
Architecting Enterprise Applications
for the Cloud: The Unicorn Universe Cloud

Framework

Marek Beranek1, Marek Stastny1, Vladimir Kovar1,
and George Feuerlicht2(&)

1 Unicorn College, V Kapslovně 2767/2, 130 00 Prague 3, Czech Republic
marek.beranek@unicorncollege.cz,

marek.stastny@unicornuniverse.eu,

vladimir.kovar@unicorn.eu
2 Prague University of Economics,

W. Churchill Square. 4, 130 67 Prague 3, Czech Republic
george.feuerlicht@gmail.com

Abstract. Recent IT advances that include extensive use of mobile and IoT
devices and wide adoption of cloud computing are creating a situation where
existing architectures and software development frameworks no longer fully
support the requirements of modern enterprise application. Furthermore, the
separation of software development and operations is no longer practicable in
this environment characterized by fast delivery and automated release and
deployment of applications. This rapidly evolving situation requires new
frameworks that support the DevOps approach and facilitate continuous delivery
of cloud-based applications using micro-services and container-based tech-
nologies allowing rapid incremental deployment of application components. It is
also becoming clear that the management of large-scale container-based envi-
ronments has its own challenges. In this paper, we first discuss the challenges
that developers of enterprise applications face today and then describe the
Unicorn cloud framework (uuCloud) designed to support the development and
deployment of cloud-based applications that incorporate mobile and IoT devi-
ces. We use a doctor surgery reservation application “Lekar” case study to
illustrate how uuCloud is used to implement a large-scale cloud-based
application.

Keywords: Cloud computing � Software frameworks � Micro-services
DevOps

1 Introduction

The basic enterprise computing objectives that include low cost, reliability, security,
scalability, easy deployment and usability have not changed dramatically for decades.
However, the hardware and software environment in which enterprise applications are
being developed and deployed today is significantly different from that only a few
years ago. Enterprise architectures have been evolving to take advantage of the

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 258–269, 2018.
https://doi.org/10.1007/978-3-319-91764-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_21&domain=pdf

opportunities offered by advances in hardware and software technologies, in particular
the increase in processing power and storage capacity and the corresponding cost
reductions. The centralized architectures of the 1970s were superseded by client/server
architectures of the 1980s, and component-based architectures of the 1990s, and most
recently by the Service-Oriented Architecture (SOA) at the beginning of this century.
We are now experiencing another major transformation driven by wide adoption of
cloud computing and extensive use of mobile and IoT (Internet of Things) devices.
Public cloud platforms (e.g. AWS [1], Microsoft Azure [2], etc.) offer highly elastic
and practically unlimited computing power and storage capacity, allowing more flex-
ible acquisition of IT resources in the form of cloud services, overcoming the limita-
tions of on-premise IT solutions. Importantly, this new technology environment is
creating opportunities for innovative solutions at a fraction of the cost of traditional
enterprise applications. However, to take full advantage of these developments, orga-
nizations involved in the development of enterprise applications must adopt a suitable
enterprise architecture and application development frameworks. The architecture
needs to support various types of mobile devices (smart phones, tablets, etc.) and
incorporate interfaces that interact with IoT devices. Unlike traditional enterprise
applications that store data on local servers within the organization, most mobile
applications store data and deploy application components in the cloud, making it
possible for applications to be shared by very large user populations. Given the
requirements of modern business environments, the architecture needs to facilitate
rapid incremental development of application components, secure access to informa-
tion and easy and fast cloud deployment. There is now increasing empirical evidence
that to effectively address such requirements, the architecture needs to support
micro-services and container-based virtualization [3]. However, it is also becoming
clear that the management of large-scale container-based environments has its own
challenges and requires automation of application deployment, auto-scaling and control
of resource usage. The need for continuous delivery and monitoring of application
components impacts on the structure and skills profile of IT teams, favoring small
cross-functional teams leading to the convergence of development and operations
(DevOps). The separation of code development and declarative methods of environ-
ment configuration play an important role in increasing the productivity of the software
development process. Furthermore, developers of enterprise applications are increas-
ingly turning towards open source solutions that allow full control over the entire
software stack, avoiding costly proprietary solutions. Also, while the use of public
cloud platforms is economically compelling, an important function of the architecture
is to ensure independence from individual cloud providers, avoiding a provider lock-in.
Finally, the architecture should reduce the complexity of the application development
and maintenance process and facilitate effective reuse of application components and
infrastructure services.

