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Abstract. Sometimes the difference between two distinct words of the
same length cannot be smaller than a certain minimal amount. In par-
ticular if two distinct words of the same length are both periodic or
quasiperiodic, then their Hamming distance is at least 2. We study here
how the minimum Hamming distance dist(x, y) between two words x, y
of the same length n depends on their periods. Similar problems were
considered in [1] in the context of quasiperiodicities. We say that a period
p of a word x is primitive if x does not have any smaller period p′ which
divides p. For integers p, n (p ≤ n) we define Pp(n) as the set of words of
length n with primitive period p. We show several results related to the
following functions introduced in this paper for p �= q and n ≥ max(p, q).

Dp,q(n) = min { dist(x, y) : x ∈ Pp(n), y ∈ Pq(n) },
Np,q(h) = max {n : Dp,q(n) ≤ h }.

1 Introduction

Consider a word x of length |x| = n, with its positions numbered 0 through
n − 1. We say that x has a period p if xi = xi+p for all 0 ≤ i < n − p. Our work
can be seen as a quest to extend Fine and Wilf’s Periodicity Lemma [14], which
is a ubiquitous tool of combinatorics on words.

Lemma 1 (Periodicity Lemma [14]). If a word x has periods p and q and
|x| ≥ p + q − GCD(p, q), then x also has a period GCD(p, q).

Other known extensions of this lemma include a variant with three [10] and an
arbitrary number of specified periods [11,16,17,23], the so-called new periodicity
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lemma [3,13], a periodicity lemma for repetitions that involve morphisms [19],
and extensions into periodicity of partial words [4–9,22], into abelian [12] and
k-abelian [18] periodicity, into bidimensional words [20], and other variations
[15,21].

We say that a word x of length n is periodic if it has a period p such that
2p ≤ n. For two words x and y of length n, by dist(x, y) we denote their Hamming
distance being the number of positions i = 0, . . . , n − 1 such that xi �= yi. The
following folklore fact gives a lower bound on how different are two distinct
periodic words. Its proof can be found in [1].

Fact 2. If x and y are distinct periodic words of the same length, then
dist(x, y) �= 1.

We present several generalizations of this fact.
Results similar to Fact 2 were presented recently in the context of quasiperi-

odicity [1]. We say that a word x has a cover u if each position in x is located
inside an occurrence of u in x. The word x is called quasiperiodic if it has a cover
u other than x. In [1] the following generalization of Fact fct:folklore was shown:
dist(x, y) > 1 for any two distinct quasiperiodic words x, y of the same length.
This type of fact has potential applications; see [2].

There is a quantitative difference between periods and covers. For example,
there are words x and y of length 1024 with shortest covers of length 4 and 5,
respectively, and dist(x, y) = 2:

x = (abaa)256 and y = aaba(abaa)255

with covers abaa and aabaa. However, if x and y are words of length 1024 with
shortest periods 4 and 5, respectively, then we must have dist(x, y) ≥ 357.

We say that a period p of a word x is primitive if no proper divisor of p is a
period of x, i.e., if p′ | p and p′ is a period of x, then p′ = p. We define

Pp(n) = { |x| = n, p is a primitive period of x }.

The ultimate goal of this work is a characterization of the function Dp,q defined
for p �= q and n ≥ max(p, q) as:

Dp,q(n) = min { dist(x, y) : x ∈ Pp(n), y ∈ Pq(n) }.

As Dp,q is non-decreasing for given p, q, it can be described by the following
auxiliary function:

Np,q(h) = max {n : Dp,q(n) ≤ h }.

One can note that Lemma 1 can be equivalently formulated as Np,q(0) < p+q−
GCD(p, q) (Fig. 1). Similarly, an equivalent formulation of Fact 2 is Np,q(1) < 2q.

Fine and Wilf [14] also proved that the bound p+ q −GCD(p, q) of Lemma 1
cannot be improved. Consequently, Np,q(0) = p + q − GCD(p, q) − 1. On the
other hand, we show that Np,q(1) = 2q − 1 only for p | q. Hence, the bound
Np,q(1) < 2q of Fact 2 is not tight in general.



