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Abstract. We reflect on current problems and practices in system secu-
rity, distinguishing between reactive security – which deals with vulner-
abilities as they are being exploited – and proactive security – which
means to make vulnerabilities un-exploitable by removing them from a
system entirely. Then we argue that static analysis is well poised to sup-
port approaches to proactive security, since it is sufficiently expressive to
represent many vulnerabilities yet sufficiently efficient to detect vulnera-
bilities prior to system deployment. We further show that static analysis
interacts well with both confidentiality and integrity aspects and discuss
what security assurances it can attain. Next we argue that security mod-
els such as those for access control can also be statically analyzed to
support proactive security of such models. Finally, we identify research
problems in static analysis whose solutions would stand to improve the
effectiveness and adoption of static analysis for proactive security in the
practice of designing, implementing, and assuring future ICT systems.

1 Introduction

In the past 10–15 years, we witnessed a very substantial and increasingly accel-
erated transformation of Information and Communications Technology (ICT),
the advent of smart phones and of digital social networks with global reach being
two prominent examples. In addition, the emergent so called Internet of Things
(IoT) and Cyber Physical Systems (CPS) are a recent but major development
which could be highly disruptive in sectors not traditionally associated with ICT.

All of these systems or systems of systems contain software as crucial ingredi-
ents. The reliability of such software is traditionally assured through systematic
testing as a best industrial practice. The limitations of this approach have been
widely recognized, and its effectiveness has been somewhat improved through
its combination with more formal techniques to validate critical software such
as device drivers, and complemented with a range of other techniques such as
manual code review. In fact, important formal methods such as type theories and
static analyses are mature technologies that are routinely integrated in compilers
and thus markedly improve the reliability of software – although programmers
and IT project managers may be oblivious to that fact.
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Traditionally, commercial ICT software is deployed under a Caveat Emptor
regime: producers of software tend not to accept any liability should the execu-
tion of their software cause any damage, even when run as intended. This regime
was adopted for proprietary software but this ownership model was challenged
by the open-source and freeware movements, which see software production and
validation as a transparent, community-driven effort; the Linux operating system
being a prominent and most impactful outcome of such efforts. Caveat Emptor is
also not appropriate for software written for embedded systems, where software
bugs may cause physical harm or loss of life.

But all software can contain errors, which may represent security vulnera-
bilities that could realize privileged access to systems, services or information.
One may see such conceived wisdom as justification for the current liability
regime and software validation practice. Yet, this is being challenged by the
next wave of digitization that the IoT and CPS will bring about. For example,
smart cars will become increasingly autonomous, so critical software components
will have to meet very high correctness standards to ensure safety of passengers
and those within the car’s environment, and security vulnerabilities may be
exploited to corrupt safety mechanisms. Therefore, security – to name Confi-
dentiality, Integrity, and Availability – will no longer be an isolated concern but
one that impinges on safety, reliability, and other concerns of future IoT/CPS
systems. And liability models may shift: German law makers, e.g., are presently
considering to make car manufacturers or even programmers liable for accidents
caused by future, fully autonomous cars [7].

Standard engineering practice is tensioned by the increased blurring of system
security and system safety aspects. To illustrate, we may not be able to apply
redundancy and physical separation principles familiar from the aircraft industry
in the domain of smart cars, where consumers expect to interface with their
familiar devices such as smart phones and where cost and competitive pressure
constrain engineering and validation. But we may realize logical separation, say,
through security policies. The well known Jeep Cherokee hack [26], e.g., exploited
a vulnerability in the car’s entertainment system and the fact that the cellular
provider did not restrict communication with that system to the car’s internal
systems, giving remote attackers’ access to safety-critical components such as
brakes. A security policy or modified default configuration that an attacker could
not circumvent would have addressed this issue. These concerns extend to critical
infrastructure such as electricity grids (e.g. the cyberattack on the Ukrainian
power grid in 2015) and vital IT systems (e.g. the AnnaCry ransomware attack
that severely disrupted some hospital services in the UK in 2017) – turning
software reliability and resiliency into national security issues.

Security. The traditional understanding of security is that it is comprised of
three components. Confidentiality is intended to protect the disclosure of data
to third parties; it is intimately related to ensuring the privacy of citizens, and the
protection of intellectual property. Integrity is intended to ensure the trustwor-
thiness of data; it is intimately connected to ensuring the authentication of those
who modify data and the control state of IT systems. Availability is intended to
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ensure that systems remain operational even in the presence of an active adver-
sary, e.g. in a denial of service attack. Much of the research in security focuses on
achieving confidentiality and integrity while availability is substantially harder
to attain due to the physical components that form part of the IT systems.