These requirements demand a revision of existing architectural principles and
application development methods. In this paper, we describe the Unicorn Universe
Cloud Framework (uuCloud) designed to facilitate the management of modern
container-based cloud environments addressing the issues identified above. The
uuCloud framework is an integral part of the Unicorn Application Framework (UAF).
We have described the features of the UAF in an earlier publication [4], giving a

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 259

high-level overview of the architecture. In this paper, we focus on the uuCloud
framework and describe its key components and operation. In the next section (Sect. 2)
we review related literature focusing on DevOps, micro-services and container man-
agement frameworks. In the following sections, we briefly overview the UAF archi-
tecture (Sect. 3) and describe the uuCloud framework (Sect. 4). Section 5 illustrates
the application of the uuCloud framework using an example of the Doctor’s Surgery
Reservation System (Lekar Reservation System - LRS). Section 6 includes our con-
clusions and directions for future work. Please, note that all diagrams in this paper are
drawn using the Unicorn Business Modeling Language: https://unicornuniverse.eu/en/
uubml.html.

2 Related Work

Cloud-based application development frameworks and architectures have been the
subject of intense recent interest by industry practitioners and academic researchers, in
particular in the context of micro-services and DevOps [5]. As noted in Sect. 1, several
recent trends including cloud computing, extensive use of mobile and IoT devices have
impacted on the architecture of enterprise applications with corresponding impact on
application development frameworks [6]. Namiot et al. [7] discuss the advantages and
drawbacks of micro-services. The benefits of micro-services include the ability to use
different programming languages for individual services, improved scalability and
more rapid, incremental development within smaller teams. However, they also note
that the use of a larger number of smaller services increases deployment complexity.
One of the most important challenges involves decisions about how to partition the
application system into micro-services, i.e. making decisions about service granularity.
The paper discusses various service partitioning methods including the Scale Cube [8],
partitioning by use-cases and partitioning by resource type. Armin Balalaie et al. [3, 9]
consider achieving reusability, decentralized data governance, automated deployment
and built-in scalability to be the main motivations for migration to a micro-services
architecture. The authors report on their experiences during incremental migration and
architectural refactoring of a commercial “Mobile Backend as a Service” to
micro-services. They argue that standard virtualization methods introduce a heavy
computational overhead and therefore are not cost-effective, and recommend the use of
container-based virtualization to reduce overheads and to enable portability. The
authors discuss synergies between micro-services and DevOps approach that involves
small vertically structured cross-functional teams responsible for individual application
components and services. They conclude that the main lessons learned from the
migration to micro-services include: (1) the critical importance of service contracts as
the number of services increases, (2) the need for skilled developers who understand
distributed systems development, and (3) use of development templates. According to
Rimal et al. [10] the most important current challenge is the lack of a standard
architectural approach for cloud computing. The authors explore and classify archi-
tectural characteristics of cloud computing and identify several architectural features
that play a major role in the adoption of cloud computing. The paper provides
guidelines for software architects for developing cloud architectures. According to Raj

260 M. Beranek et al.

https://unicornuniverse.eu/en/uubml.html
https://unicornuniverse.eu/en/uubml.html

et al. [11] “The urgent thing is to embark on modernizing and refining the currently
used application development processes and practices in order to make cloud-based
software engineering simpler, successful, and sustainable.” The authors argue that
software development has become an inherently complicated task and that a system-
atic, disciplined, and quantifiable approach is essential to make software development
more manageable and to produce quality software products. A new requirements
engineering process and techniques for capturing requirements for cloud-based services
was proposed and illustrated using a large-scale case study based on Amazon Cloud
EC2 [12]. Adaptation of the software development life cycle for cloud computing has
been the subject of recent research interest. The differences between cloud service
provider and consumer SDLC life-cycles resulting from the use of externally provided
cloud services have been identified [13]. The authors describe a Service Consumer
Framework (SCF) that incorporates architectural extensions designed to support
operation in cloud computing environments [14].