170 M. Alzamel et al.

Our Results. In Sect. 2 we consider the case that p | q. In the remaining
sections, we only consider the case of p < q and p � q. In Sect. 3 we show exact
values of the function Dp,q for p + q − GCD(p, q) ≤ n ≤ 2q. In Sect. 4, we show
the following bounds valid for abitrary n ≥ q:

⌊
n−q
p

⌋
≤ Dp,q(n) ≤ 2

⌈
n−q
p

⌉
.

We also prove an alternative bound Dp,q(n) ≥
⌊

2n
p+q

⌋
valid for n ≥ p + q.

h N3,4(h)
a a b a a b
a a b a aa

a a b a a b a a
a a b a aa b a

a a b a a b a a b a
a a b a aa b aa a

a a b a a b a a b aa
a a b a aa b aa a b

a a b a a b a a b aa b a a b a a
a a b a aa b aa a b a a a b a a

h N2,3(h)
a b a
a b a

a b a b
a b aa

a b a b a
a b aa b

a b a b a b a b a
a b aa b a a b a

a b a b a b a b a b
a b aa b a a b aa

a b a b a b a b a b a
a b aa b a a b aa b

a b a b a b a b a b a b a b a
a b aa b a a b aa b a a b a

a b a b a b a b a b a b a b a b
a b aa b a a b aa b a a b aa

Fig. 1. Upper table: values of N3,4(h) for h = 1, . . . , 5 together with pairs of words of
length N3,4(h) that have the Hamming distance h. Lower table: values of N2,3(h) for
h = 0, . . . , 7.

2 Preliminaries

Let us consider a finite alphabet Σ. If x is a word of length |x| = n, then by
xi ∈ Σ for i = 0, . . . , n − 1 we denote its ith letter. We say that a word v is a
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factor of a word x if there exist words u and w such that x = uvw. A factor v
is called a prefix of x if u is an empty word in some such decomposition and a
suffix if w is an empty word in some such decomposition. By x[i..j] we denote
the factor xi . . . xj .

If xi = xi+p for all 0 ≤ i < n − p for some integer p, then p is called a period
of x and the prefix of x of length p is called a string period of x. If x has period
p, then y is called a periodic extension of x with period p if y also has period p
and has x as a prefix.

We say that a period p is primitive if no proper divisor of p is a period of x.
Note that the shortest period (denoted p = per(x)) is always primitive.

We say that a word x is primitive if there exists no other word u and integer
k > 1 such that x = uk. Note that p is a primitive period of x if and only if the
corresponding string period is a primitive word. Two words x and y are each
other’s cyclic rotations if there exist words u and v such that x = uv and y = vu.
In this case we also say that |u| is the shift between x and y.

For a sequence of positive integers (a1, . . . , am), we define a (a1, . . . , am)-
decomposition of a word x as a sequence of consecutive factors of x of lengths
a1, . . . , am, a1, . . . , am, . . . The sequence ends at the last complete factor that can
be cut out of x; see Fig. 2 for an example.

Fig. 2. The (1, 2, 4)-decomposition of ababbababaababaabaab is a ba bbab a ba abab a ab.

If p | q, we can give a simple complete characterization of functions Np,q and
Dp,q.

Fact 3. If p | q and p < q, then Dp,q(n) =
⌊
n
q

⌋
and Np,q(h) = q · (h + 1) − 1.

Proof. We first show that Dp,q(n) ≥
⌊
n
q

⌋
. Consider a positive integer n, words

x ∈ Pp(n), y ∈ Pq(n), and the (q)-decompositions of x and y: α1, . . . , αk and
β1, . . . , βk. Observe that α1 = . . . = αk and β1 = . . . = βk because q is a period
of both x and y, but α1 �= β1 because q is a primitive period of y, but not a
primitive period of x. Hence, dist(x, y) ≥ k.

As for the other inequality on Dp,q(n), let us take x = (ap−1b)�n/p�an mod p

and let y be the word that is obtained from x by changing the letters at positions
i ≡ q − 1 (mod q) from b to c. Then dist(x, y) =

⌊
n
q

⌋
.

Finally, the formula for Np,q(h) follows directly from the other one. ��
Henceforth, we will always assume that p � q and q � p.
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3 Exact Values for Small n

Let us start with the following useful lemma.

