
Interactive Car Parking Simulation Based
on On-line Trajectory Optimization

Jungsub Lim, Hyejin Kim, and Daseong Han(&)

School of Global Entrepreneurship and ICT, Handong Global University,
Pohang, Republic of Korea

jsrimr@naver.com, gobetty20@gmail.com,

dshan@handong.edu

Abstract. This paper presents an on-line trajectory optimization method to
simulate the autonomous parking of a car-like vehicle in an environment with
static or dynamic obstacles. We employ a stochastic and derivative-free opti-
mization technique called Covariance Matrix Adaptation (CMA) to seamlessly
integrate collision events between the car and the environment into the formu-
lation of our autonomous parking problem without resorting to any prepro-
cessing steps to make the problem differentiable. Given the current and target
car states, our system repeatedly predicts a sequence of control inputs for a short
time window to move the car to the target while shifting the window along the
time axis, which facilitates on-line performance. We also present a simple and
effective scheme to make our optimization robust to environmental changes by
adjusting its parameters in an on-line manner. We show the effectiveness of our
method through simulation results for garage parking, parallel parking, and
interactive parking based on on-line user input.

Keywords: Autonomous car parking � On-line trajectory optimization
Simulation � Motion planning � Stochastic optimization

1 Introduction

Over the last few years, autonomous driving has been one of the most important topics
in many research areas due to the ever-growing demands and market scale for
autonomous vehicles. Many technical innovations have been presented to effectively
address the topic and commercial autonomous cars have already been being in market
in several countries. However, it is still very challenging to robustly control an
autonomous vehicle in urban environments, where it must recognize and obey traffic
lights and also needs to avoid colliding with other moving vehicles and pedestrians
whose motions are not fully predictable in general while moving to the destination.
Instead of dealing with the topic as a whole, we focus on how to autonomously park a

Electronic supplementary material The online version of this chapter (https://doi.org/10.1007/
978-3-319-91806-8_21) contains supplementary material, which is available to authorized users.

© Springer International Publishing AG, part of Springer Nature 2018
A. Marcus and W. Wang (Eds.): DUXU 2018, LNCS 10920, pp. 270–284, 2018.
https://doi.org/10.1007/978-3-319-91806-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91806-8_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91806-8_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91806-8_21&domain=pdf
http://dx.doi.org/10.1007/978-3-319-91806-8_21
http://dx.doi.org/10.1007/978-3-319-91806-8_21

vehicle while avoiding obstacles in a computer simulation through numerical opti-
mization with simple and intuitive objectives given on-line user input such as a desired
parking location and orientation. Although the car parking is much simplified version
of the autonomous driving problem, it can be very useful not only for attaining the goal
of the latter but also for equipping conventional vehicles with an intelligent parking
system.

In this paper, we present an on-line trajectory optimization method for autono-
mously moving a car to a desired parking slot based on a stochastic and derivative-free
optimization method called covariance matrix adaptation (CMA) [1]. CMA repeatedly
alternates evaluating a given objective function at possible solutions populated by a
multivariate normal distribution and updating the distribution with the evaluation
results until a certain termination condition is satisfied. Since the method does not rely
on any derivative information of the objective function, an objective for collision
avoidance from environmental obstacles, which introduces discontinuity into opti-
mization in general, can be seamlessly integrated into a problem formulation together
with the other objectives. It effectively removes precomputation steps to enforce the
differentiability of objectives unlike existing derivative-based frameworks.

In order to facilitate on-line performance, we also employ a model predictive
control (MPC) scheme, which repeatedly solves a finite-horizon trajectory optimization
problem for a relatively short time window while shifting the window along the time
axis. Since our MPC framework continuously re-computes the optimal trajectory in run
time, environmental changes can be more effectively dealt with on the fly. The result of
MPC is a sequence of optimal control vectors for the time window, each of which is
composed of the front wheel angle and acceleration of the car. In turn, these control
vectors are provided to the simulator to update the current car state.

The contributions of this paper are two-fold. In the systematic point of view, we
present an on-line control framework which can produce realistic parking movements
in an environment with static or dynamic obstacles according to a desired location and
orientation interactively given by the user. In the technical point of view, we formulate
an autonomous car-parking problem with simple and intuitive high-level objectives
based on a stochastic and derivative-free optimization technique. Our method does not
rely on any complicated system analysis or control law design. We also introduce an
MPC scheme to effectively support on-line performance and to enhance time efficiency.
This is due to the fact that MPC does not compute the whole trajectory to reach a final
destination at once but repeatedly optimizes a trajectory for a short time window while
moving it along the time axis. Our method is effective to generate convincing parking
movements for challenging scenarios such as moving a car into a narrow parking slot
while avoiding a moving obstacle without any reference trajectory or preprocessing.

