
Greedy Heuristics for Automatic
Synthesis of Efficient Block-Structured
Scheduling Processes from Declarative

Specifications

Amelia Bădică1, Costin Bădică1(B), Daniela Dănciulescu1,
and Doina Logofătu2

1 University of Craiova, Craiova, Romania
ameliabd@yahoo.com, cbadica@software.ucv.ro

2 University of Applied Sciences, Frankfurt, Germany
logofatu@fb2.fra-uas.de

Abstract. This paper introduces a new Greedy heuristic algorithm for
the automatic synthesis of block-structured scheduling processes that
satisfy a given set of declarative ordering constraints, as well as basic
theoretical results that support the correctness of this algorithm. We
propose two heuristics that can be used with this algorithm: hierarchical
decomposition heuristic and critical path heuristic. We also present initial
experimental results supporting the effectiveness and efficiency of our
proposed algorithm and heuristics.

Keywords: Greedy algorithm · Process model · Ordering constraints
Optimization

1 Introduction

There are many formalisms for the specification of business process mod-
els. Block-structured models have certain advantages compared with other
approaches [3].

It is useful and quite intuitive to declaratively specify desired properties
of process models. We are interested in constructing process models that are
consistent with the given declarative specification [6]. This problem has practical
applications in scheduling tasks encountered in manufacturing systems [4].

Manual construction of large process models satisfying a set of ordering con-
straints is almost impossible or at least not scalable. Automatic generation based
on exhaustive exploration of the space of possibilities is difficult because of the
huge number of potential candidates. The only feasible solution is to design
automatic approaches based on efficient heuristic algorithms that are able to
drastically prune the huge search space.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
L. Iliadis et al. (Eds.): AIAI 2018, IFIP AICT 519, pp. 183–195, 2018.
https://doi.org/10.1007/978-3-319-92007-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92007-8_16&domain=pdf

184 A. Bădică et al.

In this paper we focus on scheduling processes. In this case, the declarative
specification defines the scheduling constraints. We are interested in determining
optimal or at least, as efficient as possible, block-structured scheduling processes
that satisfy the scheduling constraints. The optimization criterion requires the
minimization of the total completion time. Optionally, we can add other con-
straints, like for example imposing upper bounds for the amount of parallel work.
This constraint may result from the practical restriction regarding the limited
availability of certain resources. In particular: (i) our processes are defined only
using sequential and parallel composition; (ii) each activity must have exactly
one instance in the schedule.

Our work was mainly influenced by previous results of [4,5]. Nevertheless, our
results are different in many aspects. Most important, our heuristics are deter-
ministic and different. We are using the hierarchical decomposition of a graph,
while [4,5] are based on the more complex modular decomposition. We also pro-
vide theoretical results to support our work. Finally, we performed experiments
with larger graphs, and our preliminary results suggest that our algorithm might
be faster.

Note that there are many theoretical studies on evolutionary algorithms and
randomized (meta/hyper) heuristics applied to combinatorial optimization algo-
rithms [1]. Such works could be considered for the further expansion of our
results by comparison of our method with different, but related approaches.

2 Process Models

Let us consider a finite nonempty set of activities Σ. A trace t ∈ Σ∗ is a sequence
of zero or more activities1. The length of a trace t = a1a2 . . . an is n and this
is denoted as |t| = n. The empty trace is denoted by ε and |ε| = 0. For each
nonempty trace t = a1a2 . . . an we define: (i) the head of t as head(t) = a1, and
(ii) the tail of t as tail(t) = a2 . . . an.

A language L ⊆ 2Σ∗
is defined as a set of traces. We can define certain

operations with languages. The sequential composition of two languages L1 and
L2 denoted by L1 → L2, is defined as follows:

L1 → L2 = {w = l1l2 | l1 ∈ L1 and l2 ∈ L2}

This notation can be extended for a trace t and a language L as: t → L =
{t} → L.

The parallel composition of two traces t1 and t2, denoted by t1 ‖ t2, is
defined as:

– For each nonempty trace t we have: t ‖ ε = ε ‖ t = {t}
– For each nonempty traces t1 and t2 we have:

t1 → t2 = (head(t1) → (tail(t1) ‖ t2)) ∪ (head(t2) → (t1 ‖ tail(t2)))

1 Σ∗ is the set of all sequences consisting of zero or more elements of Σ.