A security management in which software gets patched routinely, as in the
so called Patch Tuesday, means owners of software are responsible for installing
updates regularly. Such practices led to a reactive approach to security: a security
problem in software gets discovered, a fix for the vulnerability is identified (if
possible), and that fix is shipped as a software update to all systems that run
that software. Moreover, this reactive approach is also used by the attacking
ecosystems, where vulnerabilities are discovered and sold in a layered market of
increasing capabilities: from a potential memory leak applicable to some systems
to Ransom as a Service with complete attack capabilities, financial accounts, and
so forth. This reactive approach is hardly satisfactory for security engineering,
and will not do in future IoT and CPSs for reasons already alluded to.

Proactive Security. In contrast, proactive security is an approach to system
security that uses a set of techniques to construct ICT systems or systems of
systems that have almost no vulnerabilities (and thereby dramatically reduce
the need for reactive security measures) and that incorporate exploit prevention
or at least exploit mitigation into all phases of system construction – including
design, implementation, and assurance activities.

Proactive security has been prominently advocated by Schell [50] in 2012.
The need for it seems even more pressing now than when its first notable devel-
opments in system security were made. The initial efforts of developing proactive
security facilitated the construction of IT systems living up to the demands of
the famous “Orange Book”, developed in the US with Schell as a leading con-
tributor. This formed the basis for the current Common Criteria [1] standard
that provides a systematic approach to the design and implementation of a vari-
ety of IT systems offering different levels of security guarantees. Schell laments
that the use of proactive techniques seems to have given way to the use of more
reactive techniques; in other words, that our current approach to system security
takes a passive rather than an active, proactive approach.

There are several explanations for the current predominance of reactive secu-
rity. Business pressures, such as time-to-market considerations, often demand the
rapid construction and validation of products based on common product fam-
ilies or user feedback as seen in code production for social networks [13]. The
construction of systems that meet the Common Criteria may be neither feasible
nor appropriate in such use contexts. Another factor is perhaps that security
engineering is rarely taught in the ICT and Computer Science curricula and
that there is a global skills gap in cybersecurity professionals.

Formal Methods. The Common Criteria standard offers a range of Evaluation
Assurance Levels that describe the amount of rigour exercised in the security
validation. To meet the higher Evaluation Assurance Levels, it is not expected
to formally validate the entire IT system in question, but it is emphasized that
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its critical components must be validated through the rigorous use of formal
methods. We can see this as a form of risk management : only higher such levels
demand use of rigorous methods, and even for those higher levels is it too costly
or presently not feasible to formally validate full functional and non-functional
behaviour of complex IT systems – e.g. a code base of a few million lines of code.

But it is feasible to do such formal validation for critical components or code
units – e.g. a discrete controller for a safety-critical component. Another good
example of targeting a critical component with rigorous formal methods is the
validation of the micro-kernel seL4 [31], which was fully formally verified; and
one could then leverage the reliability and resiliency of that component to more
complex systems that critically rely on it, e.g. a drone [27]. And formal methods
are not confined to executable code: in [36], it is proposed to use generics and
functional programming to get more trustworthy implementation types from
UML models.

The Common Criteria don’t endorse particular formal methods. This, too, is
consistent with a risk-management approach to system assurance, which would
seek to use a combination of techniques that best meets the requirements and
constraints at hand. The formal methods used may range from validation carried
out by semi-automatic proof assistants such as Isabelle (used to verify the micro-
kernel seL4) and Coq (used in the verification/validation of a compiler [34]), to
validation carried out by fully automatic model checkers and SMT solvers, and
to validation using fully automatic and often very efficient static analysers.

Even if formal certification for Common Criteria is not sought, there is a
strategic advantage in using proactive system security: in case a system built still
contains exploits, the fact that is was built with that approach will enable a much
better understanding of where those exploits may occur and what capabilities
they may have, including what system components they may impact. In fact,
we may see the emergence of new certification standards that reflect specific
assurance needs of cyber physical systems and their application domains [5].

Static Analysis. Formal methods will continue to play an important role in future
certification schemes. Here we focus on the many methods from Static Analy-
sis or Program Analysis [43]. These techniques may use data-flow equations,
constraint systems, abstract interpretation, type systems, and type and effect
systems to mention just the most widely used ones here. A principal advantage
that Static Analysis offers, above and beyond what other approaches in Formal
Methods provide, is that its techniques typically realize analysis capabilities that
come with low computational complexity – usually polynomial time, sometimes
even linear time, rather than exponential time or worse. This makes them an
attractive choice for proactive security engineering, certainly as a “first line of
defence” that rules out certain security vulnerabilities at low computational cost
and at almost no development or production cost.

