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Abstract. The overshoots between the expected and actual outputs while
training network will slow down the training speed and affect the training
accuracy. In this paper, an improved training method for eliminating overshoots
is proposed on the basis of traditional network training algorithms and a sug-
gestion of eliminating overshoot is given. Gradient descent is regarded as the
training criterion in traditional methods which neglects the side effects caused by
overshoots. The overshoot definition (OD) is combined with gradient descent.
According to the overshoot suggestion, local linearization and weighted mean
methods are used to adjust the parameters of network. Based on the new training
strategy, a numerical experiment is conducted to verify the proposed algorithm.
The results show that the proposed algorithm eliminates overshoots effectively
and improves the training performance of the network greatly.
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1 Introduction

Artificial neural networks (ANNs) have developed rapidly and have been used wildly
in many fields, such as speech recognition, computer vision, games and classification of
skin cancer [1–4]. So far, the studies of ANNs can be divided into three aspects. The
first aspect is the topology of network. The numbers of nodes and layers play a
significant role in applications of networks. ANNs have developed multiple branch
types, such as convolution neural network, recurrent neural network, extreme learning
machine [5–7]. However, there is still no substantial instruction on the topology of
network. The second aspect is to combine the neural network with other optimization
algorithms. Since lots of optimization algorithms exist, this aspect is mainly used for
special applications. In [8, 9], ANNs are combined with fuzzy and genetic theory to
identify nonlinear system and a short-term load forecasting of natural gas. Network
training algorithms are the third aspect and most popular aspect.

Training algorithms play a decisive role in the accuracy of ANNs. In general, a large
number of historical data have to be used while training network. Therefore, how to
handle big data efficiently and extract features accurately are the key to training network.
In [10], Rumelhart proposed learning representations by back-propagating errors.
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BP algorithm has good convergence property, however, it may lead to the problem of
gradient vanishing. For the disadvantages of BP algorithm, ReLU is proposed to replace
the sigmoid activation function [11]. In [12], dropout of nodes is proposed to prevent
ANNs from overfitting. In addition, the parallel and online sequential learning algo-
rithms are introduced to quicken the training process [13, 14].

Almost all existing algorithms focus on gradient while few studies take the over-
shoots of outputs into consideration. An eliminating overshoot method (EOM) is
proposed to improve BP algorithm. An overshoot definition is given on the basis of
traditional BP (TBP) algorithm. Meanwhile, local linearization and weighted mean
algorithms are adopted to train ANNs. This paper is organized as follows. In Sect. 2,
we briefly describe the overshoot definition and its mathematical method. Section 3
introduces the numerical simulation. Finally, the conclusion and the future work are
summarized in Sect. 4.

2 The Overshoot Definition and Mathematical Method

In this study, the OD combines the outputs with gradient decent. The OD is given as all
outputs must be on the same side of the excepted output with the output at the first
iteration while training network. The purpose of training network is to adjust the
parameters on the basis of a given set of samples to minimize the errors between the
actual and expected outputs. Not only gradients but also outputs have to be considered
while training networks. A cost function is defined to characterize the errors. At pre-
sent, there are many kinds of cost functions. The Euclidean metric is used as the cost
function in this study, which is defined as follows:

E ¼ 1
2
� ðO� DÞT � ðO� DÞ ð1Þ

O is the actual output vector, D is the expected response output. T denotes trans-
pose operation. E is the total instantaneous error energy.

The weight and threshold matrixes of the ith layer are defined as follows:
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wi;j;k denotes the weight value between the jth node of the ith layer and the kth node

of the ðiþ 1Þth layer. b j
i denotes the threshold value of the jth node in the ith layer. Ni

denotes the number of the nodes in the ith layer.
The output of the ith layer is defined as follows:

Oi ¼

oi1
oi2
..
.

oiNi

2
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7775 ð4Þ

According to the Eqs. (2)–(4), the output of the ðiþ 1Þth layer can be expressed as
follows:

Oiþ 1 ¼ FðWi;B
i;OiÞ ð5Þ

F is the action function.
The correction DWi and DBi are defined as follows:

DWi ¼ �g � dE
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In Eq. (7), dE
dBi

is the jacobian matrix of E with respect to the threshold vector Bi

denoted as JBi . The jacobian matrix can be calculated layer by layer.