Greedy Heuristics for Automatic Synthesis 185

The parallel composition L1 ‖ L2 of two languages L1 and L2 is now
defined as:

L1 ‖ L2 = ∪t1∈L1,t2∈L2t1 ‖ t2

Let us consider the set {→, |, ‖} of three binary operators used for construct-
ing block-structured processes. The operator → denotes sequential composition,
the operator | denotes the nondeterministic choice, and the operator ‖ denotes
parallel composition.

Let us denote with a, b, c, . . . the activities of Σ and with P,Q,R, . . . process
terms. Process terms can be defined recursively as follows:

P ::=a |P → Q |P | Q |P ‖ Q

The language L(P) of process P is recursively defined as follows:

– L(a) = {a}
– L(P → Q) = L(P) → L(Q)
– L(P | Q) = L(P) ∪ L(Q)
– L(P ‖ Q) = L(P) ‖ L(Q)

Operator ‖ has higher precedence, operator → has middle precedence, and
operator | has lower precedence. All operators are associative, while ‖ and | are
also commutative.

Process terms represent models of processes and they can be graphically
depicted as trees or as block-structured flowcharts, as shown in Fig. 1.

Fig. 1. Tree model of process a → b ‖ c (left) and its equivalent block-structured model
(right)

In what follows we focus on process models with the following particularities:

– They represent sets of possible activity schedules. A schedule must contain
exactly one instance of each activity.

– They use sequential (→) and parallel (‖) operators. Scheduling processes are
deterministic, explaining why nondeterministic choice is not used in their
definition.

Rigorously defining scheduling processes requires the introduction of the sup-
port set supp(P) of a process P that denotes the set of activities that occur in
process P .

186 A. Bădică et al.

A block-structured scheduling process is recursively defined as follows:

– If a is an activity then a is also a process such that supp(a) = {a}.
– If P and Q are processes such that supp(P) ∩ supp(Q) = ∅ then P → Q and

P ‖ Q are processes with supp(P → Q) = supp(P ‖ Q) = supp(P)∪supp(Q).

For example, processes a ‖ c → b and a ‖ (c → b) are well-formed, and:

– supp(a ‖ c → b) = supp(a ‖ (c → b)) = {a, b, c}
– L(a ‖ c → b) = {acb, cab}
– L(a ‖ (c → b)) = {acb, cab, cba}

It is not difficult to observe that if P is a well-formed block-structured
scheduling process then all its traces t ∈ L(P) have the same length |t| =
|supp(P)|.

3 Declarative Specification of Ordering Constraints

3.1 Activity Ordering Graph

Based on domain-specific semantics, one can impose ordering constraints of the
activities of a process. For example if two activities are independent and there
are enough resources to be allocated to each of them then those activities can be
scheduled for parallel execution. However, if an activity depends on the output
produced by another activity, then the first activity can be scheduled for execu-
tion only after the completion of the second activity, i.e. there is a sequencing
constraint between their execution order. Finally, if two activities define distinct
action options then their execution is incompatible, so it cannot occur within
the same schedule, i.e. they are mutually exclusive.

The ordering constraints imposed on each trace of a scheduling process are
declaratively specified using an activity ordering graph G = 〈V,E〉 [5] such that:

– V is the set of nodes and each node represents an activity.
– E ⊆ V × V is the set of edges. Each edge represents an ordering constraint.

Set E is partitioned into two disjoint sets E→ and E �= with the following
meaning:

• Set E→ specifies sequential ordering constraints. If (u, v) ∈ E→ then
activity v cannot occur in a schedule without being preceded by activity
u. E→ is a partial ordering, i.e. it is transitive and antisymmetric, so it
cannot define cycles.

• Set E �= specifies mutual exclusion constraints. If (u, v) ∈ E�= then activ-
ities u and v are incompatible, so they cannot occur within the same
schedule. Set E�= defines a symmetric relation.

