)

Check for
updates

ANTETYPE-PM: An Integrated Approach
to Model-Based Evaluation of Interactive
Prototypes

Dieter Wallachl’z(m), Sven Fackert!, Jan Conrad?, and Toni Steimle!

! Ergosign GmbH, Saarbriicken, Germany
dieter.wallach@ergosign. de
2 University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany

Abstract. In this paper, we present an integrated approach to model-based
evaluations of interactive prototypes. By combining a state-of-the-art cognitive
architecture, AcT-R, with an elaborated prototyping tool, ANTETYPE, we enable
UX designers without modeling experience to derive quantitative performance
predictions for interactive tasks. Using ANTETYPE-PM, an interface designer
creates an interactive prototype and demonstrates the action sequences to
complete relevant application scenarios using the monitoring and/or instruction
mode of ANTETYPE-PM. The system learns the interaction paths and predicts the
interaction times over trials using Act-R’s symbolic and subsymbolic (i.e.
statistical) learning mechanisms. To illustrate the working of ANTETYPE-PM, an
example is provided and contrasted with empirical data.

Keywords: Model-based evaluation - Usability evaluation
Cognitive architectures - Quantitative performance prediction

1 Introduction

In this paper we report our progress on an integrated approach to model-based eval-
uation combining an advanced prototyping tool with a state-of-the-art cognitive
architecture to derive quantitative performance predictions for interactive tasks. After
first introducing the prototyping tool ANTETYPE, we discuss some limitations of
empirical usability testing to motivate the use of model-based evaluation. Given that
our approach is based on the cognitive architecture Act-R, we provide a brief overview
of this framework and compare related models to model-based evaluation. Finally, we
illustrate the use of our integrated tool, ANTETYPE-PM, and present an example for its
application in a real-world task.

1.1 User Interface Prototyping with ANTETYPE

ANTETYPE is a sophisticated design tool to create interactive prototypes for desktop,
mobile and web-based applications. ANTETYPE was designed to support a seamless
transition from early wireframes defining the layout of an interface, over the creation of
visual design alternatives to the creation of complex interactive prototypes. Its layout

© Springer International Publishing AG, part of Springer Nature 2018
A. Marcus and W. Wang (Eds.): DUXU 2018, LNCS 10918, pp. 560-572, 2018.
https://doi.org/10.1007/978-3-319-91797-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91797-9_40&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91797-9_40&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91797-9_40&domain=pdf

ANTETYPE-PM: An Integrated Approach to Model-Based Evaluation 561

engine, advanced features for visual design and elaborated functionality for defining
interactions, transitions and animations make ANTETYPE a highly flexible and powerful
tool for developing sophisticated interactive prototypes.

Requirements for designing interactive prototypes have become increasingly
complex: ANTETYPE’s layout engine supports the creation of responsive designs that
fluidly adapt to different screen dimensions and provide helpful layout declarations for
development. Complementing the layout engine, elaborated visual design functionality
enables designers to work with ANTETYPE from early conceptual wireframes to com-
prehensive high-fidelity prototypes. Enhancing ANTETYPE prototypes with transitions
and animations guide users in understanding the consequences of their actions without
requiring designers to switch to another tool.

Iteratively modifying and refining a prototype can become a very time-consuming
task. Differentiating local and global elements, ANTETYPE’S widget concept allows the
automatic propagation of changes to the visual appearance and behavior of an interface
widget—relieving designers from the tedious manual updating of all instances of the
widget spread over potentially numerous screens of a prototype. The definition of state-
dependant, hierarchically nested widgets finally enables the creation of powerful,
reusable interface elements to meet the challenges of complex prototypes.

Over the course of a project, ANTETYPE is typically used to iteratively explore and
evaluate ongoing design work with stakeholders. A particularly important application
of ANTETYPE prototypes is their use in empirical usability tests involving representative
participants.

2 Limitations of Empirical Usability Tests

Empirical usability testing is regarded as a hallmark of human-centered design
approaches. While usability testing of interactive prototypes in a usability lab allows
for the elicitation of valuable feedback from prospective users, several restrictions need
to be considered—especially when being interested in guantitative performance indi-
cators of an interface.