2 Related Work

For the autonomous parking problem, various approaches have been proposed over the
last decades. Control design and analysis for wheeled mobile robots have been actively
done by transforming their kinematic equations to so-called chained form [2]. Reeds
and Shepp simplified car movements to a combination of circular and linear motions,

Interactive Car Parking Simulation Based on On-line Trajectory Optimization 271

and then calculated the minimum-length path [3], which has also been adopted by
many other researchers [4, 5]. However, this approach works only in an obstacle-free
environment.

Laumond et al. proposed a motion planner for mobile vehicles based on a two-step
approach [6]. In the first step, the planner computes a collision-free holonomic path,
which is relatively easy to derive. The path is then transformed into the corresponding
non-holonomic one by integrating non-holonomic constraints. Muller et al. also
employed this approach using the clothoid curve [7]. However, it is difficult to derive the
non-holonomic path corresponding to a holonomic in general, which often results in a
lot of maneuvering efforts. In order to avoid this complexity, our problem formulation
relies on simple high-level objectives supported by derivative-free optimization.

Kim et al. derived collision-free reachable areas for every movement of a vehicle,
and then connected points in these areas to generate multiple path candidates [8]. This
method is effective to deal with environmental changes, such as the change of an
obstacle position or parking space. But it cannot deal with moving obstacles. Unlike
this, our method can avoid moving obstacles as well as static.

Barraquand and Latombe discretized a configuration space into a grid map and then
planned a path on the map by exhaustive search equipped with heuristic rules [9]. The
scheme provides practical solutions in many cases. However, the method’s accuracy
for generating a collision-free path is not guaranteed and it requires high computing
power.

Sampling-based approaches have successfully applied to path planning. LaValle
and Kuffner proposed Rapidly-exploring Random Trees (RRT) [10], which generates a
tree structure by connecting the randomly sampled nodes satisfying certain constraints
and conditions until the tree includes a target position. Its effectiveness was also
demonstrated in the 2007 DARPA Urban Challenge [11, 12]. Probabilistic roadmap
(PRM) was proposed by Kavraki et al. to plan a path in high-dimensional configuration
spaces [13]. PRM planners allocate samples in a configuration space and construct a
path graph connecting these sample points.

A two-phase path planning approach was proposed for autonomous vehicles by
Dolgov et al. [14], which was also experimentally validated in the same competition
mentioned above [12]. In the first phase, A* algorithm is used to search a kinematically
feasible trajectory. Then, a derivative-based optimization is employed to improve the
trajectory in the second phase. In order to keep the objective function differentiable in
this phase, nearest obstacles at each time step must be precomputed and fixed in the
previous phase. Unlike this approach, we propose a single-phase path planning
framework that seamlessly integrates an obstacle avoidance objective into optimization
without any precomputation steps.

There have been also efforts to apply artificial intelligence techniques such as fuzzy
controllers [15] or neural networks [16] to motion planning problems with wheeled
mobile robots. These are relatively easy to implement but the performance is highly
dependent on their training data set.

Zips et al. suggested a fast motion planning algorithm for a wheeled vehicle based
on heuristic rules, where the next move is determined by taking into account only a
resulting state of the vehicle followed by the move but not the total path [17]. However,
since the algorithm is rule-based, it is hard to be generalized. For example, an algorithm

272 J. Lim et al.

for parallel parking on the left side cannot be applied to that for the right side. Also, it
does not work in a dynamic environment.

Tassa et al. proposed a variant of differential dynamic programming (DDP) to
support bound constraints on control variables [18] unlike the original version which
can deal with only unconstrained variables. The method was effectively applied to the
car parking problem in an obstacle-free environment so as to constrain the wheel angle
and acceleration to their respective valid ranges. In more complicated environments
with obstacles, however, it would be difficult to integrate the constraints for collision
avoidance into an objective function because these are generally not differentiable
while DDP requires a differentiable objective function. In order to address this issue,
we employ a sampling-based optimization method called CMA [1]. It does not require
any derivative information, which allows us to enforce collision avoidance constraints
to an objective function in an intuitive manner.

