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Abstract. The paper develops further a recently proposed author’s approach
for classification of dynamic data series using a class of Recurrent Neural
Network (RNN) called Echo state network (ESN). It exploits the Intrinsic
Plasticity (IP) tuning of ESN reservoir of neurons to fit their dynamics to the
data fed into the reservoir input. A novel approach for ranking of a data base of
dynamic data series into groups using the length of the multidimensional vector
of reservoir state achieved after consecutive feeding of each time series into the
ESN is proposed here. It is tested on eye tracker recordings of human eye
movements during visual stimulation and decision making process. The pre-
liminary results demonstrated the ability of the proposed technique to discrim-
inate dynamic data series.
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1 Introduction

In previous author’s work [1] a novel approach for unsupervised clustering of static
multidimensional data sets using a class of RNNs called Echo state networks [2, 3] was
proposed. Next it was successfully tested on numerous practical examples and the
results were summarized in [4]. In [5] the approach was upgraded and applied for
classification of dynamic data series too.

The core of the approach, proposed first in [1], was to use the ESN to extract more
informative features from multidimensional data sets. For this aim equilibrium states of
the ESN reservoir neurons corresponding to every multidimensional data item pre-
sented to the ESN input were used. As it was shown in [6], the fitting of the ESN
reservoir dynamics to reflect the input data structure can be achieved by an approach
for ESN reservoir tuning called Intrinsic Plasticity (IP) [7, 8] that is aimed at achieving
the desired distribution of the ESN reservoir output.

Since the number of the new extracted features depends on the size of the ESN,
question how to choose the most proper among them is still under investigation.
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Initially [1, 4] it was proposed to choose only two of all possible neurons steady states
based on their distribution in one- or two-dimensional space [4]. Next in [9] we tried to
extend the number of representative neurons until the accuracy of data clustering
increases. However, this approach increased computational burden too much. That is
why here another approach was proposed: to use the geometric size of the vector of all
reservoir states and then to rank the time series data based on that single feature.

The approach was tested on dynamic series of eye movements data collected during
psycho-physiological experiments with humans observing specific visual stimuli and
making decisions. The preliminary results demonstrated the ability of the proposed
approach to rank the time series of human eye movements in dependence on their
characteristics.

The paper is organized as follows: next chapter describes briefly the ESN structure
and its IP tuning and the newly proposed feature extraction approach; next the
experimental set-up and the collected time series data are described; the results from
classification by the proposed algorithm are presented and discussed in section four; the
paper finished with concluding remarks and directions for future work.

2 Clustering Algorithm

2.1 Echo State Network and IP Tuning

ESN, shown on Fig. 1, is a type of recurrent neural network that belongs to the novel
and fast developing family of reservoir computing approaches [2, 3]. The ESN output
for the current time instance k is the vector out(k) with size nout. It is a linear function
f out (usually identity) of the vectors of the current states of the input in(k) (with size nin)
and the reservoir neurons X(k) (with size nX):

y kð Þ ¼ f out Wout in kð Þ; X kð Þ½ �ð Þ ð1Þ

Fig. 1. Echo state network structure.
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Here Wout is a trainable nout � ðnin þ nXÞ matrix. The neurons in the reservoir have
a simple sigmoid output function fres (usually hyperbolic tangent) that depends on both
the ESN input in(k) and the previous reservoir state X(k − 1):

X kð Þ ¼ f res Winin kð ÞþWresX k � 1ð Þ� � ð2Þ

Here Win and Wres are nin � nX and nX � nX randomly generated weight matrices
that are not trainable.

The main reason for development of such a type of RNN is to simplify their
training algorithm. However, it appeared that although non-trainable weights can be
random, there is need to tune them initially. For this aim different approaches were
proposed [2, 3]. In [7, 8] an algorithm called intrinsic plasticity (IP) was proposed. Its
aim was to increase the entropy of the reservoir neurons outputs by minimization of the
Kullback-Leibler divergence:

DKL p Xð Þ; pd Xð Þð Þ ¼
Z

p rð Þ log p Xð Þ
pd Xð Þ

� �
ð2Þ

that is a measure for the difference between the actual p(X) and the desired pd(X)
probability distribution of reservoir neurons states X.

It was proven that for the commonly used hyperbolic tangent at the reservoir
neurons output the proper target distribution has to be the Gaussian one. For this aim
two additional reservoir parameters, gain a and bias b (both vectors with size nX), were
introduced in [8] as follows:

X kð Þ ¼ f res diag að ÞWinin kð Þþ diag að ÞWresX k � 1ð Þþ b
� � ð3Þ

The IP training is gradient descent algorithm [8] minimizing the Kullback-Leibler
divergence by adjustment of the vectors a and b.

2.2 Classification Approach for Dynamic Data Series

In [6] was demonstrated that besides its initial aim, the IP tuning also fits the reservoir
connections matrix to the structure of the input data presented to the ESN. Moreover,
the equilibrium states of reservoir neurons corresponding to each one of the input data
items used during IP tuning reflect the overall data structure [1, 4]. Thus collected in
this way features can be used for further classification or clustering.