JBi ¼ dE
dBi ¼

dE
dOL �

dOL

dOL�1 � � �
dOiþ 1

dOi

dOi

dBi ; ð8Þ

Where i ¼ 1; 2; � � � ; L.
In Eq. (8), dE

dOL denotes the jacobian matrix of E with respect to the actual output OL.
L denotes the number of all layers in network.
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dLi denotes the expected response.
dOiþ 1

dOi denotes the jacobian matrix of the output of the ðiþ 1Þth layer Oiþ 1 with
respect to the output of the ith layer Oi.
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According to the Eqs. (7)–(11), the initial correction DBi can be obtained. The
expression of the initial correction DWi can be derived with the same method above. In
this study, the sigmoid function is chosen as the action function. The output locates in
the interval (0,1). It can be obtained from the Eq. (8) that the correction is determined
by the errors of outputs directly.

Assuming that the overshoot arises at the nth iteration, it indicates the corrections
exceed the range. Accordingly, the OD should be adopted to eliminate the overshoots
for achieving the optimal solution as soon as possible. Since the traditional line search
algorithm is time consuming, local linearization and weighted mean methods are used
to adjust the parameters to eliminate overshoots in this paper. The local linearization
method is based on the relationship between cost function and network parameters.
When overshoots occur, the actual outputs of the latest two iterations locate on both
sides of the excepted output, which are close to the expected output. In this situation,
the error changes little, which is in line with the local linearization condition. The
network parameters are regarded as the independent variables, while the cost function
is the corresponding variable. Linear equations are established by the latest two iter-
ations, which are defined as follows:

E � En ¼ DBi
nðBi

n

^
�Bi

nÞ
E � En�1 ¼ DBi

n�1ðBi
n

^
�Bi
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8<
: ð12Þ
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DBi
n is the gradient of E with respect to Bi at the nth iteration. Bi

n

^
is the updated

network parameters. En is the total error at the nth iteration.
The updated network parameters can be obtained by solving the equations when the

gradients are nonzero. According to Eq. (12), the updated parameters can be divided
into two cases. For the first case, if the cost function is a convex function between Bi

n

and Bi
n�1, the updated parameters should locate in the interval ðminðBi

n�1;B
i
nÞ;

maxðBi
n�1;B

i
nÞÞ. Then the overshoot of the updated parameters is judged according to

the OD. If overshoots are eliminated, the updated parameters are accepted and continue
the next iteration. Otherwise, the above step has to be circulated until the overshoots are
eliminated. For the second case, the cost function is a non-convex function between Bi

n

and Bi
n�1. The updated parameters may not locate in the interval

ðminðBi
n�1;B

i
nÞ;maxðBi

n�1;B
i
nÞÞ. The weighted mean method is adopted to deal with

this situation. The specific process is defined as follows:
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n
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n�1j

� Bi
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n�1j
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nj þ jDBi
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ð13Þ

Similarly to the first case, the updated parameters are accepted if the updated
parameters satisfy the overshoot definition, or this step will continue to circulate until
overshoots are eliminated.

3 Numerical Simulation and Result Analysis

In this section, a numerical simulation is conducted to verify the effectiveness and
practicability of the EOM algorithm. A three layers feed-forward ANN is designed. The
sigmoid function is chosen as the action function. The numbers of neurons in input,
hidden and output layer are 22, 30 and 58. The input and output samples are selected
from the solutions of the downwelling atmosphere monochromatic radiative transfer
model equation (MonoRTM). Before training the network, all samples are normalized.

In order to avoid the denominator is 0, the network parameter is accepted when the
absolute values of its gradients in the latest two iterations satisfy the overshoot definition
and are both below 0.000001. This operation will also speed up the training process.

Similarly to the TBPmethods, the OD is also introduced to train the network layer by
layer. However, contrary to the direction the error propagates, the OD propagates for-
wardly. The parameters of the next layer are adjusted on the basis of no overshoot on the
previous layers. The TBP algorithm is simulated to compare with the proposed method.
The structure of network and initial parameters of the two methods are set to the same.
The maximal number of iterations and the acceptable error are set to 50 and 0.000001.