3 System Overview

Our system consists of three main components: trajectory optimization, parameter
adjustment, and simulation (Fig. 1). Provided with the current and target car states and
optimization parameters such as the near-target frame index and reset signal, the first
component repeatedly solves a finite-horizon trajectory optimization problem for a
short time window with CMA while shifting it along the time axis. It then produces a
sequence of control vectors to make the car closer to its target state composed of the car
position, speed, and orientation. In order to save computational time, the optimization
starts with all the context data of the last optimization including the mean and
covariance of a normal distribution maintained by CMA.

The second component computes the near-target frame index and reset signal to
make trajectory optimization produce a better result and performance given the current
and target car states together with the control vectors. The former represents an index to
the first of the frames at which the car state is close enough to the target state while it is
also true at all the following frames. It is used to make an objective function encourage

Fig. 1. System overview.

Interactive Car Parking Simulation Based on On-line Trajectory Optimization 273

optimization to quickly converge to the target car state once the car comes near it. If the
latter is on, the trajectory optimization is completely restarted without relying on any
context data of the last optimization. It is often needed because CMA may have got
stuck at a local optimum depending on the sampling data populated from its last normal
distribution.

When the resulting control vectors are given to the last component, they are used to
update the current car state. In the remaining sections, we do not deal with the sim-
ulation component in details but focuses on the first two components because the third
component can be implemented by the system dynamics of the car introduced in
trajectory optimization (Sect. 4.1).

4 Trajectory Optimization

In this section, we first discuss the simplified system dynamics of a car (Sect. 4.1).
Then, we formulate a finite-horizon trajectory optimization problem for parking the car
in a multi-obstacle environment based on its system dynamics (Sect. 4.2). Last, we
explain how to solve the problem with CMA (Sect. 4.3).

4.1 System Dynamics

Though the actual system dynamics of a car is highly complicated, we employ its
simplified version introduced in [18] because it is sufficient for producing realistic car
movements. In order to formulate the system dynamics of a car, let us first define state
vector x 2 R

4 and constrained control vector uc 2 R
2 as follows:

x ¼

x

y
h

v

2
6664

3
7775 and uc ¼ x

a

� �
: ð1Þ

xlo �x�xhi; ð2Þ

alo � a� ahi: ð3Þ

Here, x; yð Þ is the midpoint between the back wheels. h is the angle of the car with
respect to the x-axis and v is the speed of the front wheels. x and a are the angle and
acceleration of the front wheels whose valid ranges are constrained by Eqs. (2) and (3),
respectively. In all our experiments, we set xlo ¼ �50o, xlo ¼ 50o, alo ¼ �15m/s2,
and ahi ¼ 15m/s2. Then, system dynamics x0 ¼ fc x; ucð Þ, which returns next-step state
x0 given current state x and control uc, is formulated as follows:

274 J. Lim et al.

fc x; ucð Þ ¼

xþ b � cos hð Þ
yþ b � sin hð Þ

hþ sin�1 sin xð Þ f
d

� �
vþ h � a

2
6664

3
7775; ð4Þ

where d is the distance between the front and back axles and h is the integration step
size. f and b are the rolling distance of the front and back wheels, respectively, as
shown below:

f ¼ h � v; ð5Þ

b ¼ f � cos xð Þþ d �
ffi
d2 � f 2 sin2 xð Þ

q
: ð6Þ

We refer readers to [18] for more details on the above car dynamics.
Since CMA is an unconstrained optimization method, we introduce new control

vector u ¼ u1 u2½ �T which is used to express x and h as functions of unconstrained
variables u1 and u2, respectively:

x u1ð Þ ¼ xlo þ xhi � xlo
� �

2
1� cos p

u1 � xlo

xhi � xlo

� �� �
; ð7Þ

a u2ð Þ ¼ alo þ ahi � alo

2
1� cos p

u2 � alo

ahi � alo

� �� �
: ð8Þ

Here, bound constraints x u1ð Þ 2 xlo;xhi
	

and a u2ð Þ 2 alo; ahi
	

are always sat-
isfied no matter what values control variables u1 and u2 have. With the new control
vector u, we define the unconstrained version of system dynamics x0 ¼ f x; uð Þ as
follows:

f x; uð Þ ¼
xþ b � cos hð Þ
yþ b � sin hð Þ

hþ sin�1 sin x u1ð Þð Þ f
d

� �
vþ h � a u2ð Þ

2
664

3
775; where ð9Þ

f ¼ h � v; ð10Þ

b ¼ f � cos x u1ð Þð Þþ d �
ffi
d2 � f 2 sin2 x u1ð Þð Þ

q
: ð11Þ

4.2 Problem Formulation

Based on the system dynamics in Eq. (9), our system optimizes state trajectory X ¼
x1; x2; . . .; xN

