
Designing Suitable Access Control
for Web-Connected Smart

Home Platforms

Sebastian Werner(B), Frank Pallas, and David Bermbach

Information Systems Engineering Research Group, Technische Universität Berlin,
Berlin, Germany

{sw,fp,db}@ise.tu-berlin.de

Abstract. Access control in web-connected smart home platforms
exhibits unique characteristics and challenges. In this paper, we therefore
discuss suitable access control mechanisms specifically tailored to such
platforms. Based on a set of relevant scenarios, we identify requirements
and available technologies for fulfilling them. We then present our expe-
riences gained from implementing access control meeting the identified
requirements in OpenHAB, a widely used smart home platform.

Keywords: Access control · IoT · Smart home

1 Introduction

The Internet of Things (IoT) has been finding more and more adoption in the last
few years and is seeing continuous growth. Gartner, for instance, expects 20.4
billion connected “things” to be in use by 2020 [10]. A particularly popular area
in the IoT are the so-called smart homes where sensors and smart appliances are
connected using often rule-based approaches to increase comfort for the home
inhabitants.

Today, smart home platforms like OpenHAB1 often run in isolated networks
not connected to the public Internet. However, we expect this to gradually get
replaced by more open deployments that include external services on the web
and in the cloud, e.g., if-this-then-that (IFTTT)2 or Amazon’s Machine Learning
service3, through web APIs, e.g., for weather data, or even using devices such as
Google Home4 or Amazon Echo. For such deployments, however, access control
is a crucial feature of the smart home platform both to protect the inhabitants’
privacy but also to protect them from malicious attacks [8,14]. When the possi-
bility of tampering with the physical world exists, security becomes even more
important – some recent events underline this [2,17].
1 openhab.org.
2 ifttt.com.
3 aws.amazon.com/machine-learning.
4 madeby.google.com/home.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 240–251, 2018.
https://doi.org/10.1007/978-3-319-91764-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_19&domain=pdf
https://www.openhab.org/
https://ifttt.com/
https://aws.amazon.com/machine-learning/
https://madeby.google.com/home


Designing Suitable Access Control 241

While access control is obviously highly important in smart home platforms,
there are a number of characteristics of such systems that make it hard or at least
non-optimal to simply reuse access control strategies from other domains, e.g.,
from file systems or mail servers. Therefore, we make the following contributions
in this paper:

1. We identify smart home usage scenarios particularly relevant for access con-
trol and use those to derive unique requirements for access control in future
smart home platforms.

2. We use OpenHAB, a widely used smart home platform, as a case study and
first analyze its current access control approach. Building on these rather
lacking techniques, we then describe our efforts of retrofitting OpenHAB with
access control features that are ready for future deployments in open, web-
based environments.

3. We identify key lessons learned for both users of current as well as developers
of future smart home platforms.

This paper is structured as follows: We describe relevant usage scenarios in
smart home environments and identify core requirements for access control in
such systems in Sect. 2. Afterwards, in Sect. 3, we give a brief overview of the
OpenHAB platform, describe its current access control approach and our efforts
in making said platform ready for open, web-based deployments. Building on
this, we discuss our observations and lessons learned in Sect. 4 before concluding
in Sect. 5.

2 Access Control in Smart Home Systems

In matters of access control, IoT Systems and, in particular, smart home plat-
forms differ significantly from other systems in various respects, leading to spe-
cific requirements that have to be met. While “basic use cases” of smart home
platforms are often perceived trivial in matters of access control – all members
of a family living in a house have full control, for example – things change sig-
nificantly when “non-regular” use cases and scenarios come into play. Some such
scenarios shall thus be briefly outlined in the following.

2.1 Relevant Usage Scenarios

One scenario that any smart home platform will sooner or later have to address
properly comprises guests staying within the covered premises [13]. This may
include private visitors as well as hotel- or AirBnB-like settings. In any such
case, guests should, for example, be able to control and program the behavior
of their windows’ blinds as well as to monitor and control the temperature of
their respective room during their stay but have no access to similar functions
for other private rooms. Also, there might be a need to allow guests to read
the status of shared devices like the temperature sensors in the hallway or to



242 S. Werner et al.

dynamically connect the smart home platform with external services (for receiv-
ing personalized email notifications or traffic forecasts, for example). Besides the
core functionality required to implement all these aspects, associated processes
of user enrollment, provisioning of access rights, etc. should of course also be as
uncomplicated and “frictionless” as possible.