Predicting the time for the routine performance of users dealing with relevant key
scenarios, for example, is severely limited when a novel interface is presented in a
usability test: participants first need to learn how to operate the new interface.
Depending on its complexity, a level of routine interaction will only be reached after
significant amounts of practice with the user interface. The time requirements to arrive
at such skilled performance might well be outside the practical scope of most usability
tests of complex applications. It is, to give an obvious example, not trivial to isolate
quantitative measures of efficiency from learnability metrics of an interface in empirical
usability tests—at least for more complex applications.

Instructions in most usability tests typically do not explicitly require participants to
complete tasks as fast as they can. Given that participants know that their behavior is
recorded in a usability test, it is reasonable to assume that their efforts will at least be
influenced by the goal to show an effective, error-free behavior—which stands in
obvious conflict with a focus on time-efficient interaction.

562 D. Wallach et al.

Referring to quantitative performance predictions in general, the typical setting and
instruction in an empirical usability test—that is often mainly targeted at the elicitation
of qualitative insights—poses additional complications. To name just one: in most
empirical usability tests, participants are asked to think aloud while working on test
scenarios. Empirical studies (Steimle and Wallach 2018) have shown that concurrent
thinking aloud results in significant increases in the time requirements for completing a
task, contradicting the goal of valid performance measurement. For what it’s worth, the
instruction to think aloud can hardly be regarded as a representative characterization of
typical working situations.

While we agree that empirical usability testing is an irreplaceable evaluation
method, the aforementioned challenges need to be carefully considered when following
the goal of deriving quantitative performance predictions for the routine work with an
interactive system. Extended practice times with an interface to overcome learning
effects in usability tests help to arrive at valid performance predictions for routine
interactions. The additional effort, however, inevitably results in even higher costs for
conducting empirical usability evaluations—worsening the cost-benefit ratio that
inspired Nielsen (1989) to coin empirical usability tests a “deluxe method”.

3 Model-Based Evaluation Using Act-R

Model-based evaluations, i.e. using artificial cognitive crash-test dummies to simulate
user behavior with interactive systems provide a promising and cost-effective approach
to overcome at least some of the challenges discussed in the previous section. In the
following we will spell out the advantages of combining a powerful prototyping tool
like ANTETYPE with model-based evaluation on the grounds of a so-called cognitive
architecture like Act-R (see Anderson et al. 2004; Laird et al. 2017).

Integrating a model-based evaluation module into ANTETYPE allows quantitative
performance predictions for interaction scenarios by simply running “simulated users”
with an interface prototype: UX designers can explore the quantitative implications of
their design decisions in the very same tool that they are using for the design of user
interfaces. In the resulting tool, that we denote ANTETYPE-PM, UX designers can analyze
and compare the performance of different design options for relevant interaction paths
through key scenarios. Quantitative performance evaluations do not need to be post-
poned until the design of a user interface is largely completed—the temporal impli-
cations of an interaction path can be explored whenever the part of the user interface to
support the respective path is designed, allowing a continuous inspection of perfor-
mance parameters during the iterative course of interface design activities. Before
illustrating how to work with ANTETYPE-PM, we introduce the AcT-R cognitive archi-
tecture that forms the theoretical framework underlying the proposed model. After that,
we will contrast it with alternative modeling approaches.

The Act-R Cognitive Architecture. A cognitive architecture embodies a compre-
hensive scientific hypothesis about the structures and mechanisms of the human cog-
nitive system that can be regarded as (relatively) invariant over time. AcT-R provides
an integrative theoretical framework for explaining and predicting human behavior and

ANTETYPE-PM: An Integrated Approach to Model-Based Evaluation 563

is instantiated as a theoretically justified, implemented software system allowing for the
computational modeling of a wide range of phenomena. Authors have been discussing
the potential benefits of applying cognitive architectures in the domain of
Human-Computer Interaction for more than twenty years (Kieras 2007). Their broader
use in HCI, however, has been fostered by the extension of architectures with
perceptual-motor modules that allow the modeling of perception and interaction with
an external world.

Act-R comprises symbolic learning mechanisms to acquire new if-then-rules
(so-called productions) in procedural memory and declarative facts (so-called chunks)
in declarative memory, as well as subsymbolic mechanism for the statistical tuning of
their appropriate application. AcT-R can perceive and manipulate the external world
that is defined, in the case of ANTETYPE-PM, by an interface prototype. Figure 1 depicts
a structural overview of AcT-R and its interplay within ANTETYPE-PwM.