� �
for a short time window of N frames to drive the autonomous car to

Interactive Car Parking Simulation Based on On-line Trajectory Optimization 275

reach target state �x ¼ �x �y �h �v
	
T

composed of target position �x;�yð Þ, target ori-
entation �h, and target speed �v. In order to do so, we formulate a finite-horizon trajectory
optimization problem to find control vector sequence U ¼ u1; u2; . . .; uN�1

� �
given

current car state x and target car state �x together with near-target frame index k and reset
signal g:

minU J X;Uð Þ ð12Þ

subject to x1 ¼ x; ð13Þ

xiþ 1 ¼ f xi; ui
� �

; ð14Þ

i ¼ 1; 2; . . .;N � 1:

Here, xi and ui are the state and control vectors of the car at frame i, respectively.
J X;Uð Þ is the objective function that specifies high-level objectives to perform
car-parking tasks using state trajectory X and control vector sequence U. The first two
constraints in Eqs. (13) and (14) represent that state trajectory X starts from the current
state and the state transition in the trajectory can be made only by the system dynamics.

Objective function J X;Uð Þ is formulated as the sum of the following cost terms:

J X;Uð Þ ¼ cdir þ ctgt þ ccol þ ceng þ clen: ð15Þ

The first cost term cdir is used to drive the car to have the same orientation with the
target orientation before it gets close to the target state by taking into account differ-
ences between target orientation �h and orientation hi at frame i 2 1; k � 1½ �:

cdir ¼ h � wdir �
Xk�1

i¼1
sabs �h� hi

� �
: ð16Þ

Here, wdir is the weight constant and sabs xð Þ is the smoothed version of absolute
function xj j as follows [20]:

sabs xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2

p
� c: ð17Þ

In Eq. (17), c is the coefficient used to adjust the smoothness around at x ¼ 0. As c
becomes larger, the function is more smoothed. We set c ¼ 1:0 in all our experiments.
As pointed out in [20], we adopt sabs xð Þ instead of a commonly-used quadratic cost
term because the former increases almost linearly as x gets farther from zero. It prevents
the optimization from chasing after the target too hard when the car state is currently
quite far from the target, which results in more natural car movements. Cost term cdir

plays an important role especially when the car’s initial orientation is opposite to its
corresponding target so as to align them before moving to the target position.

The second cost term ctgt is defined as a weighted sum of differences between target
car state �x and car state xi at each frame i 2 k;N½ � to reach the target car state after
aligning the car orientation with its target as shown below:

276 J. Lim et al.

ctgt ¼ h � wtgtð ÞT
XN

i¼k

sabs �x� xið Þ
sabs �y� yið Þ
sabs �h� hi

� �
sabs �v� við Þ

2
664

3
775; ð18Þ

where wtgt 2 R
4 is the weight vector. Cost term ctgt encourages the optimization to

converge to the target car state as quickly as possible starting from frame k once the car
has come near the target car state at frame k.

The third cost term ccol is used to avoid collisions between the car and any of
environmental objects:

ccol ¼ h � wcol �
XN

i¼1

Xnic
j¼1

/ i; j; xi
� �

: ð19Þ

In the above equation, wcol is the weight constant. nic is the number of contact points
between the car and the environment at frame i and / i; j; xið Þ� 0 is the function that
returns the penetration depth at contact point j at frame i. Our system computes the
penetration depth by simply executing a conventional collision detection algorithm
during the evaluation of the cost term in an on-line manner without any precomputa-
tion. This is possible because our system employs a sampling-based optimization
method, which allows us to deal with a non-differentiable objective like collision
avoidance in the same way with differentiable ones.

