by proposing
a unified multi-label multi-classification algorithmic framework which combines multi-
label Random Forests with a multi-objective optimization algorithm to find the optimal
classification model with the minimum number of inputs. To test the proposed solution,
we generated the first multi-label dataset for non-coding RNAs mining information from
several databases and compared the proposed solution with other state-of-the-art multi-
label classification models. The multi-label GARF clearly outperformed all other
methods in both classification metrics used. Moreover, on this specific dataset none
random RNA sequence was assigned to any type of non-coding RNAs. Furthermore,
the additional labels which are assigned by it in some of the sequences which maintained
the strict metric of multi-label accuracy in approximately 60% should be further explored
in the future as meaningful information could reside on them about other functionalities
that could be performed by the same sequences or parts of them.

The fact that the proposed technique was able to train models that can predict non-
coding RNAs within longer RNA sequences makes it appropriate for being applied
directly on the reads extracted from deep RNA-sequencing experimental techniques. As
an example, in the case of identifying miRNAs from RNA-sequencing, a common
problem is whether to search for pre-miRNAs or for mature miRNAs since both types
of RNA sequences can be detected in a biosample. The extracted predictive models from
the present paper can solve efficiently this problem as well as the problem that non-
coding RNAs are most of the time only a subset of a read being generated by sequencing
technologies. Thus, an interesting future direction includes testing and validating the
performance of the proposed method directly on sequences exported from RNA-
sequencing experiments. Moreover, despite the promising results of the proposed model,
its performance can be further improved by including even more features as potential
inputs (e.g. existence of clover structure). Finally, the current implementation can be
expanded to allow for the prediction of other types of non-coding RNAs such as scRNAs
and diRNAs.
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