In [5] it was demonstrated that the reservoir state X(N) reached after feeding of
non-constant (time varying) sequence of inputs from in(0) to in(N) to the IP tuned ESN:

X Nð Þ ¼ f res diag að ÞWinin Nð Þþ diag að ÞWresX N � 1ð Þþ bð Þ
X N � 1ð Þ ¼ f res diag að ÞWinin N � 1ð Þþ diag að ÞWresX N � 2ð Þþ bð Þ
� � �
X 1ð Þ ¼ f res diag að ÞWinin 0ð Þþ diag að ÞWresX 0ð Þþ bð Þ

ð4Þ
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depends on dynamic characteristics of the time series in and can be exploited as a set of
classification features.

Since the choice of neurons whose states are the best feature set for each particular
data subject to classification or clustering is non-trivial [4, 9], here we propose another
approach: to calculate the size of the vector containing all collected reservoir neurons
states:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnX
i¼1

xi Nð Þ2
s

; X Nð Þ ¼ x1 Nð Þ x2 Nð Þ � � � xnX Nð Þ½ � ð5Þ

and to use it as single discriminating data feature.

3 Experimental Set-Up

The time series data used to test the idea described above were collected by eye
tracking device that recorded the human eye movements during a behavioral experi-
ment performed with the participation of volunteer human subjects observing series of
visual stimuli.

Each stimulus is composed by a sequence of consecutive frames. A frame contains
of 50 dots presented in a circular aperture with a radius of 7.5 cm in the middle of the
computer screen. The dots were grouped in 25 pairs placed at 2 cm distance from each
other. Each pair of dots had a limited lifetime of 3 frames. On every frame one-third of
the pairs changed position. Each frame lasted 33 ms. The orientation of the virtual lines
connecting the dots in 18 pairs intersected in a common point considered as the center
of each frame, while the rest 7 pairs had random orientations. The mean position of the
centers of all frames in a stimulus sequence determines its “imaginary” center. We
generated 14 different types of stimuli having centers at 7 positions shifted left and 7
positions shifted right from the screen midpoint. All shifts were in horizontal direction
and varied between 0.67 cm and 4.67 cm with step of 0.67 cm. Ten different patterns
for each center position were generated.

The stimuli were presented on a gray screen with mean luminance 50 cd/m2 using
20.1″ NEC MultiSync LCD monitor with NvidiaQuadro 900XGL graphic board at a
refresh rate of 60 Hz and screen resolution 1280 � 1024 pixels. The experiments were
controlled by a custom program developed under Visual C++ and OpenGl.

The subject sat at 57 cm from the monitor screen. Each stimulus presentation was
preceded by a warning sound signal. A red fixation point with size of 0.8 cm appeared
in the center of the screen for 500 ms. The stimuli were presented immediately after the
disappearance of the fixation point. The Subject’s task was to continue looking at the
position where the fixation point was presented until he/she made a decision where the
center of the pattern was and to indicate this position by a saccade (fast eye movement).
The subjects also had to press the left or the right mouse button depending on the
perceived position of the center - to the left or to the right from the middle of the screen.
If the subject could not make a decision during the stimulus presentation (3.3 s for 100
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consecutive frames), the stimulus disappeared and the screen remained gray until the
subject made a response.

The eye movements of the participants in the experiment were recorded by a
specialized hardware – Jazz novo eye tracking system (Ober Consulting Sp. Z o.o.). All
recordings from all the sensors of the device for one session per person were collected
with 1 kHz frequency and the information is stored in files. These include: the cali-
bration information; records of horizontal and vertical eye positions in degrees of visual
angle eyex and eyey; screen sensor signal for presence/absence of a stimulus on the
monitor; microphone signal recording sounds during the experiment; information about
tested subjects (code) and type of the experimental trail for each particular record.

The raw data were processed to extract only the records during presence of a
stimulus on the screen. The data between the stimuli was excluded since it is not
relevant to the eye movements during task performance.

Three age groups took part in the experiment: young (from 20 to 35 years), elderly
(from 57 to 84 years) and middle age group (from 25 to 55 years). From all collected
experimental data we observed big variety of eye movement behaviors varying not
only between three age groups but also within each group. So it was very hard to
classify test subjects only on the basis of this information. Hence we decided to try
whether the proposed above dynamic data discrimination approach can yield some
reasonable results.

The input to the ESN was two dimensional vector composed by the visual angles
data series recorded during presence of a stimulus on the screen, i.e.
in kð Þ ¼ eyex kð Þ eyey kð Þ½ �. We tuned three ESNs with reservoir sizes 10, 50 and 100
neurons using the IP algorithm described above. The extracted in this way feature of
each dynamic data series was R calculated according to the Eq. (5). Thus the tested
subjects were ordered based on the obtained value of R from their recorded eye
movement data series.