The fourth cost term is to make the synthesized path smoothed by minimizing the
front wheel’s acceleration and the change of its angle at each frame i 2 1;N � 1½ � with
weight vector weng 2 R

2 as follows:

ceng ¼ h � wengð ÞT
XN�1

i¼1
xi u1ð Þ � xi�1 u1ð Þð Þ2

ai u2ð Þ2
� �

: ð20Þ

Here, x0 u1ð Þ is the front wheel angle that has been applied in the last simulation
time step. The last cost term clen is used to minimize the length of the synthesized path
to the target position, that is, the sum of the Euclidean distances between a pair of
consecutive points on the state trajectory as follows:

clen ¼ wlen �
XN�1

i¼1

xiþ 1

yiþ 1

� �
� xi

yi

� �
: ð21Þ

Here, wlen is the weight constant.
We solve the above trajectory optimization problem with CMA. The details of how

to use CMA and the role of reset signal g are explained in Sect. 4.3.

4.3 Optimization

Given current car state x and target car state �x together with near-target frame index k
and reset signal g, our system repeatedly solves a trajectory optimization problem

Interactive Car Parking Simulation Based on On-line Trajectory Optimization 277

explained in Sect. 4.2 at each simulation time step using CMA, which facilitates
on-line performance. CMA maintains multivariate normal distribution y�N l;Rð Þ,
iteratively updated based on the evaluation results of a given objective function at the
samples populated by the distribution until a certain condition is met. In our problem,
multivariate random variable y is regarded as the concatenation of control vectors
U ¼ u1; u2; . . .; uN�1

� �
as

y ¼
u1

u2

..

.

uN�1

2
664

3
775 2 R

2 N�1ð Þ: ð22Þ

If reset signal g is on, our system purely restarts CMA with l ¼ 0 and
R ¼ r2I2 N�1ð Þ, where r is a coefficient (standard deviation for each individual random
variable of y) and Im is an m� m identity matrix (we set r ¼ 0:6 in all our experiments).
Otherwise, all the context data of the previous optimization including l and R is reused
to enhance time efficiency under the assumption that a solution to the current opti-
mization will be similar to that of the previous one. In the cases when the assumption
does not meet, e.g., in the case when the user has changed the target position, reset signal
g is turned on by the parameter adjustment component (Sect. 5) before executing CMA.

At each optimization, the update of the normal distribution of CMA is done in a
different way depending on the value of g. If g is off, it is iterated a specific number of
times (300 times in all our experiments). Otherwise, CMA is completely reinitialized as
mentioned above and the update is iterated more times (500 times in all our
experiments).

After finishing the update, mean l is used as the current solution to our autonomous
parking problem. We provide the first control vector in l to the simulation component
to update the current state of the car.

5 Parameter Adjustment

Given current car state x, target car state �x, and current control sequence U ¼ u1;
�

u2; . . .; uN�1g, the parameter adjustment component (Fig. 1) computes near-target
frame index k and reset signal g. The former represents an index to the frame at which
the car is close enough to the target state, and the latter is used to completely reinitialize
CMA. We first explain how to compute near-target frame index k in Sect. 5.1. We then
discuss how to determine reset signal g in Sect. 5.2.

5.1 Near-Target Frame Index Computation

In order to compute near-target frame index k, our system first produces state trajectory
X ¼ x1; . . .; xN

� �
, where x1 ¼ x and xiþ 1 ¼ f xi; uið Þ for ui 2 U, i ¼ 1; 2; . . .;N � 1,

and then measures how close the car state is to target car state �x at each frame using the
following function derived from cost term ctgt in Eq. (18):

278 J. Lim et al.

u xi
� � ¼ h � wtgtð ÞT

sabs �x� xið Þ
sabs �y� yið Þ
sabs �h� hi

� �
sabs �v� við Þ

2
664

3
775: ð23Þ

Based on the measurement results, the system searches the frames satisfying

u xið Þ� �1 and
�x
�y

� �
� xi

yi

� �
� �2 in reverse order staring from the last frame, where �

is a small constant (we set �1 ¼ 0:1 and �2 ¼ 0:5 in all our experiments) and sets k to
the index to the first of these. The former condition represents the car state must be
close enough to the target car state and the latter one the car position must be near the
target car position. The computed k is passed to the trajectory optimization component
to determine how many frames are involved to align the car orientation with the target
one before moving the car to the target position (See the formulation of cdir and ctgt in
Sect. 4.2).

