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Abstract. Different regression algorithms are applied for predicting the subli-
mation rate of naphthalene in various working conditions: time, temperature,
trainer rate and shape of the sample. The original Large Margin Nearest
Neighbor Regression (LMNNR) algorithm is applied and its performance is
compared to other well-established regression algorithms, such as support vector
regression, multilayer perceptron neural networks, classical k-nearest neighbor,
random forest, and others. The experimental results obtained show that the
LMNNR algorithm provides better results than the other regression algorithms.
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1 Introduction

Machine learning is a subdomain of artificial intelligence whose popularity and success
are constantly growing [1, 2]. Its main goal is to extract high-level patterns, i.e.
knowledge, from large amounts of raw information, patterns that can provide more
abstract and useful insight into the data under study. Many problems in science and
social science can be expressed as classification or regression problems, where one
does not know an analytical model of some underlying phenomenon, but sampled data
is available through experiments or observations, and the aim is to define a predictive
model based on those samples. To date, many such algorithms have been proposed,
which belong to different paradigms, e.g. neural networks, nearest neighbor, decision
trees, support vector machines, Bayesian approaches, etc.
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Unfortunately, there is no single best algorithm that can handle the large variety of
situations encountered in practice. Each method has its own advantages and disad-
vantages. They are mainly related to the flexibility or complexity of the models and
their generalization capabilities. For a non-trivial pattern, using a very simple model
may result in poor performance, whereas using an overly complex model can result in
overfitting, i.e. very good results for the training set and poor results for the test set or
prediction, in general. Therefore, one must make several choices when dealing with
such a problem: first, to establish the most appropriate learning method and, second, to
control the complexity of the model generated with that learning method by changing
its specific parameters.

In the present paper, we investigate the performance of some well-established
algorithms in comparison to an original regression algorithm, namely the Large Margin
Nearest Neighbor Regression (LMNNR), which combines the idea of nearest neigh-
bors with that of a large separation margin, typical of support vector machines. The
sublimation of naphthalene was chosen to illustrate these methodologies based on the
difficulties involved due to the toxicity of the process, in which case predictions on the
model become recommended and useful.

We organize our paper as follows. Section 2 presents a selection of related work
about regression algorithms applied for the modeling of chemical processes. Section 3
describes the dataset used for the experiments and Sect. 4 presents the algorithms
employed to model it. Section 5 describes some experimental results, while Sect. 6
contains the conclusions of our work.

2 Related Work

There are many applications of artificial intelligence and soft computing methods in the
domain of chemical engineering, especially for modeling and optimization. In this
section, we review several applications of regression algorithms for chemical processes.

Article [3] proposes a combination of online support vector regression with an
ensemble learning system to adapt to nonlinear and time-varying changes in process
characteristics and various process states in a chemical plant. [4] uses a probabilistic
combination of local independent component regression in order to assess the quality
of chemical processes with multiple operation modes. [5] addresses a non-linear,
time-variant problem of soft sensor modeling for process quality prediction using
locally weighted kernel principal component regression. [6] uses multiple linear
regressions and least squares support vector regression to model and optimize the
dependency of methyl orange removal with various adsorption influential parameters.
[7] compares the performance of support vector regression, neural network and random
forest models in predicting and mapping soil organic carbon stocks.

In [8], the authors make a thorough presentation of neural networks used for
bioprocessing and chemical engineering, with applications in process forecasting,
modeling, control of time-dependent systems, and the hybridization between neural
networks and expert systems.

The issue of predicting sublimation thermodynamics, such as enthalpy, entropy,
and free energy of sublimation using machine learning methods was addressed in [9].
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Semi-empirical models were used to model systems of solids and supercritical fluids in
order to determine sublimation pressures and sublimation enthalpies, and then to model
different multiphasic equilibriums [10].

Some of the recent research of the authors of the present paper addressed a per-
formance comparison of different regression methods for a polymerization process with
adaptive sampling [11], a comparison between simulation and experiments for phase
equilibrium and physical properties of aqueous mixtures [12], an experimental analysis
and mathematical prediction of cadmium removal by biosorption [13] and the pre-
diction of corrosion resistance of some dental metallic materials with an original
adaptive regression model based on the k-nearest-neighbor regression technique [14].