Static analyses gain this advantage by making abstractions of the systems
they analyze. This is typically an over-approximation of some precise analysis
result – whose full precision is typically non-computable. Such abstraction and
the compositional reasoning that this can support make Static Analysis a tool
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set for ensuring the security of entire systems or systems of systems – which
may span ICT, IoT, and CPS systems. Whilst it is a unique opportunity to
explore the potential of Static Analysis in the next generation of digital systems,
the challenge will be to engineer static analyses that make judicious trade-offs
between their effectiveness (that the over-approximation still provides useful
insights at the right level of abstraction, and with sufficient security assurances)
and their cost (that the computation of results has sufficiently low complexity
in terms of the scale of the system under analysis). Effectiveness here includes
that analysis findings are reported in a manner that is useful for those who need
to act on such results: ordinary programmers, modellers, and so forth. There is
little research on this aspect, which is argued in [13] to be critical for transfer
and adoption of static analysis in practice.

Overview. To meet this challenge, the development of security mechanisms for
system engineering (e.g. security policies), the development of effective yet eas-
ily usable Formal Methods (in particular of static analyses) need to go hand in
hand. In this paper, we will outline some key approaches, challenges, and fur-
ther considerations that mean to provoke thinking and future research in this
important area of security engineering for future digital systems. Admittedly,
our exposition reflects a certain scientific bias, as it is not our intent to be ency-
clopedic in our treatment of static analysis and (proactive) security. Our express
aim is, as already stated, to provoke thinking and to encourage new research in
this important space whose future systems stand to profoundly impact us all.

2 The Security Landscape: Setting the Scene

As stated above, Static Analysis (or Program Analysis) [43] is mainly concerned
with giving a sound over-approximation of the behaviour that a program may
exhibit upon execution. If the sound over-approximation does not exhibit any
malicious behaviour, this ensures that no malicious behaviour can arise during
program execution. Security is largely concerned with ensuring that programs
do not violate the confidentiality and integrity policies that are in place. Many
of the key considerations of security have a strong analogy to questions studied
in static analysis while some go a bit beyond. In this section, we will illustrate
this close relationship because it is the basis for why static analysis forms a good
foundation for ensuring proactive security – both for actual code and for the
models that arise during software development.

Let us begin by explaining one of the fundamental static analyses tradition-
ally used in compilers. Definition-use chaining aims at linking each definition of
a variable (or assignment to a variable) to those uses of the variable where the
value will be the one set at the definition (or assignment) point [43]. Soundness of
definition-use chaining requires that we do not miss any uses; precision requires
that we do not wildly over-approximate the set of uses.

To guard against errors in the formulation of the definition-use analysis
one should prove that the analysis always soundly over-approximates. The first
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problem to be addressed is the informality of such a formulation, one needs to
be precise also for intricate features such as aliasing (where different variables
are names for the same entity in storage). Many approaches can be explored
to gain formality. Often, a good balance is found by using a so-called instru-
mented semantics [30], which explains actual code behaviour and keeps track
of additional information, for example at which program point a variable was
last defined. Then soundness of the definition-use analysis merely amounts to
over-approximating the observations that can be made using the instrumented
semantics.

For security, both confidentiality and integrity are guaranteed by assuring
that information in ICT systems or socio-technical systems flows only in the
intended and secure way. Control-flow integrity, e.g., ensures a program does
not deviate from its normal control flow in order to initiate a privilege escalation
attack. And the human decision of whether or not to open a certain web page
should protect the confidentiality of personal information.

A key approach to security is through the study of information flow in pro-
grams as pioneered by [17]. Whenever we have an assignment, x := · · · y · · · , the
value of y flows into x. We call this an explicit flow because the value of y is part
of what is stored into x; we also call it a direct flow because it happens as the
result of a single assignment. The analogy to definition-use chaining is imme-
diate. Whenever we have an assignment x := · · · y · · · at some program point,
definition-use chaining would be able to tell us which of the program points
defining y might influence the current definition of x.

Frequently, assignments are performed in bodies of conditionals, which
thereby influence the decision to perform an assignment. As an example, for
boolean variables x and y, there is hardly any difference to the behaviour of
the program if y then x := true else x := false with respect to that of the
program x := y. But the former has no explicit flow while the latter has.

The consideration of implicit flows takes care of this anomaly: there is an
implicit flow from y to x whenever an assignment to x occurs inside the scope
of a conditional that uses the variable y [17].

Apart from explicit and implicit flows, there are other and more suble forms
of covert flows (paraphrasing the notion of covert channels). They may arise due
to termination issues, timing issues, and dependencies between non-deterministic
or parallel computations. However, we shall concentrate on the direct flows com-
prised of explicit and implicit flows as illustrated, and on the transitive closure
of the direct flows – the latter traditionally referred to as indirect flows.