Lemma 4. Let x be a word of length n and let y by its cyclic rotation by s
characters. If x �= y, then dist(x, y) ≥ 2. Moreover, there are two mismatches
between x and y located at least GCD(n, s) positions apart.

Proof. Note that yi = x(i+s) mod n for 0 ≤ i < n. Since x �= y, we have xa �= ya =
x(a+s) mod n for some position a. Let k be the smallest positive integer such that
xa = x(a+ks) mod n. Due to x(a+s) mod n �= xa and x(a+ns) mod n = xa, we have
1 < k ≤ n. Let b = (a+ (k − 1)s) mod n. Note that xb �= xa = x(b+s) mod n = yb.
Hence, a and b are positions of two distinct mismatches between x and y. More-
over, b ≡ (a + (k − 1)s) mod n ≡ a (mod GCD(n, s)). Consequently, these two
mismatches are indeed located at least GCD(n, s) positions apart. ��

For an illustration of the following Lemma5, see Fig. 3.

Lemma 5. Consider positive integers p, q satisfying p < q and p � q. Let x and
y be words of length n such that p + q − GCD(p, q) ≤ n ≤ q + p	 q

p
 − 1, p is a
period of x, and q is a period of y but not a period of x. Then

dist(x, y) ≥
⌊
n−q
p

⌋
+

⌊
n−q+GCD(p,q)

p

⌋
.

Proof. Let u = x[0..p − 1] and let v be the cyclic rotation of u by q characters.
Note that u is a string period of x, so u �= v; otherwise, q would be a period of
x. Consequently, Lemma 4 provides two distinct indices a, b such that ua �= va,
ub �= vb, and a ≤ b − GCD(p, q) < p − GCD(p, q). Let us define

A =
{
kp + a : 0 ≤ k <

⌊
n−q+GCD(p,q)

p

⌋}
,

B =
{
kp + b : 0 ≤ k <

⌊
n−q
p

⌋}
.

Observe that

max A =
⌊
n−q+GCD(p,q)

p

⌋
p − p + a ≤ n − q + GCD(p, q) − p + a < n − q

and max B =
⌊
n−q
p

⌋
p − p + b ≤ n − q − p + b < n − q.

Moreover,

max A ≤
⌊
p�q/p�−1+GCD(p,q)

p

⌋
p−p+a =

⌈
q
p

⌉
p−p+a < q+a ≤ q+min(A∪B),

and

max B ≤
⌊
p�q/p�−1

p

⌋
p − p + b =

⌈
q
p

⌉
p − p < q ≤ q + min(A ∪ B).

Consequently, for each i ∈ A ∪ B, there are positions xi and xi+q, and all
these 2(|A| + |B|) positions are distinct. Moreover, observe that for i ∈ A, we
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have xi = ua �= va = xi+q, while for i ∈ B, xi = ub �= vb = xi+q. Thus, for
i ∈ A ∪ B, we have xi �= xi+q, but yi = yi+q; hence xi �= yi or xi+q �= yi+q.
The positions we consider are distinct, so dist(x, y) ≥ |A ∪ B| = |A| + |B| =⌊
n−q
p

⌋
+

⌊
n−q+GCD(p,q)

p

⌋
, as claimed. ��

For an illustration of the following Lemma6, see Figs. 4 and 5.

q

p

x u

a b

u

a+ p

v

a+ q b+ q

v

a+ b+ q

Fig. 3. Illustration of the equalities in the bound in Lemma 5 for � q
p
� = 1.

Lemma 6. Consider coprime integers p, q satisfying 1 < p < q. Let w be a
word of length p + q − 2 with periods p and q, but without period 1. Moreover,
let n be an integer such that p + q − 1 ≤ n ≤ q + 	 q

p
p − 1, and let x and y
be periodic extensions of w of length n preserving periods p and q, respectively.
Then per(x) = p, per(y) = q, and

dist(x, y) ≤
⌊
n−q
p

⌋
+

⌊
n−q+1

p

⌋
,

Proof. Claim. If a position i satisfies i < q or (i−q) mod p < p−2, then xi = yi.