3 The Naphthalene Sublimation Dataset

Our case study is naphthalene sublimation – a physical process of solids that transition
directly into vapors. This technique is one of the most convenient methods to study
heat and mass transfer. In addition, the rate of sublimation, the amount of solid con-
verted to vapor per time unit and solid area unit is used to study problems related to
environment protection, health protection, transportation safety and security, meteo-
rology, by determining the concentration of various substances in the environment and
the dynamical properties in a wind tunnel.

In a previous approach [15], a series of experiments were performed to investigate
the sublimation of the naphthalene samples under atmospheric pressure in air as
entrainer, without recycle. Our experimental data fulfill a necessary condition for
empirical modeling: a sufficient number of data was obtained which uniformly cover
the investigated domain.

The sample weight was measured continuously as a function of time, at different air
flow characteristics. The experimental data is then used to calculate the mass transfer
rate, the degree of sublimation, the sublimation front position; the influence of air flow
characteristics was also evaluated.

More details on experiments and data processing can be found in [15], where neural
network modeling was performed. In the current work, a more efficient algorithm,
LMNNR, was applied, comparatively with other algorithms: linear regression, support
vector regression, neural networks, k-Nearest Neighbors, K*, and Random Forest. In
addition, a large dataset was used here (1323 instances) including different shapes of
the samples, while in [15] only spherical samples were considered (150 instances).

The data gathered from experiments contains four variables as inputs: the shape of
the sample (i.e. pallets, small pills, large pills and rods), time, air speed (the trainer) and
temperature, and one output: the speed of naphthalene sublimation.

Consequently, the modeling purpose was to evaluate the performance of the pro-
cess, quantified by the sublimation rate depending on process time, entrainer temper-
ature, and entrainer flow rate.

In order to apply the instance-based methods, the data is normalized between 0 and 1,
independently for each numerical attribute.

Figure 1 presents some statistics regarding the distribution of the data before nor-
malization: the histogram for the first discrete input and a box plot for each numerical
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input, showing the minimum value, the first quartile, the median, the third quartile and
the maximum value. For the output, two box plots are included, with a linear and a
logarithmic scale. The output has values between 0.003 and 832.98, with the mean of
34.95 and the median of 9.24. There are a few greater values far from the median, but
they are not outliers; they are important results of the process, difficult to learn, and
which need to be handled accordingly by the regression models.

4 Regression Algorithms

The goal of the paper was to find a good model for the naphthalene sublimation data.
The first step was to apply classical methods, with known good performance, imple-
mented in Weka [16]. This was intended to constitute a basis for comparison with the
original LMNNR algorithm. From the large number of algorithms in Weka, a few were
selected which, in previous studies, were noticed to yield good performance for a large

Fig. 1. Statistics of the inputs and the output of the naphthalene sublimation dataset
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number of regression problems. Thus, neural networks, support vector machines,
nearest neighbor, K-Star and random forest were selected. The details about their
structure and operation are given below.

It must be emphasized that these techniques have very different nature and
assumptions, and, by comparing the LMNNR results with the best results obtained with
either of these classical algorithms, we can underline that the algorithm proposed by the
authors is, in fact, a good alternative for regression.

4.1 Classical Algorithms

Neural networks in the form of multilayer perceptrons (MLP) are often used in clas-
sification and regression problems. The structure of an MLP contains an input layer, an
output layer and one or more hidden layers of neurons. Each neuron sums the weighted
input data of the neurons in the previous layer, to which another term (bias) is added,
and the result is sent to the neurons in the next layer through a nonlinear transformation
called an activation function. Each connection has an associated weight. In the training
process, the weights and biases are adjusted such that the output of the network should
match the desired output of the vectors from the training set. The training algorithm
used most often is back-propagation [17]. It aims to minimize the mean-squared error
between the desired output and the computed one using the gradient descent method.