Intuitively, satisfaction of mutual exclusion constraints requires the availabil-
ity of nondeterministic choice operator in process definition. As we assumed that
this operator is not available for scheduling processes, we will now focus only on
sequential ordering constraints, i.e. we assume that E�= = ∅ so E = E→. This

Greedy Heuristics for Automatic Synthesis 187

means that the ordering graph is a directed acyclic graph with arcs defining
sequential ordering constraints.

If t = a1a2 . . . an is a trace of a scheduling process and u, v are two activities
of t then u precedes v in t, i.e. u

t→ v if there are 1 ≤ i < j ≤ n such that ai = u
and aj = v.

Let G = 〈V,E〉 be an ordering graph and let t be a trace containing all the
activities of V with no repetition. Then t satisfies G, written as t |= G, if and only
if E→ ⊆ t→. This means that trace t cannot contain activities ordered differently
than as specified by G.

The language L(G) of an ordering graph G is the set of all traces that satisfy
G, i.e.:

L(G) = {t | t |= G}
Let P be a scheduling process and let G = 〈V,E〉 be an ordering graph. P

satisfies G written as P |= G, if and only if:

– L(P) ⊆ L(G), i.e. each trace of P satisfies G, and
– supp(P) = V , i.e. all the activities of V are relevant and occur in P .

The set of processes P such that P |= G is nonempty, as it contains at least
one sequential process defined by the topological sorting of G.

3.2 Optimal Scheduling Processes

Each activity has an estimated duration of execution that is represented using a
function d : Σ → R

+. The duration of execution d(P) of a process P is defined
as follows:

– If P = a then d(P) = d(a).
– d(P → Q) = d(P) + d(Q).
– d(P ‖ Q) = max {d(P), d(Q)}.

The minimum duration of execution of a process that satisfies a given order-
ing graph G, denoted with dMIN (G), is defined as:

dMIN (G) = min
P |=G

{d(P)}

An optimal scheduling process that satisfies a given ordering graph G is a
process P ∗ with a minimum duration of execution, i.e. it satisfies:

– P ∗ |= G, and
– d(P ∗) = dMIN (G).

There is a finite and nonempty set of processes that satisfy an ordering graph
G, so the optimal scheduling process trivially exists. Moreover, as there is an
exponential number of candidate processes satisfying G, we postulate that the
computation of the optimal scheduling process is generally an intractable prob-
lem. Therefore, we will be focusing on developing efficient heuristic algorithms
that are able to produce “suboptimal” or “good enough” scheduling processes
using a reasonable computational effort.

188 A. Bădică et al.

4 Heuristics for Suboptimal Processes

We introduce two heuristics that are used to derive an efficient Greedy heuristic
algorithm for computing a suboptimal scheduling process satisfying an ordering
graph.

4.1 Hierarchical Decomposition Heuristic

Let G = 〈V,E〉 be an ordering graph. Remember that G is a directed acyclic
graph defining the sequential ordering constraints imposed on a scheduling
process.

– For each node v ∈ V we define the set I(v) of input neighbors of v as follows:
I(v) = {u ∈ V | (u, v) ∈ E}.

– For each node v ∈ V we define the level l(v) of v as a function l : v → N such
that:

• If I(v) = ∅ then l(v) = 0.
• If I(v) �= ∅ then l(v) = 1 + max

u∈I(v)
{l(u)}.

– The height l(G) of graph G is defined as l(G) = max
v∈V

{l(v)}.

– If m = l(G) ≥ 0 then the family of m + 1 sets {V0, V1, . . . , Vm} defined as
Vi = {v | l(v) = i} for all 0 ≤ i ≤ m is a partition of V . If Gi is the subgraph
of G induced by Vi then the family of graphs {G0,G1, . . . ,Gm} is known as
the hierarchical decomposition of G.

Proposition 1. (Hierarchical Decomposition Process) Let G = 〈V,E〉 be an
ordering graph. The hierarchical decomposition process PHD(G) associated to G
is defined as:

– Pi = ‖v∈Vi
v for all 0 ≤ i ≤ m.

– PHD(G) = P0 → P1 → · · · → Pm.

Then PHD(G) |= G. Moreover, the duration of execution of the hierarchical
decomposition process associated to an ordering graph, denoted as dHD(G) =
d(PHD(G)), represents a non-trivial upper bound of the duration of execution of
the optimal scheduling process dMIN (G), i.e. dHD(G) ≥ dMIN (G).