Proof. The claim is clear for i < q+p−2 since due to the common prefix of x and
y. Thus, we consider a position i = q+kp+r with 1 ≤ k < 	 q

p
 and 0 ≤ r < p−2.
We have xq+kp+r = xq+r = yq+r = yr = xr = xkp+r = ykp+r = yq+kp+r. This is
because positions r < kp+ r < q + r are within the common prefix of x and y. ��

Consequently,

dist(x, y) ≤ {i : q ≤ i < n ∧ (i − q) mod p ≥ p − 2} =

{j : 0 ≤ j < n − q ∧ j mod p = p − 1} + {j : 0 ≤ j < n − q ∧ j mod p = p − 2} =⌊
n−q
p

⌋
+

⌊
n−q+1

p

⌋
,

as claimed. Next, we prove that p′ := per(x) is equal to p. Note that p′ ≤ p by
definition of x. For a proof by contradiction, suppose that p′ < p. Note that w
has periods p′ and q. Moreover, |w| = p + q − 2 ≥ p′ + q − 1, so GCD(p′, q) is a
period of w. Moreover, n ≥ p+q−1 ≥ p+GCD(p′, q)−1, so GCD(GCD(p′, q), p)
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is a period of x. However, GCD(GCD(p′, q), p) = GCD(p′,GCD(q, p)) = 1 is not
a period of w, which is a prefix of x.

Similarly, suppose that q′ := per(y) < q. We observe that |w| = p + q − 2 ≥
p+q′ −1, so GCD(p, q′) is a period of w. Moreover, n ≥ p+q−1 ≥ GCD(p, q′)+
q − 1, so GCD(GCD(p, q′), q) is a period of y. However, GCD(GCD(p, q′), q) =
GCD(q′,GCD(p, q)) = 1 is not a period of w, which is a prefix of y. ��

q p − 2 2 p − 2

p

x u u u

u

p
p

�= �=
y u u u

u

q

q

Fig. 4. Illustration of the equalities in the lower bound in Lemma 6 for n = q + 2p− 2.

Fig. 5. A periodic prefix of a Fibonacci word and a power of a Fibonacci word that
differ only at two positions.

Theorem 7. If p < q, p � q, and p + q − GCD(p, q) ≤ n ≤ q + 	 q
p
p − 1, then

Dp,q(n) =
⌊

n − q

p

⌋
+

⌊
n + GCD(p, q) − q

p

⌋
. (1)

Proof. Lemma 5 gives a lower bound of Dp,q(n). Our upper bound is based on
Lemma 6. Let d = GCD(p, q), p′ = p

d , q′ = q
d , and n′ =

⌊
n
d

⌋
. Observe that

1 < p′ < q′ and p′ + q′ − 1 ≤ n′ ≤ q′ + 	 q′

p′ 
p′ − 1. Hence, Lemma 6 results in
strings x′, y′ with of length n′ with shortest periods p′ and q′ respectively, and
with dist(x′, y′) ≤

⌊
n′−q′

p′

⌋
+

⌊
n′−q′+1

p′

⌋
=

⌊
n−q
p

⌋
+

⌊
n−q+GCD(p,q)

p

⌋
.
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Let c be a character occurring neither in x′ nor in y′. Let us define x and y so
that xid+d−1 = x′

i and y =id+d−1= y′
i, and xj = yj = c if j mod d �= d − 1. Note

that dist(x, y) = dist(x′, y′) and |x| = |y| = n. Also, observe that due to the
choice of the character c, all periods of x and y are larger than dn′ or multiples
of d. Consequently, per(x) = dper(x′) = dp′ = p and per(y) = dper(y′) =
dq′ = q. This completes the construction. ��
Corollary 8. The formula (1) of Theorem7 applies for p + q − GCD(p, q) ≤
n ≤ 2q.

Fact 9. The function Dp,q(n) is non-decreasing for n ≥ p + q − GCD(p, q).
Moreover:

Dp,q(n) = h ⇐⇒ Np,q(h − 1) < n ≤ Np,q(h)
Np,q(h) = n ⇐⇒ Dp,q(n) = h < Dp,q(n + 1)

4 Bounds for Dp,q(n) for Arbitrary n

Lemma 10. Let p, q be integers such that p < q and p � q. Moreover, let x and
y be words of length n ≥ q such that p is a period of x, and q is a period of y

but not of x. Then dist(x, y) ≥
⌊
n−q
p

⌋
.