While container technologies and micro-services have revolutionized application
development and deployment, it is also evident that the use of these technologies has its
limitations. More specifically, the management of large-scale container-based envi-
ronments requires automation to ensure fast and predictable application deployment,
auto-scaling and control of resource usage. At the same time, there is a requirement for
portability across different public and private clouds. To address such issues a number
of open source projects have been recently initiated; prominent examples include Cloud
Foundry [15], OpenShift [16] and Kubernetes [17]. These projects share many com-
mon concepts and in some cases technologies. A key idea of these open source plat-
forms is to abstract the complexity of the underlying cloud infrastructure and present a
well-designed API (Application Programming Interface) that simplifies the manage-
ment of container-based cloud environments. The Kubernetes project initiated by
Google in 2014 as an open source cluster manager for Docker has its origins in an
earlier Google container management system called Borg [18]. The Kubernetes project
is hosted by the Cloud Native Computing Foundation (CNCF) [19] that has a mission
“to create and drive the adoption of a new computing paradigm that is optimized for
modern distributed systems environments capable of scaling to tens of thousands of
self-healing multi-tenant nodes”. The objective is to facilitate cloud native systems that
run applications and processes in isolated units of application deployment (i.e. software
containers). Containers implement micro-services which are dynamically managed to
maximize resource utilization and minimize the costs associated with maintenance and
operations. CNCF promotes well-defined APIs as the main mechanism for ensuring
extensibility and portability. A basic Kubernetes building block is a Pod - a REST
object that encapsulates a set of logically connected application containers with storage
resources (Volumes) and a unique IP address. Pods constitute a unit of deployment
(and a unit of failure) and are deployed to Nodes (physical or logical machines).
Lifetime of a Volume is the same as the lifetime of the enclosing Pod allowing restart
of individual containers without the loss of data. Pods are externalized as Services;
Kubernetes service is an abstraction that defines a logical set of Pods and a policy for
accessing the Pods (i.e. micro-service). Replication Controller is used to create replica
Pods to match the demand of the application and provide auto-scaling. Kubernetes uses
Namespaces to partition resources allocated to different groups of users.

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 261

The application of Docker and Kubernetes container architecture to multi-tenant SaaS
(Software as a Service) applications has been investigated and assessed using SWOT
(Strength, Weakness, Opportunities and Threats) analysis and contrasted with devel-
oping SaaS applications using middleware services [20]. The authors conclude that
more research is needed to understand the true potential and risks associated with
container orchestration platforms such as Kubernetes.

While Kubernetes appears to be gaining momentum at present with support for
major public cloud platforms including Google Cloud Platform, Microsoft Azure and
most recently AWS, there is a number of other projects that aim to address the need for
a universal framework for the development and deployment of cloud applications,
including the Unicorn Universe Cloud framework described in this paper. While this
rapidly evolving area is of active research interest to both academia and industry
practitioners, currently there is a lack of agreement about a standard application
development framework designed specifically for cloud development and deployment.
Moreover, some proposals lack empirical verification using large-scale real-life
applications.

3 Unicorn Application Framework (UAF)

The Unicorn Application Framework (UAF) developed by Unicorn (https://unicorn.
com/) supports the design, development and operation of enterprise applications. A key
UAF architectural objective is to support various types of mobile and IoT devices and
to facilitate cloud deployment of enterprise applications utilizing standard framework
services that include security and authentication services and support for
multi-language environments. This minimizes the programming effort, improves reli-
ability of applications and allows application developers to focus on the functionality
that directly supports business processes and adds value for the end users. UAF
architecture consists of four frameworks: uuUserInterface (uu5) - framework services
for the development of Graphical User Interfaces (GUIs) based on HTML5 [21], uuIoT
- framework services for the management of IoT devices, uuCloud - framework ser-
vices for provisioning of elastic cloud services and uuAppServerKit - framework
services for the development of application components (i.e. REST micro-services).