In our discussion of security concepts in Sect. 1, Confidentiality was explained
as preventing disclosure of data to third parties; this amounts to ensuring the
absence of indirect flow from the data to a use belonging to a non-trusted party.
Similarly, Integrity was explained as ensuring the trustworthiness of data; this
amounts to ensuring the absence of indirect flow to the data from a definition
belonging to a non-trusted party. In summary, simple considerations of explicit
and implicit indirect flows – which use modest generalisations of definition-use
chains – suffice for ensuring Confidentiality and Integrity.
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We are confident that approaches rooted in static analysis will continue to
be useful when security policies grow in complexity as demonstrated in later
sections. The main research challenge of static analysis is to ensure that the
sound over-approximation is sufficiently informative (in excluding behaviour that
cannot arise) while keeping the computational complexity at a manageable level
(preferably close to linear).

The composition of systems considered to be secure (in isolation) does, too
often, not result in a secure system. Running cryptographic security protocols
“on top of each other” is a case in point. It remains a research challenge to
facilitate the compositional construction of secure systems. While progress is
being made, it is still beyond the state of the art to do so in general – let alone
for IoT systems in which security, safety, and other concerns are co-dependent.

In the light of the lack of compositionality in security engineering, the low
computational complexity of many static analyses may come to the rescue: It
makes it feasible to perform whole-program analyses rather than attempting to
achieve compositionality.

3 Static Analysis of Security Models

Static analysis is also applicable to models of IT Systems, not only source
code or binaries. UML diagrams and access-control models are important exam-
ples thereof. Access-control models specify which subjects have access to what
resources, and under which circumstances. Prominent examples are Role-Based
Access Control (RBAC) [49], XACML (see e.g. [4]), and OAuth [2].

In RBAC, users are associated with one or more roles, and roles are associated
with access permissions: a user gets a permission if she has a role with such a
permission. This de-coupling facilitates scalability of specifications and change
management of permissions. The core RBAC model has also been extended in
numerous ways, for example with administrators who have permissions to make
role-user assignments. XACML is a policy language in which one can specify
the circumstances for granting access, based on attributes and their fine-grained
combination. OAuth, on the other hand, is a protocol that is widely used on the
web as it can give third-party applications limited access to an HTTP service,
for example by giving the third party an access token as in the User Managed
Access architecture of the Kantara initiative.

Instances of such access-control models specify the allowed and disallowed
access within a system. Therefore, we need to validate that such instances
capture intended access restrictions and permissions. Static analysis, and its
close cousin model checking [9,42,51,53], can proactively validate such intent for
instances of such access-control models. Extensions of RBAC, such as ARBAC
that also provides support for administration, can be statically analyzed to deter-
mine whether models meet specified security requirements – for example that
certain users or roles never gain certain access permissions (see e.g. [18,48]).
The algorithms used may explore the state space exhaustively (provided sets
of users, roles, and resources are finite) but are often too complex. While such
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techniques may be seen to be static analyses, the static analysis tool box may be
more fruitfully applied by devising provably sound abstractions of access-control
models: for example, it may be possible to simulate role hierarchies through a
temporal sequence of administrative actions, and so a security analysis may then
be performed on a less complex simulation – an ARBAC system without role
hierarchies and lower computational complexity.

The XACML models contain policies that consist of access-control rules as
crucial ingredient. Validating an XACML model therefore benefits from statically
proving that policies meet certain specifications. This is particularly important
since languages such as XACML support access control in distributed, and poten-
tially open systems. Therefore, we need security guarantees on the composition
of policies and where a composition algebra may support a range of operators,
e.g., logical ones such as Conjunction, and control structures such as Conditional
Delegation. A prominent validation problem is to determine whether a policy has
anything to say on an access request of interest; if not, this under-specification
may be a potential vulnerability. Another validation problem is that the com-
position of policies may provide conflicting evidence for granting or denying an
access. We also want support for reliable change management: if one policy is
modified to another one, is the modified one a refinement of the original one in
that it preserves important grant and deny decisions?

The work on PBel [11], was motivated by such questions and designed a rule-
based policy-composition language in which basic rules where composed with
operators expressible in Belnap’s 4-valued logic (see e.g. [21]) and where these
operators are functionally complete for that logic. Validation problems such as
the ones discussed above, were then shown to be transformable into satisfiability
problems over the predicates used in rules within policies. The approach made
use of the 4-valued Belnap logic to capture not only grant and deny decisions,
but also conflicts and under-specifications. That paper took an atomic view of
predicates that build rules of PBel. But the semantics of PBel and its valida-
tion analyses would also work for richer predicates, for example those expressed
in quantifier-free first-order logic. A nice example and application of how to
interpret richer predicates for policy analysis in XACML is given in [47,55].