Proof. Since q is not a period of x, we have xi �= xi+q for some position i,
0 ≤ i < n− q. Consider a set J = {j : 0 ≤ j < n− q ∧ j ≡ i (mod p)}. Since p is
a period of x, we have xj �= xj+q for each j ∈ J ; on the other hand, yj = yj+q,
so xj �= yj or xj+q �= yj+q. Moreover, p � q implies that the positions j, j + q

across j ∈ J are pairwise distinct. Consequently, dist(x, y) ≥ |J | ≥
⌊
n−q
p

⌋
. ��

Theorem 11. If p < q, p � q, and n ≥ p + q, then
⌊
n−q
p

⌋
≤ Dp,q(n) ≤ 2

⌈
n−q
p

⌉
.

Proof. The lower bound follows directly from Lemma10. The upper bound is
obtained using words (x, y) ∈ Sp,q,n with string periods ap−1b and (ap−1b)kar

where q = kp+r. Indeed, x and y agree on the first q positions. After that, inside
each pair of corresponding fragments of length at most p they have at most 2
mismatches. ��
Remark 12. In general, it is not true that Dp,q(n) ≥ 	n−q

p 
. For example, words
x = cacbcacbcacbcacbcac and y = cacbcacacbcacacbcac of length 19, with shortest
periods p = 4 and q = 6, respectively, satisfy dist(x, y) = 3 < 	 19−6

4 
.

Theorem 13. If p < q and p � q and n ≥ p + q, then Dp,q(n) ≥
⌊

2n
p+q

⌋
.

Proof. We use the following claim:

Claim. If p < q and p � q, then
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(a) Np,q(1) = q + p − 1,
(b) Np,q(2) = q + 2p − GCD(p, q) − 1.

Proof. Observe that q + p ≤ q + 2p − GCD(p, q) ≤ q + 	 q
p
p − 1, so the values

below are within the scope of Theorem 7. We have:

Dp,q(q + p − 1) =
⌊
p−1
p

⌋
+

⌊
p+GCD(p,q)−1

p

⌋
= 0 + 1 = 1

Dp,q(q + p) =
⌊
p
p

⌋
+

⌊
p+GCD(p,q)

p

⌋
= 1 + 1 = 2.

This concludes the proof of part (a).

Dp,q(q + 2p − GCD(p, q) − 1) =
⌊
2p−GCD(p,q)−1

p

⌋
+

⌊
2p−1

p

⌋
= 1 + 1 = 2

Dp,q(q + 2p − GCD(p, q)) =
⌊
2p−GCD(p,q)

p

⌋
+

⌊
2p
p

⌋
= 1 + 2 = 3.

This concludes the proof of part (b). ��
Consider words x ∈ Pp(n), y ∈ Pq(n) and their (p + q)-decompositions:

α1, . . . , αk and β0, . . . , βk−1. If αi = βi for some 1 ≤ i ≤ k, then, by the Peri-
odicity Lemma, both αi, βi have period GCD(p, q); consequently, both x and
y have period GCD(p, q), a contradiction. Hence, part (a) of the claim implies
dist(αi, βi) ≥ 2 for each i = 1, . . . , k.

Let αk+1 and βk+1 be the suffixes of x and y starting immediately after
the last factors of the corresponding decompositions. If |αk+1| < p+q

2 , then we
already have that

dist(x, y) ≥ 2
⌊

n
p+q

⌋
=

⌊
2n
p+q

⌋
.

Otherwise, by part (b) of the claim applied for the words αkαk+1 and βkβk+1,
we have

dist(x, y) ≥ 2
(⌊

n
p+q

⌋
− 1

)
+ 3 = 2

⌊
n

p+q

⌋
+ 1 =

⌊
2n
p+q

⌋
.

In both cases we obtain the desired inequality. ��

5 Conclusions

The paper studies the following general type of question:

How much dissimilar in a whole should be two objects which are
different in some specific aspect?

The answer to this type of question heavily depends on the studied type of
the objects. Thus sometimes the answer is completely trivial; for example, two
different strings of the same length may differ at only a single position. In this
work we show that if we consider different strings of the same length that are
additionally periodic, then the implied number of positions where the two strings
must differ can be large. The exact number depends on the length of the strings
and on their periods.
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