Fig. 2. Ordering graph G1 (left), process P1 (middle) and process P2 (right)

Greedy Heuristics for Automatic Synthesis 189

Figure 2 shows an ordering graph G1, and two processes P1 and P2 such that
G1 |= P1 and G1 |= P2. The hierarchical decomposition of G1 is induced by
the partition of its vertices {{a, c}, {b}}, so we can easily notice that P1 is the
hierarchical decomposition process of G1. Observe that:

– dHD(G1) = d(P1) = max {d(a), d(c)} + d(b)
– d(P2) = max {d(a) + d(b), d(c)}

Clearly d(P1) ≥ d(P2) and P2 is optimal (other satisfying processes are
strictly sequential, incurring a higher duration of execution). But note that if
d(a) ≥ d(c) then d(P1) = d(P2) = d(a) + d(b) so the optimal scheduling process
has duration dHD(G1) which shows that we can have equality in the inequal-
ity resulted from Proposition 1. However, if d(a) < d(c) the optimal scheduling
process has duration d(P2) = max {d(a) + d(b), d(c)} < dHD(G1) = d(c) + d(b).

4.2 Critical Path Heuristic

Observe that an activity u cannot start unless all the neighboring activities from
the input set I(u) are finished. This time point is denoted with start(u). Activity
u that started at start(u) will finish at time finish(u) = start(u) + d(u). The
values start(u) and finish(u) for each activity u ∈ V can be computed using
the critical path method [2], as follows:

– If I(u) = ∅ then start(u) = 0 and finish(u) = d(u).
– If I(u) �= ∅ then start(u) = max

v∈I(u)
{finish(v)} and finish(u) = start(u) +

d(u).

The maximum value of the finishing time of each activity, known as criti-
cal path length, is a lower bound for the duration of execution of the optimal
scheduling process.

Proposition 2. (Critical Path) Let G = 〈V,E〉 be an ordering graph and let
dCP (G) be its critical path length. Then dCP (G) is a lower bound of the duration
of execution of the optimal scheduling process dMIN (G), i.e. dMIN (G) ≥ dCP (G).

Figure 3 shows an ordering graph G2 and its hierarchical decomposition pro-
cess P3. The critical path length of G2 is trivially dCP (G2) = max {d(a) +
d(b), d(a)+d(d), d(c)+d(d)}, while d(P3) = max {d(a), d(c)}+max {d(b), d(d)} =
max {d(a) + d(b), d(a) + d(d), d(c) + d(b), d(c) + d(d)} = max {dCP (G2), d(c) +
d(b)} ≥ d(G2). Note that:

Fig. 3. Ordering graph G2 (left) and process P3 (right)

190 A. Bădică et al.

– If d(c) + d(b) ≤ max {d(a) + d(b), d(a) + d(d), d(c) + d(d)} then dCP (G2) =
d(P3), i.e. the hierarchical decomposition process has a duration of execu-
tion equal to the critical path length. This clearly shows that dMIN (G2) =
dCP (G2).

– If d(c) + d(b) > max {d(a) + d(b), d(a) + d(d), d(c) + d(d)} then we infer
that d(c) > d(a), d(b) > d(d), and d(P3) = d(b) + d(c). However,
we do not know yet if in this case dMIN (G2) is equal to or strictly
higher than dCP (G2). This depends on the other processes that satisfy
G2. Two such processes are P4 and P5 (see Fig. 4). Observe that if we
choose d(c) + d(d) > d(b) and d(a) + d(b) > d(c) then dCP (G2) =
max {d(a)+d(b), d(c)+d(d)}, while dMIN (G2) = min {d(P3), d(P4), d(P5)} =
min {d(b)+d(c), d(a)+d(c)+d(d), d(a)+d(b)+d(d)}, that clearly shows that
dMIN (G2) > dCP (G2), i.e. the inequality from Proposition 2 is strict.