PBel was designed for studying the aforementioned problems, not for being
used in practice. However, there is an opportunity in influencing the design of
real-world access-control languages such that they support a formal and stati-
cally analyzable core, the full language is mere syntactic sugar of that PBel core,
and the full language is user-facing. Such an approach is familiar from program-
ming language design [52] and its benefits are clear: practical relevance since the
full language is what users (here policy writers and administrator) want, support
for proactive security through an analyzable core, and transfer of analysis from
a core representation to a semantically equivalent full-language policy.

In fact, a core language may even be extended or equipped with interfaces
to obtain a user-facing language that hides the concrete syntactic nature and
semantics of the core. This may be particularly useful if such details are irrel-
evant or incomprehensible to those who specify and manage access control. To
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illustrate, BelLog [54] is a datalog-like language for physical access control –
extended to Belnap logic: in a building with a fixed topology of rooms and
hallways, where each door has a digital lock, we seek simple policies for each
lock that – in their entirety – enforce building-wide security policies such as
“This room can only be accessed through previous entry into the lobby.” In
[54], it is shown how synthesis techniques for temporal logic can be adjusted to
BelLog so that a solution to the synthesis problem realizes all specified security
problems, and also maps this solution to local solutions for each digital lock.
Moreover, local solutions are simple formulas of first-order logic that are easy to
implement and enforce locally. One could imagine to extend this with synthesis
techniques rooted in satisfiability of the temporal logic CTL, so that it becomes
possible to specify and enforce security policies during the physical-layout design.

One challenge that we would then face, and that is often overlooked in aca-
demic research in static analysis, is that analysis results would have to be ren-
dered in a form that is intelligible and actionable to the stakeholders of the
application domain, in this example architects and physical security experts. As
[13] pointed out, there is already need for more work on this when stakeholders
are source code developers.

The case study in [28], e.g., considers this problem for a trust-aggregation
language in which rules represent “trust signals” that are interpreted as real
numbers. Such numbers are aggregated with composition operators, such as
maximum or weighted average, to reflect how an overall computed score of all
observed signals should support decision making. For example, whether or not
to rent out a car to a client at a certain rate may be informed by a weighting of
years of accident-free driving, the type of car, and so forth [29]. We then need to
validate the manner in which such scores are aggregated, e.g., to rule out that
this always supports the same decision. The tool developed in [28] reduced such
validation analyses to satisfiability problems that an SMT solver could solve. But
the reduction makes the evidence computed with such an automated theorem
prover not meaningful to those who wrote the aggregation policy. Fortunately, it
is possible to devise a static analysis over the semantics of the trust-aggregation
language that renders an over-approximated but sound version of this evidence –
and meaningful in terms of the aggregation semantics [28].

A good question in that context is what academics and practitioners can do to
encourage a better alignment of foundational work and practical R&D in security
engineering. One problem is that the value systems of academia and industry
are not well aligned. For example, research on user-facing analysis reporting may
find it hard to get into a top academic research conference. For another example,
excellent foundational work may only be adopted in industry if funnelled through
or integrated within industrial standards or if produced in-house.

4 Security Assurances: Information Leakage

Formal methods traditionally have promised to provide absolute guarantees of
correctness – to the extent of providing a mathematical and flawless proof. How-
ever, it is easier to motivate the use of formal methods in software development
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if it is presented as a way of enhancing the quality of software against errors and
attacks. “Continuing the metaphor, we have found that software engineers more
readily grasp the concept and practical value [...] if we dub it exhaustively testable
pseudo-code.” [41, p. 71] Moreover, it has been argued that methods which seek
mathematical proof of program correctness can deliver such guarantees only for
mathematical abstractions and not for programs as causal models within oper-
ational environments [16,19,40]. While this may suggest principal limitations of
the reach of formal methods, the past decades have seen tremendous advances
in foundations and applications of formal methods for software verification.

Clearly, formal methods operate on an abstraction of the real world system
and it is a key lesson of security that abstractions pave the way for security holes.
“Abstraction is an important concept we cannot do without when designing and
understanding complex systems. [...] However, software security problems arise
when intuitive properties of an abstraction do not match its concrete implemen-
tation.” [23, p. 179] Indeed, even the hardware upon which software is executed
is an abstraction. As an example, it is generally believed that computer mem-
ories will retain their values until explicitly changed or until power is cut off.
However, cosmic radiation or even heat may make this abstraction invalid [25].