3.1 Unicorn Universe Application (uuApp)

UAF provides environment for the implementation and deployment of uuApp applica-
tions. uuApp is a component that implements a cohesive set of application functions
designed to solve a set of specific user requirements. uuApp application is composed of
sub-applications (uuSubApp) - independent units of functionality that implement specific
business functions (e.g. booking a visit to a doctor’s surgery). Each sub-application is
implemented as a logical application server (uuAppServer) and is typically associated
with a structured (uuAppObjectStore) or a binary (uuAppBinaryStore) data store. We
made an architectural decision to associate each sub-application with a single logical
application server to ensure fast access to persistent data and to maintain security and
consistency of the underlying data sources. Using this approach, the access to underlying

262 M. Beranek et al.

https://unicorn.com/
https://unicorn.com/

data sources is controlled by the application server, ensuring that only authorized users can
access the data. To improve scalability, individual use-cases (business functions) may be
distributed across separate application servers in the form of individually addressable
SPPs (Separately Performing Parts) modules.

The UAF follows the View-Model-Controller pattern, implementing the Model
component in the form of an application server (uuAppServer) and the Controller and
View components of the application on the client (typically a mobile device) using the
uuUserInterface framework. The application server implements application logic and
externalizes an API that is accessed by application clients. Persistent objects that
belong to a sub-application are grouped into application workspaces (uuAppWork-
spaces) and identified by an Application Workspace Identifier (AWID). Each
sub-application is typically assigned a separate application workspace.

4 Unicorn Universe Cloud (uuCloud)

Unicorn Universe Cloud is a framework that supports autonomic provisioning of elastic
cloud services using virtual containers and servers. UAF applications are typically
deployed into a hybrid cloud environment (i.e. a combination of public and private
cloud) in the form of virtualized application servers. To ensure portability and to
reduce overheads, the UAF uses container-based virtualization. Our preferred con-
tainerization solution is Docker [22]. Docker container virtualizes the application
including a complete filesystem that contains all components needed to run the
application (i.e. system tools, system libraries, etc.) ensuring that the application runs
independently of the platform the container is deployed on. A sub-application is
mapped to an application server which is then containerized and deployed to a virtual
server, and finally to a physical server. Docker containers can be deployed to a public
cloud infrastructure (e.g. AWS or Microsoft Azure) or to a private (on-premise)
infrastructure (e.g. the Unicorn platform Plus4U). Using containers for virtualization
also improves isolation in multi-tenant environments [3].

4.1 uuCloud Nodes

We use a generic, technology agnostic terminology, node instead of container to
indicate that applications can be implemented using containers or virtual and physical
servers. Node is a unit of deployment with hardware characteristics that include virtual
CPU (vCPU) count, RAM size, ephemeral storage, etc. Nodes are classified according
to NodeSize, e.g. M (Medium size: 1xvCPU, 1 GB of RAM, 1 GB of ephemeral
storage) or L (Large size: 2xvCPU, 2 GB of RAM, 1 GB of ephemeral storage). Nodes
are further classified as synchronous or asynchronous depending on the behavior of the
sub-application that the node virtualizes. Nodes are grouped into NodeSets - sets of
nodes with identical functionality (i.e. nodes that virtualize the same sub-applications).
Database server virtualization does not use containers and virtualizes structured and
binary storage (uuObjectStore and uuBinaryStore) into a logical object called
uuAppStore deployed to a virtual server.

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 263

4.2 uuGateway

Individual containers (nodes) are typically deployed on a public cloud infrastructure
(e.g. Amazon AWS or Microsoft Azure) and access data from cloud-based data stores
and databases (e.g. Mongo DB [23], etc.). Figure 1 illustrates the processing of client
requests by the uuGateway. The uuGateway forwards the uuURI formatted client
request to a router that passes the request to a load balancer. The load balancer selects a
node from a NodeSet of functionally identical nodes, optimizing the use of the hard-
ware infrastructure and providing a failover capability (i.e. if the node is not responsive
the request is re-directed to an alternative node). uuURI is a version of a generic
REST URI adapted for addressing uuApp applications. uuURI uses a standard string
format to route the request to a specified gateway (e.g. Plus4U.net, etc.) and to specify
which server should execute the request on behalf of the user. The URI header contains
a special signed token that identifies an authorized user. The URI string has the fol-
lowing format:

https://gateway/vendor-uuApp-uuSubApp-spp/tid-asid|awid/usecase
where:

– gateway is the gateway address, e.g. Plus4U.net
– vendor code (e.g. Plus4U)
– uuApp – application (uuApp) code
– uuSubApp – sub-application (uuSubApp) code
– spp – optional spp (Separately Performing Parts) code within uuSubApp
– tid – tenant identifier
– asid – identifier of a specific sub-application instance
– awid workspace identifier
– usecase – use case identifier (i.e. API method)

In the case of static server resources, the use case identifier (usecase) is replaced by
resource path (resourcePath) that points to a location where the resource is located.