Fig. 4. Two other processes P4 (left) and P5 (right) that satisfy the ordering graph G2

4.3 Reducing the Duration of Execution

Analyzing Fig. 2, we can observe that the duration of execution of the hierarchical
decomposition process can be reduced by doing a transformation that pushes
the parallel composition operations upper in the process tree. However, this
transformation is not always possible. We now provide sufficient conditions that
enable the transformation and guarantee that the duration of execution of the
resulted process is lower than of the original process. Referring at Fig. 2, the key
observation is that the set of nodes of graph G1 can be partitioned in two subsets
U0 = {a, b} and U1 = {c} such that there are no arcs cross-linking nodes in U0

to nodes in U1 or nodes in U1 to nodes in U0. Note that such a decomposition
is not possible for the graph G2 from Fig. 2.

We consider the most general situation of reducing the duration of execution
of a process (P1 ‖ P2) → (Q1 ‖ Q2). Similar results can be obtained for the
processes of the form (P1 ‖ P2) → Q and P → (Q1 ‖ Q2).

Proposition 3. (Reducing the Duration of Execution) Let P = (P1 ‖ P2) →
(Q1 ‖ Q2) and let G = 〈V,E〉 be an ordering graph such that P |= G. Let us also
assume that ((supp(P1 → Q1)� supp(P2 → Q2))∩E = ∅2. Then it follows that:
2 Operator � denotes the symmetric cartesian product defined as A � B = (A × B) ∪

(B × A).

Greedy Heuristics for Automatic Synthesis 191

– Process P ′ = (P1 → Q1) ‖ (P2 → Q2) is well-formed,
– P ′ |= G, and
– d(P) ≥ d(P ′).

4.4 Automatic Synthesis Algorithm

Let G = 〈V,E〉 be an ordering graph and let U be the undirected graph obtained
by removing the orientation of arcs of graph G. We denote with G(W) and U(W)
the subgraphs of G and U induced by a subset W ⊆ V of nodes.

Let {V0, V1, . . . , Vm} be the partition of node set V defined by the hierarchical
decomposition of G. We define the following sets of nodes:

– W0 = V0

– W1 = W0 ∪ V1

. . .
– Wm = Wm−1 ∪ Vm = V

Let Ui = U(Wi) and Gi = G(Wi) for each 0 ≤ i ≤ m. Each undirected
graph Ui can be partitioned into connected components that induce the partition
{U1, U2, . . . , Uki

} of the set Wi of nodes such that ki > 1. This situation is
intuitively described in Fig. 5.

Fig. 5. Transformation to reduce duration of execution.

Following the result of Proposition 3, the hierarchical decomposition process
P defined for subgraph Gi can be transformed into process P ′ such that:

– P ′ = ‖ki
j=1 Pj

– supp(Pj) = Uj for all 1 ≤ j ≤ ki

– d(P) ≥ d(P ′)

Consider for example the sample ordering graph G3 from Fig. 6. The partition
of nodes corresponding to the hierarchical decomposition of G3 is {V0, V1, V2} =
{{a, c}, {b, d}, {e}} and its height is m = 2. The hierarchical decomposition
process of G3 is P6 = (a ‖ c) → (b ‖ d) → e. Its duration of execution is 46.

192 A. Bădică et al.

Fig. 6. Ordering graph G3. Activity durations: d(a) = 10, d(b) = 18, d(c) = 20, d(d) =
7, d(e) = 8.

We observe that for i = 1 the set W1 = V0∪V1 = {a, b, c, d} can be partitioned
into {{a, b}, {c, d}}, so k1 = 2. Using this observation we determine the trans-
formed process P7 = ((a → b) ‖ (c → d)) → e. This process has the duration of
execution of 36 < 46. It follows that by applying our proposed transformation
we were able to significantly reduce the duration of execution of process P6 from
d(P6) = 46 to d(P7) = 36.

We can combine this transformation with the hierarchical decomposition
heuristic dHD provided by Proposition 1 or with the critical path heuristic dCP

provided by Proposition 2 to design an efficient Greedy algorithm for the auto-
matic synthesis of a suboptimal scheduling process that is consistent with a
declarative specification.

Let G = 〈V,E〉 be an ordering graph. The algorithm can be defined as a
function proc(W,G(W)) that takes a subset of nodes W ⊆ V , the subgraph
G(W) of G induced by W and returns a suboptimal process that satisfies G(W).