In the next three paragraphs we consider three key approaches to providing
assurances of the correct use of static analysis for ensuring the security of sys-
tems. One of these takes its origin in traditional ways of ensuring the correctness
of static analyses [43]. Another one goes back to techniques for establishing non-
interference results that show the absence of information flow [56]; for example
that no sensitive information is reaching unintended parties. The third app-
roach replaces the qualitative view with a quantitative one by characterising the
information leakage with respect to entropy [14]; this may support decisions of
whether the computed leakage is acceptable or not.

Instrumented Semantics. Whenever we employ a static analysis we should estab-
lish its correctness – especially when safety, security, and their interplay is at
stake. For some static analyses the notion of correctness is rather immediate,
such as when we are analysing the values of some variables or perhaps the com-
binations of values of all variables. Assuming that we deal correctly with the
bit strings that programs operate on – such as taking into account that integers
have a maximal value and that the multiplication of two positive 32-bit integers
is not necessarily positive – it is fairly obvious how to formalise correctness.

For other static analyses the notion of correctness is less immediate – this
is typical of situations in which we analyse the past or future behaviour of
programs. As a simple example, consider definition-use chaining where each def-
inition (or assignment) of a variable is linked to all the potential uses of the
value given to the variable at that point [43]. One way to formulate correct-
ness is to consider potentially infinite execution traces. A more amenable way
is to formulate an instrumented semantics that keeps track of certain elements
of the manner in which computations are performed as well as the results they
are intended to give. This suffices for proving the correctness of definition-use
chaining as was discussed in Sect. 2.
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More importantly, this set of techniques immediately generalises to han-
dling the correctness of explicit information flows – both for confidentiality and
integrity. These techniques can be augmented with considerations of the implicit
information flows that occur due to conditional branching [44] as discussed in
Sect. 2.

One advantage of the instrumented semantics approach is that the notion of
correctness, once formalised, usually has a rather direct intuition (with respect
to the overall security goals of the system), thereby reducing the risk for security
holes due to abstraction. Also, it is feasible to extend the instrumented semantics
approach with some of the more advanced security considerations such as declas-
sification and endorsement where the security policy is deliberately violated at
selected points [37].

An obvious disadvantage of the instrumented semantics approach is the pos-
sibility of basing correctness on an inadequate (read incorrect) instrumented
semantics. Especially when dealing with non-determinism and parallelism it may
be hard to correctly model the covert flows that arise.

Non-interference. The use of instrumented semantics is a qualitative approach
requiring inspection of the way in which computations are performed and results
produced. Another qualitative approach is that of non-interference, which only
inspects results produced. Specifically, suppose an attacker may want to learn
the values of some sensitive inputs to a program. The program satisfies non-
interference if any variation in the input values of sensitive variables would not
result in any observable difference in program outputs.

There are many different approaches to the formalisation of non-interference
and we cannot touch upon all of them. In [22], it was required that observations
on traces should be invariant under certain permutations of the actions in the
traces. In [56], a simulation based approach was taken but only for determinis-
tic and terminating programs. In [38], it was required that certain projections
of traces should be equal; while there are clearly differences in the formal def-
initions, there also is a substantial amount of similarity, e.g. the trace based
development of [38] reuses the proofs of the simulation based development of
[56] (see [38, p. 15]). In [57], it is required that two executions should produce
comparable sets of outcomes (thereby taking account of non-determinism) where
non-termination is made observable (so as to avoid masking covert channels due
to non-termination).

The main advantage of the non-interference approach is that we mitigate the
risk of basing correctness on an inadequate instrumented semantics. A disad-
vantage of the non-interference approach is that it is still open to security holes
due to abstraction since non-interference is usually established for models that
are more abstract than a traditional instrumented semantics. More importantly,
it is argued in [44, Sect. 8] that many formulations of non-interference fail to
maintain a distinction between confidentiality and integrity, which constitute
two of the key dimensions of the security landscape, and hence they fall short
of convincing the security engineer of their relevance. (In short, non-interference
is good at characterising the semantic influences but not whether they arise
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due to confidentiality or integrity breaches.) Yet another disadvantage is that it
may prove futile to establish a non-interference result for what would seem to
be an acceptable security policy; this may arise because non-interference often
is “asking for too much”, and so in particular non-interference finds it hard to
adequately incorporate cryptography as a way to achieve secure systems.

Regarding our discussion of the lack of compositionality in Sect. 2, it is fair to
say that non-interference often just deals with the program in isolation whereas
more complex considerations (such as non-deducibility on computation [33]) are
required to regain some compositionality.