By

ANTETYPE-PM

Declarative
Memory

ActR

4,

Oa/’_

Pattern Matching
and
Production Selection

Perceptual
Module

Update
Vision (Visicon)

Action

ANTETYPE

Monitoring

Interface Module

Instruction

Declarative
Knowledge
from Monitoring
& Instruction

Module

~

o~

Demonstration
& Instruction by
UX Designer

=

Fig. 1. Interplay of ANTETYPE and the cognitive architecture AcT-R in ANTETYPE-PM

564 D. Wallach et al.

Act-R provides a theoretical framework that comprises empirically motivated
constraints (see Kieras 2007) on the details of models to be written within this
framework.

In ANTETYPE-PM we have instantiated a core AcT-R model that provides a set of
operators:

e to perceive interface objects like buttons or labels on ANTETYPE prototypes,
to interact with ANTETYPE’S interface controls,
to encode declarative and procedural knowledge for monitoring and learning
actions that the model observes,

e to represent basic user-provided instructions on the conditional application of
actions.

Before illustrating how to work with ANTETYPE-PM, we briefly describe related work
in the field.

4 Creating Cognitive Models

Historically, different paths have been taken to arrive at cognitive models for predicting
performance in Human-Computer Interaction scenarios. These paths differ, among
other criteria, in the required effort for model development, necessary knowledge about
the theoretical Cognitive Science underpinnings of a model and prerequisite modeling
skills, as well as in the technical support to create models. A brief glance at cognitive
modeling in the field of HCI unveils roughly the following approaches:

e Dbuilding cognitive models by hand, which technically requires nothing more than
just a pen and piece of paper for establishing an interaction sequence (typically
derived from task analysis) and calculating time parameters of hypothetical human
cognitive, perceptual and motor operators (see Sect. 4.1 of this paper);

e using software tools for (more or less) automating the aforementioned process of
calculating the temporal effects of assumed operator sequences underlying the
interaction path to be predicted (see Sect. 4.1);

o utilizing comprehensive cognitive modeling tools to assist a modeler in both the
development and the simulation of a performance model (see Sect. 4.2).

The first two approaches presuppose a basic understanding of Cognitive Science
theory to achieve valid results and typically require a serious amount of time for model
development. The final approach may seem most promising because of its support in
model creation and automating the generation of its predictions. However, without
getting deep into the theoretical and syntactic details of the respective modeling tool or
cognitive architecture, model development will be limited to very simple tasks. In the
next section, we will look at the approaches in more detail.

ANTETYPE-PM: An Integrated Approach to Model-Based Evaluation 565

4.1 Hand-Crafted and Semi-automatic Models

Initially introduced by Card et al. (1980) the Keystroke-Level Model (KLm) provides a
framework for developing models to predict execution times for expert users com-
pleting routine tasks with a given interactive system. The Kim is an example of a
(simplified) architecture that forms a foundation for model-based evaluations of design
suggestions. Using this approach, a modeler bases his work on a task analysis before
then going through the task step by step to translate each identified step into operators
declared in the Kim. Each of these operators describes a subpart of the task at the
keystroke-level and is associated with a time value. The execution time for an entire
task is then calculated as the sum of the individual operators (in the simple case of
sequential actions). While modeling is quite straightforward as long as operators only
represent motor actions, the situation becomes complicated with cognitive processes.
Kum, focusing on the keystroke-level, takes a rather abstract stance on cognitive pro-
cesses and proposes the insertion of mental operators. Mental operators do not have
fixed associated time values, but require a modeler to estimate the duration of steps to
represent a user’s thinking processes.

Apart from the time-consuming process of manually analyzing a task and having to
write down each step when calculating execution times by hand, the application of Kim
is best suited to what its name suggests: modeling at the observable level of key
strokes. While it may be necessary to make decisions about underlying cognitive
processes at various stages of modeling more complex interactions, Kim fails to pro-
vide much guidance on their duration.