Let {V0, V1, . . . , Vm} be the partition of node set V defined by the hierarchical
decomposition of G. Function proc(V,G(V)) is recursively defined as follows:

– If m = 0 then proc(V,G(V)) = ‖v∈V v.
– If m > 0 and V0 = {v} is a singleton set then proc(V,G(V)) = v → proc(V \

{v},G(V \ {v})).
– If m > 0 and V0 has at least two elements then for each 0 ≤ i ≤ m determine

the number ki of the sets of the partition of set Wi induced by the connected
components of the undirected graph Ui obtained from the directed graph Gi.
We have k0 ≥ k1 ≥ · · · ≥ km ≥ 1. Let i be the largest index for which ki > 1.
Such an index always exists as k0 = |V0| > 1. Select an index 0 ≤ j ≤ i for
which the estimated duration of execution of the “synthesized process” (to
be defined in what follows) is minimized.

We now recursively define the “synthesized process” and its estimated dura-
tion of execution, in terms of function proc. Let G = 〈V,E〉 be an ordering graph,
let {V0, V1, . . . , Vm} be the partition of node set V defined by the hierarchical
decomposition of G, and let us assume that m > 0 and |V0| > 1. The “syn-
thesized process” Pj and its estimated duration of execution dG−EST (Pj) with
EST ∈ {HD,CP} is:

Greedy Heuristics for Automatic Synthesis 193

– If j = 0 then P0 = ‖v∈V0→ proc(V \V0,G(V \V0)) and is duration of execution
is estimated to dG−EST (P0) = max{d(v)}

v∈V0

+ dG−EST (G(V \ V0)).

– If 0 < j < m then let us consider the partition {Y1, Y2, . . . , Ykj
} of Wj . Then

Pj = (‖kj

i=1 proc(Yi,G(Yi))) → proc(V \ Wj ,G(V \ Wj)) and is duration of
execution is estimated to dG−EST (Pj) = maxkj

i=1 {dG−EST (Yi)}+dG−EST (V \
Wj).

– If j = m then let us consider the partition {Y1, Y2, . . . , Ykm
} of Wm = V .

Then Pm =‖km
i=1 proc(Yi,G(Yi)) and is duration of execution is estimated to

dG−EST (Pm) = maxkm
i=1 {dG−EST (Yi)}.

Proposition 4. (Duration of Execution of Greedy Suboptimal Processes) Let
dG−EST (G) be the duration of execution of the suboptimal process that was com-
puted with the Greedy algorithm using heuristic EST ∈ {HD,CP}. Then this
process satisfies ordering graph G and dHD(G) ≥ dG−EST (G) ≥ dMIN (G) ≥
dCP (G).

5 Experimental Evaluation

We implemented our algorithm in Standard C using the 64-bit GCC compiler,
version 5.1.0 and tested it on a x64-based PC with Intel(R) Core(TM) i7-5500U
CPU at 2.40 GHz running Windows 10. In this section we present the experi-
mental results that we obtained with this implementation. The experiment was
organized as follows:

– We randomly generated a number of directed acyclic graphs of increasing sizes
representing ordering constraints, as well as random durations of execution
for each activity of the graph. The parameters of a data set are: number n
of graph nodes, number ng of generated graphs, minimum and maximum
durations dmin and dmax of each activity, and the density factor f ∈ [0, 1]
of the graph. The higher is this factor the more dense is the graph. Value of
f is given as a percentage.

– For each graph G we estimated the basic metrics given by the hierarchical
decomposition heuristic dHD(G) and by the critical path heuristic dCP (G).

– For each graph G we computed the suboptimal scheduling process that satis-
fies G using the Greedy heuristic algorithm proposed in Sect. 4.4, in two vari-
ants: using the hierarchical decomposition heuristic and respectively using the
critical path heuristic, to confirm the result claimed by Proposition 4, and to
compare the results obtained for dG−HD and dG−CP .

The graph data sets were generated for the following values of the param-
eters: ng = 100, n ∈ {10, 50, 150, 300, 500, 700}, dmin = 1, dmax = 20, and
density factor f ∈ {15%, 30%, 45%, 60%, 75%}. For each test we recorded the
total execution time and the values of the metrics of interest. We labelled each
data set to reflect its number of nodes and density. For example if n = 500 and
f = 30% then the label is 500-30.