The Epsilon-Support Vector Regression (e-SVR) algorithm tries to approximate the
desired continuous output within a tolerating error e while using the idea of the large
margin characteristic of support vector machines [18]. When the data is not linearly
separable, the e-SVR algorithm uses kernels to transform them into a higher-dimensional
space. There are several types of functions that can be used as kernels, e.g. polynomial or
radial basis functions (RBF). If some training instances still do not satisfy the constraints,
slack variables are introduced to allow some errors (soft margin). The number of these
erroneous instances can be controlled with a cost parameter C. If the value of C is
decreased, a larger number of incorrectly classified training instances is allowed, which
can however lead to better generalization.

The k-Nearest Neighbor (kNN) algorithm is based on the choice of k nearest
neighbors using a distance function as a criterion and the output is computed by
aggregating the outputs of those k training instances. As a distance function, one can
use Euclidian or Manhattan distance, usually particularizations of the Minkowski
distance. Choosing the value of k is important. If k is too small, then the classification
can be affected by the noise in the training data, and if the value of k is too large, then
distant neighbors can affect the correctness of the results. To avoid the difficulty of
finding an optimum value for k, one can weight the neighbor influence. The neighbors
have a greater weight as they are closer to the instance, while those farther apart have a
smaller weight.

The K-Star algorithm [19] is an instance-based classifier that very much resembles
the k-Nearest Neighbor algorithm presented before. Its novelty comes from the usage
of an entropy metric in its similarity function, rather than the usual distance metric. It
has been shown in the literature that such an approach has beneficial outcomes for
certain industry-related problems [20]. The K-Star algorithm can also be used for
regression purposes, similarly to how k-Nearest Neighbor is used.
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A random forest [21] is composed of a collection of classification or regression
trees. Each tree is generated using random split tests on slightly different training set
generated using bagging. The output of a new instance is computed by aggregating the
outputs of the individual trees.

4.2 The Large Margin Nearest Neighbor Regression Algorithm

The performance of the above algorithms was compared to that of an original algo-
rithm, Large Margin Nearest Neighbor Regression (LMNNR) [22, 23].

The support vector machines, in a classification context, rely on the idea of finding
a large margin between classes by solving an optimization problem. This idea was used
in conjunction with the k-Nearest Neighbor method, also for classification [24]. Its
main assumption is to change the distance metric of the kNN space by using a matrix:

dMðxi; xjÞ ¼ xi � xj
� �TM xi � xj

� �
: ð1Þ

If M is a diagonal matrix, the weights of the neighbors are:

wdM ðx; x0Þ ¼
1

dMðx; x0Þ ¼
1

Pn

i¼1
mii � xi � x0ið Þ2

: ð2Þ

Equation (2) involves a single, global matrix M for all the instances. However, it is
possible to have different distance metrics for the different instances or groups of
instances. Thus, prototypes can be used which are defined as special locations in the
input space of the problem, and each prototype P has its own matrix MP. When
computing the distance weight to a new point, an instance uses the weights of its
nearest prototype, i.e. mP

ii instead of mii in Eq. (2).
Finding the appropriate matrices is achieved by solving an optimization problem. In

a simplified formulation, the objective function F, which is to be minimized, takes into
account two criteria with equal weights, F1 and F2, described below. In order to briefly
explain the expressions of these functions, the following notations were made, where
dM means the weighted square distance function using the weights we search for:
dij = dM(xi, xj), dik = dM(xi, xk), gij = |f(xi) – f(xj)|, gik = |f(xi) – f(xk)|.

The first criterion is:

F1 ¼
Xn

i¼1

X

j2NðiÞ
dij � 1� gij

� �
; ð3Þ

where N(i) is the set of the nearest k neighbors of instance i, e.g. k = 3. Basically, this
criterion says that the nearest neighbors of i should have similar values to the one of i,
and more distant ones should have different values.
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The second criterion is expressed as follows:

F2 ¼
Xn

i¼1

X

j2NðiÞ

X

l2NðiÞ
max 1þ dij � 1� gij

� �� dik � 1� gilð Þ; 0� �
: ð4Þ

Here, the distance to the neighbors with close values (the positive term) is mini-
mized, while simultaneously trying to maximize the distance to the neighbors with
distant values (the negative term). An arbitrary margin of at least 1 should be present
between an instance with a close value and another with a distant value.