Initial steps toward automating the development and simulation of cognitive
models have been taken: Computer programs like GLEAN (Kieras et al. 1995) or
Cogulator (“Cogulator: A Cognitive Calculator”, 2018) provide a graphical user
interface for writing cognitive models. Using them, modelers no longer need to
manually calculate individual time predictions but are supported by software to com-
pute and output modeling results. While such systems improve the efficiency of
developing models and the determination of their temporal consequences, they still lack
appropriate support at the cognitive level.

With regard to deriving quantitative predictions, running an AcT-R model can also
be classified as a semi-automated way of model-based evaluation. In contrast to the
aforementioned approaches, however, the proposed structures and processes of the
Act-R cognitive architecture provide a detailed theoretical framework at the cognitive
level. This advantage does not come without costs: cognitive architectures have
notoriously been known to be hard to learn. Model development in a cognitive
architecture is outside the scope for most non-specialists and it is hard to imagine UX
designers to include cognitive modeling with ACT-R in their daily toolbox. Automated
generation of evaluation models, discussed in the next section, offer a promising step to
reduce modeling complexity, thus making cognitive modeling accessible to a larger
range of users.

566 D. Wallach et al.

4.2 Automated Generation of Models

The obvious next challenge after automating the simulation of cognitive models is to
automate model creation per se. A well-known endeavor in this direction is the
so-called CocTooL — proposed by Bonnie E. John and colleagues. CocTooL consists of
tools that “allow a Ul designer to mock up an interface as an HTML storyboard,
demonstrate a task on that storyboard, and automatically produce a consistent, correct
Kuim of that task that runs in the Act-R cognitive architecture (Anderson and Lebiere
1998) to produce predictions of skilled performance time” (John et al. 2004, p. 462).
The advantages of such an approach are obvious: a designer requires no cognitive
modeling skills because the model is created automatically while the designer
demonstrates the task.

While the reduction in effort and the cost savings using CogTooL compared to plain
Act-R are without doubt impressive, this approach is still quite limited to the
boundaries of Kim. Le. a model-based evaluation using CocTooL still focuses mainly
on predicting the total execution times for tasks performed by skilled users under the
assumption that no errors occur. In addition, initial versions of CocTooL failed to make
use of the full potential of the underlying Act-R architecture: cognitive processes were
still reduced to the insertion of mental operators that only pause model execution for
estimated amounts of time (John et al. 2004).

Although a more recent development version of CocTooL, called CocTooL
ExpLORER (Teo et al. 2012), paved the way for modeling goal-directed user exploration
on the cognitive level, the following reasons motivated the need for a tool like
ANTETYPE-PM:

e development of CocTooL went into quiescence: at the time of writing this paper, the
latest stable release of CogTool dates back to December 2013 using deprecated
versions of ACT-R and Java;

e in order to use CocTooL, design prototypes need to either be rebuilt within Coc-
TooL or imported as HTML files, doubling the amount of work for designers;

e advanced modelers cannot easily elaborate or extend an AcT-R model generated by
CocTooL, giving away options for its refinement.

While the last argument is not without importance, a core objective for developing
ANTETYPE-PM was to create a valuable tool for UX designers without requiring users to
have a comprehensive cognitive modeling background. In the next section we present
an example for using ANTETYPE-PwMm.

5 Using ANTETYPE-PM: An Example

In order to explain how to apply ANTETYPE-PM in real world tasks, we present a first
example that was targeted at predicting user performance with a new interface for a
software-controlled riveting machine for airplanes. Before going into the details of
using ANTETYPE-PwM, the following list provides an overview of the necessary working
steps, with the final step being optional:

ANTETYPE-PM: An Integrated Approach to Model-Based Evaluation 567

Create an interactive prototype using ANTETYPE-PM.

Explain the task to ANTETYPE-PM using demonstration and/or instruction.
Let ANTETYPE-PM generate the cognitive model for the task.

Run an arbitrary number of simulated users on the task.

Inspect the predictions and analyze their implications.

(Revise your design solution and run the simulation again.)