194 A. Bădică et al.

Table 1. Total execution time in seconds for processing each data set

nodes/density 15% 30% 45% 60% 75%

10 0.019 0.009 0.012 0.010 0.012

50 0.191 0.202 0.186 0.208 0.198

150 1.813 1.898 2.057 2.157 2.295

300 7.883 9.358 10.552 10.482 12.435

500 26.200 31.889 36.889 41.378 46.221

700 65.121 75.967 90.575 104.268 116.500

Table 1 presents the total execution time of running the synthesis algorithm
for each data set. We observe that increasing the number of nodes, as well as
the density, determines the increase of the execution time. Note that these times
cover the processing of batches of 100 graphs. This means for example that
the average time to process one graph of the 700-75 data set is approximately
1 second, i.e. our algorithm is quite fast.

Fig. 7. Comparison of costs for the 700-30 data set

Figures 7 and 8 illustrate the values of the cost metrics for each graph of
each data set 700-30 and 700-60. Three observations are drawn from these fig-
ures. Firstly, these experimental results are consistent with the theoretical results
stated by Proposition 4. Secondly, that results of both experiments show that
CP heuristic performs better than HD heuristic for almost all the graphs of the
data set (there are few exceptions difficult to observe on the figures). Thirdly,
the heuristics CP and HD tend to give closer results for higher density order-
ing graphs, as can be noticed by comparing the “closeness” of the cost values
obtained for G-CP and G-HD for each data set 700-30 and 700-60.

Greedy Heuristics for Automatic Synthesis 195

Fig. 8. Comparison of costs for the 700-60 data set

6 Conclusions

We proposed a new Greedy algorithm for the automatic synthesis of block struc-
tured scheduling processes that satisfy given declarative ordering constraints. We
presented basic theoretical results that support the correctness of this algorithm.
We proposed two heuristics that can be used with this algorithm: hierarchical
decomposition and critical path. Our initial experimental results support the
effectiveness of our proposals and suggest that the critical path heuristic per-
forms better.

References

1. Demertzis, K., Iliadis, L.: Adaptive elitist differential evolution extreme learning
machines on big data: intelligent recognition of invasive species. In: Angelov, P.,
Manolopoulos, Y., Iliadis, L., Roy, A., Vellasco, M. (eds.) INNS 2016. AISC, vol. 529,
pp. 333–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47898-2 34

2. Kelley Jr., J.E.: Critical-path planning and scheduling: mathematical basis. Oper.
Res. 9(3), 296–320 (1961). https://doi.org/10.1287/opre.9.3.296

3. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

4. Mrasek, R., Mülle, J., Böhm, K.: Automatic generation of optimized process models
from declarative specifications. In: Zdravkovic, J., Kirikova, M., Johannesson, P.
(eds.) CAiSE 2015. LNCS, vol. 9097, pp. 382–397. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19069-3 24

5. Mrasek, R., Mülle J., Böhm, K.: Process synthesis with sequential and parallel
constraints. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol 10033, pp. 43–60.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3 3

6. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business pro-
cesses management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103,
pp. 169–180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862 18

https://doi.org/10.1007/978-3-319-47898-2_34
https://doi.org/10.1287/opre.9.3.296
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-319-19069-3_24
https://doi.org/10.1007/978-3-319-19069-3_24
https://doi.org/10.1007/978-3-319-48472-3_3
https://doi.org/10.1007/11837862_18

	Greedy Heuristics for Automatic Synthesis of Efficient Block-Structured Scheduling Processes from Declarative Specifications
	1 Introduction
	2 Process Models
	3 Declarative Specification of Ordering Constraints
	3.1 Activity Ordering Graph
	3.2 Optimal Scheduling Processes

	4 Heuristics for Suboptimal Processes
	4.1 Hierarchical Decomposition Heuristic
	4.2 Critical Path Heuristic
	4.3 Reducing the Duration of Execution
	4.4 Automatic Synthesis Algorithm

	5 Experimental Evaluation
	6 Conclusions
	References