For optimization, both an evolutionary algorithm and an approximate differential
method following the central difference definition of the derivative can be used.

The estimated output of a new query instance xq is computed as follows. Its
k nearest neighbors are identified using the distance metric from Eq. (1). The weights
of these neighbors are computed with Eq. (2) and then normalized:

wn
dM ðxi; xqÞ ¼

wdM ðxi; xqÞ
Pk

j¼1
wdM ðxj; xqÞ

: ð5Þ

Finally, the output is computed as a weighted average of the neighbor outputs:

~f xq
� � ¼

Xk

i¼1

wn
dM ðxi; xqÞ � f xið Þ : ð6Þ

5 Results and Discussion

In this section, the choice of parameters for different regression methods is explained.
For each algorithm, multiple experiments with different parameter values were per-
formed. The tables containing the results only display those with the best performance
in terms of correlation coefficient (r) and root mean square error (RMSE).

In order to compare the performance of the various algorithms, the cross-validation
method with 10 folds was used. Also, since an objective comparison was intended, the
data set was randomly divided into 10 groups (iteratively one for test and the rest for
training) and the same groups were used by all the algorithms. It was considered that
this methodology is particularly important to compare the algorithms implemented in
Weka with the original implementation of the LMNNR algorithm. The results obtained
for individual test groups, although interesting, were omitted in the results section, and
only the aggregated results are displayed in the following tables.

5.1 Parameters of Regression Methods

Multilayer Perceptron Neural Network (MLP). For the problem at hand, repeated
experiments showed that a neural network produces best results when given a low
learning rate. The momentum parameter also has a great impact on learning. Its optimal
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value tends to be around 0.4 or 0.5. The number of hidden layers was automatically
chosen by Weka. This option yielded the best outcomes because the optimal number of
hidden layers tends to vary between cross-validation sets, making it hard to achieve
similar performance with manually chosen values. The encoding for the discrete input
is “one-hot”, leading to 7 inputs and 1 output. The best network architecture was the
one with one hidden layer containing 4 neurons with sigmoid activation functions, and
with the output neuron with a linear activation function. 1000 epochs for training were
found to be an acceptable compromise between the quality of the resulting model and
the overall training time.

Support Vector Regression (SVR). The Epsilon-SVR algorithm achieved a very
good overall fit if the kernel used was based on radial basis functions. The kernel type
choice was vastly influential on the outcome. RBF, therefore, yielded a correlation that
was at least 20% better than all of the other options (linear, polynomial and sigmoid).
The best results were obtained with relatively large values of the parameters: c = 14,
C = 10, whereas e was best kept at a low value, i.e. e = 0.001. Fine-tuning these
parameters helped improve the algorithm performance significantly, such that the final
correlation was the best out of all the algorithms tested with Weka.

k-Nearest Neighbor (k-NN). The optimal number of neighbors used in this algorithm
is in this case 2. The correlation dropped significantly if the number of neighbors was
increased above this value. The search method used was the linear nearest neighbor
search. A slight improvement was achieved by using the Manhattan distance as metric,
instead of the Euclidean distance.

K-Star (K*). The only numeric parameter that this algorithm takes, the global
blending index, was optimal at low values. In the experiments, the value 3 was used.
The parameter, however, influenced the outcome in a slight manner (*5% correlation
improvement). The entropic auto blend functionality provided by Weka was turned off
for these experiments.

Random Forest (RF). In the case of this algorithm, the number of trees parameter
plays an important role in the overall performance. Several tests were conducted to
determine the optimal value of this parameter and the best outcome was recorded with a
value of approximately 200 trees. Although the difference in performance obtained by
optimizing this parameter was only around 3%, it allowed Random Forest algorithm to
yield one of the best correlations for the data.