Entropy. For a more precise account of information leakage, one may consider
quantitative approaches based on entropy. The basic assumption is that we have
joint probability distributions available to characterise how sets of variables take
their values. Given such data we can then define the amount of information
that is derivable from an observation by its entropy. The assumption is that a
program variable x is now a random variable taking values in a finite set V .
Shannon’s Entropy H(x) is the expected value of information contained in each
observation of x. This is an information-theoretic measure that is non-negative,
additive for independent random variables, and monotone. Such intuitive prop-
erties characterize function H up to a constant. An important derived concept
is that of conditional entropy : H(x | y) denotes the portion of the entropy of
variable x that is independent from another random variable y.

There are two extreme cases of the conditional entropy H(x | y). One extreme
case is where x, y are aliases for the same entity. Then, we will always make the
same value observations for x and y: we obtain H(x | y) = 0 which indicates that
we learn nothing further if we learn the value of x, given that we already know
the value of y – the value of y determines the value of x. The other extreme case is
where x and y are truly independent; then, we get H(x | y) = H(x) – indicating
that our previous knowledge of y tells us nothing of x.

The advantage of this quantitative approach to information flow is its ability
to precisely quantify the amount of information H(x) −H(x | y) that might be
leaked due to information flow. This amount “should” be 0 if we have been able to
prove a non-interference result, and if it is even slightly larger than 0 it “should”
be impossible to establish a non-interference result. This suggests to accept a
system as secure if the conditional entropy is sufficiently close to 0. A current
disadvantage of this approach is that we have less tool support for analysing the
security of systems according to information-theoretic, quantitative measures.

Perspective. In our view, non-interference is both demanding too much (in not
permitting minute flows) and discriminating too little (in not distinguishing
between confidentiality and integrity) to be useful for validating the use of static
analysis in ensuring the security of systems. On the other hand, approaches
based on instrumented semantics should interact well with state of the art in
static analysis tools while methods based on entropy should be investigated as
they offer to provide stronger assurances, and they can lead to metrics for the
support of decision making in security engineering.
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5 Discussion

A static analysis is subject to potentially conflicting aims. It needs to be abstract
since many concrete properties of interest to it are undecidable for general pro-
grams and programming languages. Given that need for abstraction, it also needs
to be precise enough, so that it will often enough arrive at findings that are
digestible and useful to the analysts. But the static analysis should also be
sound. By this we mean that the analysis models all possible executions of the
program. This is important for security considerations: if some real executions
are missed by the analysis (e.g. because the meaning of a language construct may
depend on the implementation environment), these executions may be security
vulnerabilities that an attacker might exploit. Finally, the static analysis should
scale so that we can run it on large programs or code bases effectively.

The discussion around soundness superficially seems similar to a discourse
documented partly in [16,19]: the question of whether formal verification can
prove the correctness of an executing program with mathematical certainty. This
was posed at a time when it was very difficult to promote use of formal methods
into R&D and to get credibility for devising such methods. It is fair to say that
we have come a long way! Major ICT companies such as Amazon, Facebook,
and Microsoft are using a range of formal methods in tactical and strategic
ways, and this was made possible by persistent research and tool building of
formal-methods researchers in the past decades.

Formal methods such as static analysis are very useful for security engineer-
ing. First, if a static analysis fails to formally verify a property – such as the
absence of memory leaks – at a higher level of abstraction, then this can also
be a validation concern within the actual execution environment and so may
require code modifications.

Second, static analysis tools may help us understand the scope of unsound-
ness that may occur when transferring reasoning that is sound at one abstraction
layer to another one. For example, the work in [24,46] provides static analyses
with which we may understand the differences and input sensitivities of pro-
grams between an idealized execution with mathematical real numbers and a
finite-precision implementation of real numbers.

Third, code development operates at several abstraction layers and static
analyses can certainly validate higher such layers in isolation. For example, the
use of generics at the level of UML specifications [36] minimizes the risk of
type incompatibilities in implementations; the use of static analysis to validate
information flow of process models [6] is validating security properties of the
process design itself; and the use of automated theorem proving in examining
specified language standards such as those for Javascript [10] can flag up issues
of interest to the standardization committees.

Fourth, there may be a compelling business case for formally verifying specific
system components. For example, one may build an operating system in such a
way that only its small micro kernel ever runs in supervisor mode – meaning that
it runs at the most privileged level of the supporting hardware. There is then an
incentive in formally verifying such a micro kernel if it is planned to be used in a
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variety of security- or safety-critical systems. As already discussed, this has been
done for the micro kernel seL4 [31]. A lot of the verification effort here went into
assuring that the kernel will interact correctly with its environment, for example
that the access control is correctly enforced, and that binaries of the kernel
correctly implement the C semantics of its source code. Change management
is a challenge for such efforts, and the authors discuss in [31] the degree of
severity with which different types of kernel code changes impact the overall
verification effort. The DARPA initiative [27] demonstrated that use of such a
formally verified micro kernel can significantly harden the security and resiliency
of systems that rely on it, for example a drone that white-hack teams can no
longer compromise.