Sl

5.1 Creating Interactive ANTETYPE-PM Prototypes

ANTETYPE-PM interacts directly with design prototypes and thus requires a design
proposal to exist that takes the form of an interactive ANTETYPE prototype. As discussed
at the beginning of this paper, ANTETYPE assists UX designers throughout the entire
design process from wireframes to high-fidelity prototypes. A model-based evaluation
using ANTETYPE-PM starts off with the creation of an interactive, low-fidelity prototype
(i.e. linked wireframes) of the intended system. This starting point lays the foundation
for an iterative design process where the early detection of potential usability short-
comings may prevent more expensive alterations of visually elaborated, high-fidelity
solutions. Creating the prototype for ANTETYPE-PM does not differ from the usual
practice of using ANTETYPE—except that a designer needs to denote which interface
objects the underlying Act-R model can perceive. Figure 2 depicts an ANTETYPE pro-
totype of the software-based riveting machine. The interface was designed by an
external company to assist users in operating large riveting machines in a complex
context of use. Supporting an efficient and error-free interaction is a mandatory
requirement for the machine’s user interface. The next section focuses on how to
predict the performance of the interface using ANTETYPE-PMm.

5.2 Explain the Task Using Demonstration or Instruction

In addition to an interactive prototype that is to be evaluated, a cognitive model in
ANTETYPE-PM needs relevant knowledge about the task and its workflow, as well as
generic, task-independent knowledge about the operation of user interfaces in general.
ANTETYPE-PM thus comes with a default set of generic productions that allow interaction
with user interfaces, as well as knowledge to encode observed actions. Task knowledge
and the sequence of involved interaction steps, however, need to be provided to
ANTETYPE-PM by the user.

As discussed in Sect. 4.2, ANTETYPE-PM belongs to the category of tools that
automate the development of cognitive models. To provide the necessary task
knowledge, a user demonstrates the interaction path for a task scenario while ANTETYPE-
Pwm is observing and learning the respective interaction sequence. There are, of course,
dependencies between task steps and decisions that cannot just be derived from
observing a designer completing the task with a prototype. An interaction with a check
box, for example, may depend on its current state (is it checked or not?), or the next
interaction step may depend on the outcome of a comparison of values that are pro-
vided by the interface. To resolve the rationale behind such decisions, relevant
instructions can be entered into ANTETYPE-PM’s instruction module, resulting in the
creation of task-specific knowledge in AcT-R’s declarative memory.

568 D. Wallach et al.

5.3 Generation of the Cognitive Model

Based on the information collected from demonstration and/or instruction, the cogni-
tive model is generated. Declarative facts are encoded as AcT-R chunks and stored in
the declarative memory of the model, whereas procedural knowledge is represented as
productions in Act-R.

The following code shows an example of a chunk type declaration used to store
task-specific information about a simple button click interaction. It contains a name for
the chunk type, an identifier, the text of the button that should be clicked and the kind
of button on the mouse that should be pressed. The name of the chunk type does not
have any impact on the model execution. Its main purpose is to improve the readability
and clarity of the model. The interaction identifier is used to keep track of the position
within an interaction sequence. The last information of this chunk type determines the
kind of button that should be clicked. This may be the left or right button of the mouse.

(chunk-type button-click-interaction
interaction-id
button-text
mouse-button)

This declaration is used to instantiate chunks containing the aforementioned
information and is only one example for how task-specific information is delivered to
the model. As soon as the model has been generated it is ready for simulating user
performance, which is described in the next section.

5.4 Run a Simulation

Running a simulation in ANTETYPE-PM is a straightforward process. A designer just
needs to select a task scenario and determine the number of simulation trials that
ANTETYPE-PM should work on this scenario. A simulation can be run in real time or in
speed mode. The former will visualize the simulation by highlighting the visual
attention and eye movements of a simulated user, as well as showing the respective
mouse movements and clicks. A user’s visual attention (yellow circle in Fig. 2) and eye
movements (blue circle in Fig. 2) are simulated using an AcT-R module called Emma,
developed by Salvucci (2000). Running the simulation in speed mode will provide
faster results without visualization. The results of the respective modes do not differ, of
course.

At this point we need to differentiate between different kinds of potential ANTETYPE-
PMm users. A typical UX designer without a comprehensive background in Cognitive
Science will be able to perform a model-based evaluation by simply following the
aforementioned steps. Users with an advanced understanding of Act-R, however, can
inspect and enhance a model’s symbolic (declarative and procedural) knowledge or
fine-tune its subsymbolic parameters in order to explore the model in an extended
scope.