5.2 Reset Signal Computation

Whenever the optimization finishes, our system updates the near-target frame index
using the new control sequence from the optimization. Let us denote the updated index
by k0 and the previous one by k. If k0\k, it means that the car becomes closer to the
target state and otherwise it gets farther from the target or there is no improvement. Our
system keeps track of the number of times when k0 � k denoted by T , while resetting
T ¼ 0 otherwise. Then, if T [Tmax, where Tmax is the maximum number of trials that
have failed to find more improvement (we set Tmax ¼ 5 in all our experiments), our
system turns reset signal g on to completely restart the optimization as explained in
Sect. 4.3 in order to encourage CMA to find a better solution with a new normal
distribution. However, we do not use this scheme when k0 is less than small threshold
kmin (we set kmin ¼ 10 in all our experiments), because it means that the car is already
quite near the target state and any more improvement is hard to be made. Our system
also activates reset signal g when the user has changed the target state to restart the
optimization with the new target.

6 Experimental Results

We show results for garage parking (Sect. 6.2), parallel parking (Sect. 6.1), and
interactive parking (Sect. 6.3) based on on-line user inputs. The proposed framework
was implemented in C/C++ programming languages. We adopted the C implementa-
tion of CMA [19] to solve our trajectory optimization problems. All experiments were
conducted on a desktop computer with Intel Core TM i7 processor (3.5 GHz, 6 cores)
and 32 GB memory. We set h ¼ 0:05 s and used the time window of 3.5 s N ¼ 70ð Þ.
All the weight values used for all experiments are provided in Table 1.

Interactive Car Parking Simulation Based on On-line Trajectory Optimization 279

6.1 Garage Parking

In this experiment, we applied our method to park the car driving into a garage without
and with a dynamic obstacle moving near it when the car’s initial orientation was
different from the target one by 90 degrees (See the supplementary video). In the
former (Fig. 2), the car first changed its orientation in front of the entrance to be aligned
with the target orientation and then immediately moved into the garage. In the latter
(Fig. 3), the car first moved to a side wall of the garage to avoid collision with the
moving obstacle (red car) unlike the former case, while the obstacle was passing by the
entrance of the garage, and then moved backwards until fully entering the garage.

6.2 Parallel Parking

We conducted experiments on parallel parking without and with a moving obstacle
(See the supplementary video). In the former (Fig. 4), the car first headed left-forward
in preparation for getting into the parking space and then moved backward handling to
the left near the wall behind. It steered to the right toward the side wall to adjust its
orientation more accurately. In the latter (Fig. 5), we observed that the car moved much
more forward than the former case to avoid collision with the moving obstacle. After
this, the car showed a similar sequence of moves to the former.

Table 1. Weight values.

wdir wtgt wcol weng wlen

10�1 5; 5; 3; 1ð Þ 105 10�1; 10�5
� �

10�3

Fig. 2. Garage parking without a moving obstacle.

280 J. Lim et al.

6.3 Interactive Parking

In this experiment, our method allowed the user to interactively change the environ-
ment by moving the position of the walls and introducing a moving obstacle (red car) at
any time point as well as the target position and orientation (See the supplementary
video). Whenever the environment changed, our method restarted the trajectory opti-
mization to find a new path that reflects the current environmental changes while
rejecting the previous path (Fig. 6). As the moving obstacle appeared at a certain time
point and approached, the car moved backward to avoid collision with it. After this,
however, it moved back to the target position while satisfying the target orientation as
well.

Fig. 4. Parallel parking without a moving obstacle.

Fig. 3. Garage parking with a moving obstacle. (Color figure online)

Interactive Car Parking Simulation Based on On-line Trajectory Optimization 281

7 Conclusions

In this paper, we presented an on-line trajectory optimization framework for generating
the parking movements of a car in a multi-obstacle environment. The proposed system
repeatedly generates an optimal control sequence to drive the car toward the target state

Fig. 5. Parallel parking with a moving obstacle.

Fig. 6. Interactive parking with on-line user intervention. (Color figure online)

282 J. Lim et al.

by solving a finite-horizon trajectory optimization problem for a short time window
while moving it along the time axis. As an optimization solver, we employed a
sampling-based optimization technique called CMA, which requires no derivative
information for an objective function. It facilitates formulating a car-parking problem
with high-level objectives and dealing with collision events between the car and
environment without any precomputation. We also proposed a simple and effective
scheme to adjust optimization parameters such as near-target frame index and reset
signal so that it may converge into the target state quickly and keep improving its
solution. Our method can produce convincing parking maneuvers for garage parking,
parallel parking, and interactive parking with on-line user inputs.