4 Classification Results and Discussion

First we selected a representative group of four experienced test subjects from different
age groups. These subjects took part in experimental set-up preparation so they were
able to perform the behavioral tasks strictly and their eye movement recordings were
clear from outliers due to improper behavior like looking to the mouse before clicking
when decision was taken or keeping fixation. Such noisy behavior was observed with
other volunteer subjects especially during their first trails.

Figure 2 represents the eye movements’ data series collected from these four
“experienced” test subjects who performed first the described above experiment.
Subject 1 is the youngest, subject 3 is middle aged and other two subjects (2 and 4)
belong to the elderly group.

We can easily distinguish the middle aged subject while similarities between
subjects 2 and 4 are not so obvious. From Fig. 3, representing the variances of the data
series, we can conclude that age differentiation by this characteristic is also a hard task
even for such small group.

Echo State Network for Classification of Human Eye Movements 341



Then we applied described above classification approach to these data series. In
order to prove the expected effect of IP tuning of the ESN reservoir, we compare the
obtained feature value before (Fig. 4) and after (Fig. 5) its application to the three
randomly generated ESN reservoirs containing 10, 50 and 100 neurons.

From Fig. 5 we can conclude that IP tuning definitely helps to classify our four
subjects by their age no matter of the reservoir size.

As it was observed, the middle age subject was the best during experiments and his
eye movements on Fig. 2 were significantly different from the other persons in the
group. This was confirmed by our algorithm according to which the middle aged
subject 3 is clearly differentiated from the other three experienced subjects of different
ages. Moreover, the two elderly subjects 2 and 4 were classified as close to each other
while the younger person 1 was clearly differentiated too.
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Fig. 2. Experienced 4 subjects’ recordings from eye tracker.
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Fig. 3. Variances of eye movement coordinates from Fig. 2.
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Then we proceed with data recorded from 18 volunteers from three age groups as
shown on Figs. 6, 7 and 8 respectively. Figure 9 represents the variances of all data
series from Figs. 6, 7 and 8.

Although we observe some similarities and differences between the three groups,
there are also significant dissimilarities between subjects from the same group. For
example, we can conclude that young subject 6 behaved significantly different from
other members of Group 1; in Group 2 we can distinguish subjects 10 and 11 from
others while in Group 3 subject 15 seems to have different eye movement behavior.
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Fig. 4. Size of the reservoir state vector R achieved after presentation of input time series for
four experienced test subjects before IP tuning.
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Fig. 5. Size of the reservoir state vector R achieved after presentation of input time series for
four experienced test subjects after IP tuning.
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Here we decided to IP tune two ESN reservoirs (denoted here as ESN1 and ESN2)
from each size since initial connections of ESN were randomly generated, and to
compare the obtained results.

Figure 10 represents the achieved values of R from ESN1 and ESN2 as well as its
mean value. It is clear that for both initial ESN reservoirs we obtained similar results
after IP tuning, especially for the middle group.
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Fig. 6. Eye movements recorded from young test subjects.
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Fig. 7. Eye movements recorded from the middle aged test subjects.
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Figure 11 represents the corresponding rank number of the subjects in dependence
on the value of R from Fig. 10. The obtained subject order is similar for both ESN
initial reservoirs. For most of the subjects two generations of ESN yielded the same
rank. The same are the results from the ranking according to the mean value of R. The
bigger differences are observed for the first and second subjects only.

However the obtained results showed that differentiation of tested subjects by age
using only recorded eye movement behaviors is not possible since there are subjects
from different age groups that received close ranks. Nevertheless, the approach seems
promising for classification of types of eye movements during decision making that
could be related to other psycho-physiological peculiarities of the tested subjects.
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Fig. 8. Eye movements recorded from the elderly test subjects.
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Fig. 9. Variances of eye movement coordinates for all test subjects.

Echo State Network for Classification of Human Eye Movements 345



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1.5

2

2.5

3

R

ESN reservoir size = 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2

3

4

5

R

ESN reservoir size = 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2

4

6

8

test subject number

R

ESN reservoir size = 100

ESN1 ESN2 mean

ESN1 ESN2 mean

ESN1 ESN2 mean
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5 Conclusions

In conclusion, the proposed approach for classification of time series using the geo-
metric size of the ESN reservoir vector state appears promising since it decreases
significantly computational burden of the algorithm.

Concerning the classification of human subjects based on their eye movements, it is
obvious that obtained ranking is not enough to separate the people into the groups
related to their age. Since the achieved ranking of subjects remain stable using different
initializations and sizes of ESN reservoir, we can search other similarities between
tested subjects that this classification might reveal.

Another explanation of the reported results might be presence of outliers in the
collected data since in these preliminary investigations the raw data was used. Hence
further refinement of the collected experimental data base could help to reveal some
age-related similarities of the recorded eye movements.

Another direction for future work can be inclusion of the additional information
collected during the experiments like amplitude, velocity and acceleration of saccades
performed during decision making as well as accuracy of the persons’ response and the
corresponding reaction time for each individual stimulus. All these characteristics can
serve as features to support classification of test subjects in our future work.
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