Fig. 1. uuGateway operation

264 M. Beranek et al.

https://www.gateway/vendor-uuApp-uuSubApp-spp/tid-asid/awid/usecase

4.3 uuCloud Operation Registry

Operation Registry is a key component of the uuCloud environment that maintains
active information about all uuCloud objects (i.e. tenants, resource pools, regions,
resource groups, hosts, nodes, etc.). uuCloud supports multi-tenant operation; each
tenant typically represents a separate organization (e.g. a doctor’s surgery). Tenants are
assigned resource pools that define the maximum amount of hardware resources (i.e.
number of vCPUs, RAM size and amount of storage) that are available for their
operation. The Operation Registry records information about regions (e.g. Azure North
(EU-N-AZ)), resource groups and hosts, and holds information about applications
deployed to each node.

4.4 uuCloud Control Centre

The Control Centre includes tools for deploying and running applications in the
uuCloud environment. Applications (nodes) are deployed into a territory (i.e. tenant)
that is associated with a resource pool and managed using control centre tools. The
control centre verifies permissions for the deployment of applications into a specific
resource pool. Control centre tools are used to manage nodes, verify free resource pool
capacity, locate a suitable host for the application, and to compile and deploy the node
image on selected hosts.

5 Lekar Reservation System

To illustrate the application of the uuCloud framework we use the example of a
recently implemented Doctor Surgery Reservation System - Lekar Reservation System
(LRS). LRS (https://www.plus4u.net/produkty-a-sluzby/lekar/) is an on-line reserva-
tion system that manages communication between healthcare professionals (doctors,
nurses, medical office staff) and patients in the Czech Republic. The main objective of
the system is to enable registered patients to book a visit to any participating medical
practitioner at any time (i.e. 24/7) using a mobile device or a computer, without having
to phone the surgery during office hours to make an appointment. The LRS application
generates automatic SMS and e-mail notifications to alert the patients of an upcoming
appointment, processes reservation confirmations/cancellations, and generates remin-
ders for regular check-ups. From the point of view of the health care professional, LRS
provides an integrated diary showing appointments from all surgeries and gives a quick
and easy access to basic patient information. The benefit for the patient is that all
appointments are recorded in an easily accessible diary. Six months after the first
release of the LRS application there were 210 active healthcare professionals with
thousands of patients from across the Czech Republic using the system. As these
numbers are expected to grow significantly in the future, the scalability of the system is
a critical design consideration.

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 265

https://www.plus4u.net/produkty-a-sluzby/lekar/

5.1 LRS Technical Solution

The LRS application covers three main business functions implemented as cloud
services: Reservations, Organization & Management (i.e. registering and de-registering
doctors, patients, nurses, and office staff) and Notifications (patient notifications via
email and SMS messages). Additional Common Services that include user identifica-
tion and authorization are provided by the UAF components running on uuCloud.
The LRS system is implemented using open source technologies (Java, Ruby, Mon-
goDB, Redis, Docker, Linux, etc.). The application is deployed to a hybrid cloud
environment using the on-premise Plus4U.net platform (https://www.plus4u.net) in
combination with MicroSoft Azure, demonstrating the technical feasibility and com-
mercial benefits of implementing a large-scale system using open source and
container-based technologies deployed on a hybrid cloud infrastructure.