The ability to deal with change is one of the main selling points of any
security validation method for software and executing systems in practice. The
paradigm shift from single to multi-core CPUs, and even the advent of GPU
and FPGA development environments provide exiting research opportunities for
language design, compiler technology, and static analysis as tools for producing
secure software on heterogenous or bespoke hardware. But they also challenge
conceived ideals and models of computation, such as memory consistency and
thread schedulings and force us to rethink the use of static analyses in this
setting. Technological innovations in isolation technology, such as Intel’s SGX
[15], also mean that static analyses for proactive security may have to be adjusted
to reflect such innovations and their isolation architectures.

Another important trend we see is the recognition that verification tools and
static analyzers should be the object of verification themselves. While this invites
an infinite logical regress, it makes perfect sense from an engineering perspective.
For example, Cadar and Donaldson predict in [12] that, by 2025, the analysis of
static analyzers and entire compilers will be common place. There are already
efforts at producing compilers that are provably correct within the abstraction
level of such reasoning; let us mention the CompCert project [34] that offers a
mathematical proof that the compiler introduces no bug in the convertion from
source code to binary, and the CakeML project which work on verifying system
implementations of substantial parts of Standard ML (see e.g. [32]). And there
is already some work on certifying the results of model checkers [39]. These
efforts are related to the need to better understand how static analyzes can
be adapted to best support code development within professional development
environments. We refer to [35] for a discussion of such needs.

We think that static analysis and its practical use can be furthered by use
of big data and data analytics. Static analysis and formal verification of a soft-
ware system will no doubt make that system more secure. But reactive security
mechanisms may be needed to improve the resiliency of that system at run-time;
for example, to prevent RowHammer attacks that aim to compromise security
by breaking an abstraction [8]. It then makes sense to base such a reaction on
available data for security vulnerabilities, the probability of them turning into
active security threats, and the system impact that exploits – which realize such
threats – may have. In fact, one may use formal techniques such as solvers or
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optimizers to reason about how best to devise such reactive security postures
and their evolution [20,45].

A static analysis tool may also use data and quantitative analytics to deter-
mine a “scheduling” of which bugs to report and why. For example, this may
inform the ordering or prioritizing of such reporting. Past exploit data, the poten-
tial impact path of a program point or stochastic assumptions about program
input may inform which bugs to report. Put in another way, if a security engi-
neer has time to look at 4 bugs, which ones should the static analysis present
to her? Such rankings may even include prioritizations based on risk appetite or
specific attack models. Indeed, we see such work already happening in the realm
of security operations centres (SOCs) and the use of data mining and artificial
intelligence in enterprise platforms (see e.g. [3]), where one concern is to under-
stand human behaviour and where “bugs” are now potentially suspicious human
behaviours that may be worth reporting: which ones to report may well depend
on a particular concern an analyst has.

6 Conclusion

For a long time, IT systems have been central to our society but they are becom-
ing increasingly complex, pervasive, and autonomous. This development offers
many benefits to society but also creates risks related to the safety and security
of societies relying on the correct functioning of their IT systems. Furthermore,
globalisation and the Internet of Everything mean that software is becoming
a commodity for which a system integrator may have little insight in the way
its code has been developed nor how it performs in corner cases that trade off
soundness and completeness of a static analysis.

Computer Science not only offers the software and algorithms making this
development of today’s IT systems possible – it also provides key methods and
techniques for ensuring the correct behaviour of complex and inhomogeneous IT
systems. Compositionality lies at the heart of a component-based approach to
the construction of IT systems. Formal methods may be used to harden critical
components. But too frequently the composition of secure components does not
result in a secure system (as was discussed for cryptographic protocols). Also,
compositional security seems an even harder goal when it comes to the IoT
systems of systems that will shape our future in the Internet of Everything.

Static analysis is noteworthy among the formal methods approaches in offer-
ing a variety of analyses of low computational complexity that therefore are
likely to scale to systems built out of many components. We have argued that
a number of security considerations related to confidentiality, privacy, integrity
and authenticity can be addressed using techniques from static analysis. These
techniques apply equally well to existing code, to access control policies, and to
designs (or models) of systems under development. Further advances in static
analysis are likely to go beyond the mere optimization of software in order to
fully tackle the challenge of proactively ensuring the security of complex IT/IoT
systems.
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