ANTETYPE-PM: An Integrated Approach to Model-Based Evaluation 569

Fig. 2. ANTETYPE-PM showing the AcT-R trace (left) and interaction with a prototype (right)
(Color figure online)

5.5 Inspect and Interpret Predictions

After the specified number of simulation runs is completed, results are presented to the
user of ANTETYPE-PM. Let us assume that a user is interested in a prediction of the time
that it takes for a novice user to achieve a specific task performance with a prototype.
Running the simulation for multiple trials will output resulting learning curves that
illustrate the transition from novice to more advanced users in terms of their respective
time requirements for completing the task. A designer can then utilize this data along
with the observations from watching the visualization of the simulation to under-
standing the time spent in different subparts of the task. Based on an interpretation of
these findings, a design solution can then be revised, evaluated again and finally
compared to previous solutions.

Repeating this process until the design solution meets a level of desired perfor-
mance provides designers with constant feedback to derive informed design decisions
when iteratively improving an interface. Revising a prototype is straightforward with
ANTETYPE-PM and usually does not even require the modeler to configure the task, i.e. to
demonstrate/instruct the interaction scenario, again. L.e., altering button positions, sizes,
colors or the arrangements of elements will not require the cognitive model to be
changed — the implications of the interface changes, however, will be predicted by the
model. This enables designers to rapidly try out and compare design variations and to
discover potential deficiencies of an interface at a very early stage.

6 Validating the ANTETYPE-PM Model

While it is tempting in the context of writing a paper to present a fine-tuned model that
provides impressive fits to available data, we deliberately decided to refrain from such
an endeavor. Instead, we report the bare performance of the model without adjusting

570 D. Wallach et al.

any subsymbolic Act-R parameter (e.g. leaving all AcT-R parameters at their default
value), not making use of ANTETYPE-PM’s instruction module, as well as not adjusting
or handcrafting the generated Act-R model. Formally, this comes down to a zero
parameter model — and that is exactly what is required given the goal of providing a
tool for UX designers without cognitive modelling, or, more specifically, Act-R
experience.

In order to collect data for an interface proposal for the riveting machine modeled in
ANTETYPE-PM, we ran a study with 15 participants (8 male, 7 female; mean age: 28.5,
SD: 3.8). All participants were very experienced users working professionally with
computers in their daily work. After introducing them to the steps of a task scenario
with the user interface for the riveting machine, each participant was given a practice
trial to clarify questions. After that, all participants were asked to repeat the task
scenario for a total of 14 trials.

ANTETPYE-PM was trained for the task scenario by a UX designer who demonstrated
the interaction steps while the model observed the respective actions. Then the model
was run for a single trial to check its ability to reproduce the interaction path, before
simulating a total of 14 runs through the task scenario. L.e., we did not only maintain all
Act-R parameters at their standard values, but also used the very same number of trials
that the participants were required to do. Figure 3 shows the mean time trajectories of
the participants and the runs of Act-R over the 14 trials of the task scenario. While the
model is clearly significantly slower than the participants in this task, a comparison of
the learning trajectories shows an impressive fit with an 1 of .97 (see Fig. 4).

50

45 . . -

40 " oa

_ I
|

35 " pm g g

30
= *

*
g2 *
£ * * * - # Real Users
- * * *
¢ o o o

20 M Antetype P/M Model
15

10

5

0

0 2 4 6 8 10 12 14 16

Trial

Fig. 3. Performance of the ANTETYPE-PM model in comparison to empirically obtained user
performance

ANTETYPE-PM: An Integrated Approach to Model-Based Evaluation 571

50

48

R?=0,97377

46

44

42

40

— Linear (Correlation)

Antetype P/M Model Time (s)

16 18 20 22 24 26 28 30 32 34 36
Real User Time (s)

Fig. 4. Correlation between the ANTETYPE-PM model and participant data

While we of course need to explore the model in a broad range of tasks to
appropriately judge its practical value, we regard the obtained initial results to be
encouraging. Adjusting AcT-R parameters would of course result in a much better
correspondence of the absolute values of the model and the empirical data. This,
however, would not bring us closer to attaining our goal of developing a tool that is of
practical significance. Post-hoc data fitting, although potentially exiting for cognitive
modelers, is not of practical interest for a UX designer. Instead, receiving results to
derive informed design decisions are needed to speed up iterative development — and
such design decisions are to be taken before data with a resulting user interface can be
collected. This of course does not exclude the exploration of Act-R parameters that
turn out to be more appropriate than the default values in Human-Computer Interaction
scenarios.