5.2 Topology of the LRS Solution

Each doctor surgery or medical centre is assigned to its own business territory (im-
plemented as a uuCloud tenant) with a separate ObjectStore (MongoDB database
instance) ensuring data security by fully isolating individual cloud tenants. Table 1
shows the current allocation of NodeSets to the three main business functions. There
are 19 nodes in total (1 Large and 18 Medium size nodes); all nodes are deployed on
the Azure North MicroSoft data centre. Asynchronous nodes are used for email and
SMS notifications, while the reservation sub-system uses synchronous nodes to per-
form booking of appointments. Figure 2 shows the topology of the LRS solution; the
Application Deployment tenant is implemented on-premise in the MED-BT business
territory of Unicorn Medical (Unicorn organization responsible for the development of
healthcare information systems), while the runtime LRS system is deployed on the
Microsoft Azure cloud platform using Docker virtualization technologies.

The present version of the LRS system is the first step towards a more compre-
hensive outpatient system for individual medical practitioners and large healthcare
facilities. The inherent scalability of this cloud solution makes it possible to add
computing and storage resources as the need arises with minimal incremental cost
while maintaining high availability and response time characteristics.

Table 1. Allocation of NodeSets to LRS business functions

Business
Function

Reservations Notifications Organization & Management

NodeSet 1x Synchronous
NodeSize L

11x Asynchronous
NodeSize M

2x Synchronous 5x
Asynchronous NodeSize M

266 M. Beranek et al.

https://www.plus4u.net

6 Conclusions and Further Work

We have argued that the accelerating shift towards cloud computing combined with the
dominance of mobile computing and the growing use of IoT devices requires a
re-assessment of the existing architectural principles and the associated application
development frameworks. While the use of micro-services and container-based virtu-
alization brings many benefits, the highly distributed nature of the resulting applica-
tions and the short software release cycles present many challenges to organizations
involved in the development of cloud-based enterprise applications. A suitable appli-
cation development framework and associated methods and tools are an essential
pre-requisite for achieving successful project results on a repeatable basis. The uuCloud
platform described in this paper was developed specifically to address the requirements
of cloud-based applications and is used currently for the development of large-scale
enterprise applications at Unicorn. We have illustrated the application of uuCloud using
a real-world Doctor Surgery Reservation System that is used by hundreds of healthcare
professional and thousands of patients across the Czech Republic.

There are some similarities between uuCloud and other frameworks such as Cloud
Foundry, OpenShift and Kubernetes. Kubernetes, in particular supports similar func-
tionality as uuCloud. We have evaluated these frameworks before starting the UAF
project and decided that our needs would be best served with a fully integrated
architecture that incorporates uuCloud, uuUserInterface and uuIoT frameworks (see
UAF description in Sect. 3). The uuCloud framework currently supports Docker
containers and Microsoft Azure cloud infrastructure, but we are extending the frame-
work to incorporate other technology solutions. Our present efforts focus on improving

Fig. 2. Topology of the LRS cloud solution

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 267

the monitoring tools and ensuring high availability and good response time for
applications running on public cloud infrastructure. We are investigating the feasibility
and cost of deploying applications across multiple availability zones, with the aim of
providing users with similar SLA (Service Level Agreement) guarantees as we are able
to provide for on-premise applications. We are continuously monitoring the rapidly
evolving landscape of cloud platforms and frameworks. We may decide to align the
uuCloud framework with Kubernetes in the future as both frameworks mature and the
direction of cloud standardization becomes clearer.

References

1. Amazon.com (2017). http://aws.amazon.com/. Accessed 7 July 2017
2. Microsoft Azure: Cloud Computing Platform & Services (2017). https://azure.microsoft.

com/en-au/. Accessed 22 Aug 2017
3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables DevOps:

migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)
4. Beránek, M., Feuerlicht, G., Kovář, V.: Developing enterprise applications for cloud: the

unicorn application framework. In: International Conference on Grid, Cloud and Cluster
Computing, GCC 2017, Las Vegas, USA. CSREA Press (2017)

5. Thönes, J.: Microservices. IEEE Softw. 32(1), 116 (2015)
6. Mahmood, Z., Saeed, S.: Software Engineering Frameworks for the Cloud Computing

Paradigm. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5031-2
7. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. Int. J. Open Inf. Technol. 2