Though our framework can effectively avoid collision with a moving object as well
as static obstacles, there is no theoretical guarantee on this constraint. We also assumed
that the environmental state is fully known to perform collision detection, but it is not
available to actual autonomous vehicles in general. This issue could be addressed by
introducing a more realistic problem setup based on sensor inputs for environmental
information. Our framework is somewhat slower than real time due to a large number
of optimization variables (138 variables). It would be an interesting future research
direction to implement the evaluation of an objective functions on GPU to improve the
performance.

References

1. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol.
Comput. 11(1), 1–18 (2003)

2. Sekhavat, S., Laumond, J.P.: Topological property for collision-free nonholonomic motion
planning: the case of sinusoidal inputs for chained form systems. IEEE Trans. Robot.
Autom. 14(5), 671–680 (1998)

3. Reeds, J., Shepp, L.: Optimal paths for a car that goes both forwards and backwards. Pac.
J. Math. 145(2), 367–393 (1990)

4. Hsieh, M.F., Ozguner, U.: A parking algorithm for an autonomous vehicle. In: 2008 IEEE
Intelligent Vehicles Symposium, pp. 1155–1160. IEEE, June 2008

5. Lee, K., Kim, D., Chung, W., Chang, H.W., Yoon, P.: Car parking control using a trajectory
tracking controller. In: International Joint Conference on SICE-ICASE 2006, pp. 2058–
2063. IEEE, October 2006

6. Laumond, J.P., Jacobs, P.E., Taix, M., Murray, R.M.: A motion planner for nonholonomic
mobile robots. IEEE Trans. Robot. Autom. 10(5), 577–593 (1994)

7. Muller, B., Deutscher, J., Grodde, S.: Continuous curvature trajectory design and
feedforward control for parking a car. IEEE Trans. Control Syst. Technol. 15(3), 541–553
(2007)

8. Kim, D., Chung, W., Park, S.: Practical motion planning for car-parking control in narrow
environment. IET Control Theor. Appl. 4(1), 129–139 (2010)

9. Barraquand, J., Latombe, J.C.: Nonholonomic multibody mobile robots: controllability and
motion planning in the presence of obstacles. Algorithmica 10(2–4), 121 (1993)

10. LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20
(5), 378–400 (2001)

Interactive Car Parking Simulation Based on On-line Trajectory Optimization 283

11. Kuwata, Y., Fiore, G.A., Teo, J., Frazzoli, E., How, J.P.: Motion planning for urban driving
using RRT. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2008, pp. 1681–1686. IEEE, September 2008

12. Buehler, M., Iagnemma, K., Singh, S. (eds.): The DARPA Urban Challenge: Autonomous
Vehicles in City Traffic, vol. 56. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03991-1

13. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–
580 (1996)

14. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous vehicles in
unknown semi-structured environments. Int. J. Robot. Res. 29(5), 485–501 (2010)

15. Zhao, Y., Collins Jr., E.G.: Robust automatic parallel parking in tight spaces via fuzzy logic.
Robot. Auton. Syst. 51(2–3), 111–127 (2005)

16. Gorinevsky, D., Kapitanovsky, A., Goldenberg, A.: Neural network architecture for
trajectory generation and control of automated car parking. IEEE Trans. Control Syst.
Technol. 4(1), 50–56 (1996)

17. Zips, P., Bock, M., Kugi, A.: A fast motion planning algorithm for car parking based on
static optimization. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2392–2397. IEEE, November 2013

18. Tassa, Y., Mansard, N., Todorov, E.: Control-limited differential dynamic programming. In:
2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1168–1175.
IEEE, May 2014

19. https://www.lri.fr/*hansen/cmaes_inmatlab.html
20. Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors through

online trajectory optimization. In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4906–4913. IEEE, October 2012

284 J. Lim et al.

http://dx.doi.org/10.1007/978-3-642-03991-1
http://dx.doi.org/10.1007/978-3-642-03991-1
https://www.lri.fr/%7ehansen/cmaes_inmatlab.html

	Interactive Car Parking Simulation Based on On-line Trajectory Optimization
	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Trajectory Optimization
	4.1 System Dynamics
	4.2 Problem Formulation
	4.3 Optimization

	5 Parameter Adjustment
	5.1 Near-Target Frame Index Computation
	5.2 Reset Signal Computation

	6 Experimental Results
	6.1 Garage Parking
	6.2 Parallel Parking
	6.3 Interactive Parking

	7 Conclusions
	References