Large Margin Nearest Neighbor Regression (LMNNR). For this algorithm, the
parameters are the number of prototypes, the number of optimization neighbors and the
number of regression neighbors. Different combinations of values for these parameters
were attempted. Since the LMNNR results are not deterministic, because the initial-
ization of the matrices is random and then optimized, the best results were included out
of 100 algorithm runs for each configuration.
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5.2 A Comparison Between Algorithm Performance

In Tables 1 and 2, one can see the best results achieved with the use of the regression
algorithms presented in the previous section.

Five out of the six algorithms tested show a very good correlation of the data
(*0.9) and come in a very short range from one another. Linear regression, which is
included only for comparative reasons, achieves a low total correlation. This empha-
sizes the nonlinearity of the problem at hand. ɛ-SVR and Random Forest yield the best,
almost identical, predictions. kNN and K-star present similar results, despite the dif-
ferent metrics they use in their similarity functions.

From Table 2, it can be seen that the LMNNR results are clearly better than the
results obtained by other well-established regression algorithms.

Unlike the problems studied in previous works [22, 23], it can be seen that more
prototypes are needed for this particular problem. 5 prototypes provide the best results

Table 1. The best results obtained for optimized configurations by algorithms in Weka

Algorithm Parameters r RMSE

ɛ-SVR C: 10; e: 0.001; c: 14; kernel: RBF 0.91514 0.04022
Random
forest

Number of features: 1; number of trees: 200 0.91332 0.03965

k-NN k: 2; Manhattan distance 0.90639 0.04022
K* Global blend: 3 0.89025 0.04450
MLP Learning rate: 0.1; momentum: 0.4; number of training

epochs: 1000
0.88344 0.04615

Linear
regression

0.64395 0.07277

Table 2. The best results obtained with the original LMNNR algorithm

Number of
prototypes

Number of regression
neighbors

Number of
optimization neighbors

r RMSE

1 3 3 0.93151 0.036118
1 5 5 0.93052 0.036276
1 10 10 0.92426 0.03825
2 3 3 0.94097 0.033554
2 5 5 0.9365 0.035707
2 10 10 0.93416 0.037173
3 3 3 0.94067 0.033251
3 5 5 0.93698 0.036821
3 10 10 0.93428 0.036797
5 3 3 0.94185 0.033915
5 5 5 0.94425 0.034913
5 10 10 0.93614 0.036856
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in terms of correlation coefficient. This shows that this dataset is more difficult to learn
using a unique distance metric and that different regions of its input space have dif-
ferent characteristics with can be properly addressed with the use of prototypes.

Figure 2 shows a comparison between the predictions of the model and the desired
data, for the case with 5 prototypes, 5 regression neighbors and 5 optimization
neighbors from Table 2, which yields the highest correlation coefficient r. One can see
that the two datasets are quite close. An exception is e.g. the data point with the value
of 1. Since Fig. 2 presents the results for the 10 testing sets of the cross-validation
process put together, the data point with a maximum value in the test set cannot be
correctly approximated by the model relying on the rest of the data in the training set.
The LMNNR algorithm is based on the nearest neighbor paradigm, and therefore it
cannot extrapolate to a value that is larger than any value in the training set. Fur-
thermore, one can see that most of the data has small output values, and only 0.8% of
the normalized data has output values above 0.5. This contributes to the difficulty of the
model to approximate higher output values.

6 Conclusions

The results obtained by the LMNNR algorithm proposed by the authors are better than
those provided by other classical regression algorithms. These predictions are impor-
tant for the chosen process, avoiding or, at least, minimizing the number of experiments
made in toxicity conditions, and saving materials and energy. In addition, the devel-
oped modeling methodologies can be easily adapted and applied to other chemical
engineering processes.

The promising results of LMNNR determine the planning of other applications and
methodologies that include this algorithm. As a future direction of investigation, one

Fig. 2. Comparison between the predictions of the model and the desired data
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can consider its further refinement in order to automatically detect the optimal values of
its parameters, namely the number of prototypes, the number of regression neighbors
and the number of optimization neighbors.
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