(9), 24–27 (2014)
8. Splitting Applications or Services for Scale, AKF Partners. http://akfpartners.com/growth-

blog/splitting-applications-or-services-for-scale. Accessed 22 Aug 2017
9. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures using mi-

croservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops 2015.
CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33313-7_15

10. Rimal, B.P., et al.: Architectural requirements for cloud computing systems: an enterprise
cloud approach. J. Grid Comput. 9(1), 3–26 (2011)

11. Raj, P., Venkatesh, V., Amirtharajan, R.: Envisioning the cloud-induced transformations in
the software engineering discipline. In: Mahmood, Z., Saeed, S. (eds.) Software Engineering
Frameworks for the Cloud Computing Paradigm, pp. 25–53. Springer, London (2013).
https://doi.org/10.1007/978-1-4471-5031-2_2

12. Ramachandran, M.: Business requirements engineering for developing cloud computing
services. In: Mahmood, Z., Saeed, S. (eds.) Software Engineering Frameworks for the Cloud
Computing Paradigm, pp. 123–143. Springer, London (2013). https://doi.org/10.1007/978-
1-4471-5031-2_6

13. Feuerlicht, G., Thai Tran, H.: Adapting service development life-cycle for cloud. In:
Proceedings of the 17th International Conference on Enterprise Information Systems, vol. 3.
SCITEPRESS-Science and Technology Publications, Lda (2015)

14. Tran, H.T., Feuerlicht, G.: Service repository for cloud service consumer life cycle
management. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS, vol.
9306, pp. 171–180. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24072-5_12

268 M. Beranek et al.

http://aws.amazon.com/
https://azure.microsoft.com/en-au/
https://azure.microsoft.com/en-au/
http://dx.doi.org/10.1007/978-1-4471-5031-2
http://akfpartners.com/growth-blog/splitting-applications-or-services-for-scale
http://akfpartners.com/growth-blog/splitting-applications-or-services-for-scale
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-1-4471-5031-2_2
http://dx.doi.org/10.1007/978-1-4471-5031-2_6
http://dx.doi.org/10.1007/978-1-4471-5031-2_6
http://dx.doi.org/10.1007/978-3-319-24072-5_12

15. CloudFoundry. Cloud Application Platform - DevOps Platform, Cloud Foundry (2017).
https://www.cloudfoundry.org/. Accessed 28 Sep 2017

16. OpenShift: Container Application Platform by Red Hat, Built on Docker and Kubernetes
(2017). https://www.openshift.com/. Accessed 28 Sep 2017

17. Kubernetes (2017): https://kubernetes.io/. Accessed 25 Aug 2017
18. Burns, B., et al.: Borg, Omega, and Kubernetes. Queue 14(1), 70–93 (2016)
19. Home - Cloud Native Computing Foundation (2017). https://www.cncf.io/. Accessed 27 Sep

2017
20. Truyen, E., et al.: Towards a container-based architecture for multi-tenant SaaS applications.

In: Proceedings of the 15th International Workshop on Adaptive and Reflective Middleware,
pp. 1–6. ACM, Trento, Italy (2016)

21. WC3. HTML5. https://www.w3.org/TR/html5/. Accessed 21 Aug 2017
22. Docker. What is Docker. 2015 2015-05-14. https://www.docker.com/what-docker. Accessed

21 Aug 2017
23. MongoDB for GIANT Ideas (2017). https://www.mongodb.com/index. Accessed 21 Aug

2017

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 269

https://www.cloudfoundry.org/
https://www.openshift.com/
https://kubernetes.io/
https://www.cncf.io/
https://www.w3.org/TR/html5/
https://www.docker.com/what-docker
https://www.mongodb.com/index

	Architecting Enterprise Applications for the Cloud: The Unicorn Universe Cloud Framework
	Abstract
	1 Introduction
	2 Related Work
	3 Unicorn Application Framework (UAF)
	3.1 Unicorn Universe Application (uuApp)

	4 Unicorn Universe Cloud (uuCloud)
	4.1 uuCloud Nodes
	4.2 uuGateway
	4.3 uuCloud Operation Registry
	4.4 uuCloud Control Centre

	5 Lekar Reservation System
	5.1 LRS Technical Solution
	5.2 Topology of the LRS Solution

	6 Conclusions and Further Work
	References