7 Summary

In this paper we summarized our initial progress on developing a model-based eval-
uation approach that is combined with an advanced prototyping tool. While an interface
created with the prototyping tool provides the external system environment for a human
user, a generated model allows UX designers to simulate artificial users interacting
with this interface. Focusing mainly on UX designers with no or little modeling
experience, the resulting system, ANTETYPE-PM, comprises the AcT-R cognitive archi-
tecture and allows its use to predict quantitative usability performance parameters. Next
research steps will include more detailed analyses to characterize the set of interactive
tasks for which the approach is appropriate. While we are currently focusing on
quantitatively predicting task times and learning curves with ANTETYPE-Pw, initial steps
towards the prediction of errors have been undertaken.

572 D. Wallach et al.

Acknowledgements. The authors are thankful to the German Federal Ministry of Education and
Research for funding the research reported in the paper in the SIBED project (support code
01IS16037A).

References

Steimle, T., Wallach, D.: Collaborative UX Design. dPunkt, Heidelberg (2018)

Nielsen, J.: Usability engineering at a discount. In: Salvendy, G., Smith, M.J. (eds.) Proceedings
of the Third International Conference on Human-Computer Interaction on Designing and
Using Human-Computer Interfaces and Knowledge Based Systems, 2nd edn, pp. 394—401.
Elsevier, Boston (1989)

Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated
theory of mind. Psychol. Rev. 111(4), 1036-1060 (2004)

Laird, J.E., Lebiere, C., Rosenbloom, P.S.: A standard model of the mind: toward a common
computational framework across artificial intelligence, cognitive science, neuroscience, and
robotics. Al Mag. 38(4), 13-26 (2017)

Kieras, D.E.: Model-based evaluation. In: Jacko, J., Sears, A. (eds.) The Human-Computer
Interaction Handbook, 2nd edn, pp. 1139-1151. Lawrence Erlbaum Associates, Mahwah
(2007)

Card, S.K., Moran, T.P., Newell, A.: The keystroke-level model for user performance time with
interactive systems. Commun. ACM 23(7), 396-410 (1980)

Kieras, D.E., Wood, S.D., Abotel, K., Hornof, A.: GLEAN: a computer-based tool for rapid
GOMS model usability evaluation of user interface designs. In: UIST 1995 Proceedings of the
8th annual ACM Symposium on User Interface and Software Technology, pp. 91-100. ACM,
New York (1995)

Cogulator: A Cognitive Calculator. http://cogulator.io/. Accessed 08 Feb 2018

Anderson, J.R., Lebiere, C.: The Atomic Components of Thought. Erlbaum, Mahwah (1998)

John, B.E., Prevas, K., Salvucci, D.D., Koedinger, K.: Predictive human performance modeling
made easy. In: CHI 2004 Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 455-462. ACM, New York (2004)

Teo, L., John, B.E., Blackmon, M.H.: CogTool-Explorer: a model of goal-directed user
exploration that considers information layout. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 2479-2488. ACM, New York (2012)

Salvucci, D.D.: A model of eye movements and visual attention. In: Proceedings of the
International Conference on Cognitive Modeling, pp. 252-259. Universal Press, Veenendaal
(2000)

http://cogulator.io/

	Antetype-Pm: An Integrated Approach to Model-Based Evaluation of Interactive Prototypes
	Abstract
	1 Introduction
	1.1 User Interface Prototyping with Antetype

	2 Limitations of Empirical Usability Tests
	3 Model-Based Evaluation Using Act-R
	4 Creating Cognitive Models
	4.1 Hand-Crafted and Semi-automatic Models
	4.2 Automated Generation of Models

	5 Using Antetype-Pm: An Example
	5.1 Creating Interactive Antetype-Pm Prototypes
	5.2 Explain the Task Using Demonstration or Instruction
	5.3 Generation of the Cognitive Model
	5.4 Run a Simulation
	5.5 Inspect and Interpret Predictions

	6 Validating the Antetype-Pm Model
	7 Summary
	Acknowledgements
	References