The total instant error of all samples at each iteration is recorded and shown in
Fig. 1. The blue and red curves represent the total error of the TBP and the EOM
method respectively.
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As can be seen from the figure, the errors of the two methods almost overlap in the
initial stage. This is mainly because no overshoot occurs at this stage. The network
parameters meet the OD at each iteration which implies that they are not corrected
again.

However, the error of the EOM method is reduced at a slower speed than the TBP
method in the middle stage. The experimental data shows that errors of the most sample
are still large, but overshoots appear at some sample points. In order to satisfy the OD,
the parameters leading to overshoots are corrected again, resulting in that the error
cannot reduce in the direction of the steepest descent. Therefore, the blue curve is lower
than the red curve in the figure. However, the gradient of the blue curve slows down
gradually while the red curve almost shows a linear decline trend.

In the final stage, the errors of the samples are small. Overshoots in many sample
points lead to a slow speed of training network with traditional methods. However, the
EOM method takes great advantage of the good suppression of overshoots and mini-
mizes the error quickly. As shown in Fig. 1, it takes 14 iterations to achieve the optimal
solution for the TBP method, however, only 11 for the EOM method.

An output sample point is selected randomly to study the elimination of overshoot
detailedly. The actual outputs of the two methods are recorded and shown in Fig. 2.
The red and blue curves are respective the actual output of the EOM and TBP method.
The green curve is the excepted output.

It can be manifested from Fig. 2, no overshoot appears in the initial stage. It
indicates the parameters satisfy the OD. The blue and red curves overlap each other
which is consistent with the result in Fig. 1. The correctness of the results in Fig. 1 can
be confirmed in this stage.

The blue curve implies the overshoot appears when training network with tradi-
tional BP method in the middle stage. In order to meet the OD, the parameters have to
be corrected again by the local linearization and weighted mean methods. The red
curve depicts the elimination of overshoots of outputs while training neural network. In

Fig. 1. The total errors of outputs of the EOM and BP methods. The red and blue lines represent
the outputs of EOM and BP methods, respectively. (Color figure online)
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addition, the EOM method takes 8 iterations to approximate the excepted output which
is half of that of the TBP method. Furthermore, the output curve of the EOM method is
smoother than that of TBP method.

In order to illustrate the effectiveness of the proposed algorithm to eliminate
overshoot intuitively, the training trajectories of 58 output samples of the two methods
are shown in Figs. 3 and 4.

The blue points in Fig. 3 and green points in Fig. 4 represent the trajectories of the
TBP and EOM method respectively. The red points in both figures are the excepted
outputs. Overshoots appear at 90 percent of samples in Fig. 3. And overshoots are

Fig. 2. The outputs of single sample of the EOM and BP methods. The red and blue lines
represent the outputs of EOM and BP methods, respectively. The green line is the excepted
output (Color figure online)

Fig. 3. The output trajectories of the TBP method. (Color figure online)
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obvious especially when the initial error is around 0.15. However, no overshoot
appears in Fig. 4 which is consistent with the results in Fig. 2. No overshoot for all
samples indicates the proposed method is universal. And the OD is universal for other
neural network model.

4 Conclusion

In this paper, an improved training method and the OD are proposed for eliminating the
overshoots of outputs. The outputs and gradients of the network are taken into consider.
The training process of neural network is derived in matrix form and the specific
expressions are given. Local linearization and weighted mean methods are introduced
to optimize training algorithm. In the final stage of training network, the proposed
method eliminates all overshoots perfectly. The advantage of eliminating overshoot
makes it possible to reach the optimal earlier than the traditional method. The simu-
lation demonstrates effectiveness of the EOM method and its universality for all
samples. Therefore, the EOM method is superior to the traditional method. In addition,
a drawback of the EOM method is that it trains network at a slow speed in the middle
stage. It is also the direction of our future work.
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Fig. 4. The output trajectories of the EOM method. (Color figure online)
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