Another common scenario refers to external trust persons legitimately
sojourning in the covered area – e.g., cleaning or nursing staff or simply different
friends of the inhabitants looking after plants. As such persons are commonly
trusted to physically enter the premises and thus to have physical access to most
devices located within (e.g., lamps, window blinds, heating, ...), it makes no sense
to prevent them from having the same access in the digital domain. However,
providing them with respective access on the basis of pre-known identities may
often prove challenging: In the case of cleaning or nursing staff, for example,
the actual persons legitimately present within the premises often differ unpre-
dictably, depending on dynamic schedules and ad-hoc substitutions. Using their
physical presence itself is therefore a more promising starting point for suitable
access control mechanisms. Alternatively, an approach more in line with the pro-
cess used for providing physical access itself – the cleaning company is trusted,
thus provided with a key and authorized to hand over this key to its personnel
– may also serve as blueprint for suitable access control here. A combination
of several approaches may also be needed from time to time: for instance, staff
may start out with limited privileges simply based on their employment relation
and physical access to certain areas but may acquire additional rights over time
based on increased trust at a personal level.

With increasing interconnection of things, services, and APIs, it also becomes
more and more important to provide suitable access control to an open, specif-
ically non-closed smart home platform. For instance, hitting a dash button to
order some products also has monetary effects on the owner’s bank account –
controlling who can invoke external APIs should not be disregarded. Also, while
external services can be integrated through invocation and polling, sometimes
such third party services will have to trigger events in the smart home system.
For instance, one might define a set of rules on IFTTT or FRED [5] that analyzes
current wind measurements and controls window blinds to protect them from
permanent damage. Or one could use an external service that offers precisely that
functionality. Last but not least, there is a number of separate home automation
gadgets, e.g., Google Home or Amazon Echo, or even simply a smartphone. Inte-
grating such devices requires the necessary access control logic to grant extensive
but not unlimited rights to those devices. All in all, this means that fine-grained
access control with intelligent learning and delegation logic must not be limited
to human users but also needs to extend to external services, platforms, and
APIs.

Finally, the core problem that strict and highly elaborate access control mod-
els often prevent dynamic reactions to unforeseen situations will in all likelihood
become increasingly prominent in the smart home context. Assuming a scenario
where a person in need of care does not respond to calls on the door, it might



Designing Suitable Access Control 243

be reasonable if, for example, police officers could request temporary access to
an in-house camera or to the door lock from, e.g., the person’s children living in
another city. Alternatively, it might also be reasonable to allow certain parties
like emergency services to “override” access restrictions in a controlled man-
ner that can be thoroughly examined afterwards. In any case, “preparing for
the unanticipated” will be of utmost importance for suitable and usable access
control in smart homes – not only in cases of emergency.

2.2 Technical Requirements and Mechanisms

Based on the above scenarios, we have identified a number of core requirements
for access control in web-enabled smart home platforms. In this Section, we
present these requirements and briefly discuss mechanisms we believe to be use-
ful for addressing them. All requirements and mechanisms identified below are
intended to be non-exclusive, allowing for multi-condition access control com-
bining multiple criteria from the same category as well as from different ones.

Frictionless Usage: Smart home scenarios pose a particular need for smooth-
ness. Especially in the living context, smart technologies should not be perceived
as separate “add-ons” but must rather be embedded or “woven into” [18] estab-
lished behavioral patterns and habits. Guests – in a hotel as well as in a private
context – should not feel bothered by a need to familiarize with smart compo-
nents or by cumbersome setup or “enrollment” procedures. Necessary manage-
ment efforts should also be low on the operator’s side. This is particularly true for
access control mechanisms, where repeated commissioning and decommissioning
of users and fine-grained assignment of rights could easily raise significant over-
heads. For all our considerations below, ensuring frictionless usage is thus a core
design goal. Furthermore, frictionless usage may also be supported by specifically
targeted mechanisms of self-learning etc.5

Fine-Grained Access Control: One core requirement that can be identified
from the above scenarios is the need for fine-grained access control. It must be
possible to provide different parties with different access rights for monitoring
and control on a per-resource (devices, software components and services) level.
To lower the efforts necessary for specifying and managing respective access
rights, device grouping should also be possible. In terms of concrete mecha-
nisms, this requirement resembles functionality already provided by most mod-
ern access control schemes. With minor adaptations, established mechanisms for
fine-grained access control should thus be transferable to the smart home domain
at reasonable effort.

Temporary Permissions: As motivated by the guest-related scenario, tempo-
rariness of access rights plays a more prominent role in the smart home context
than it typically does in other domains. Even though granted access rights might
5 Manifold further approaches could be thought of here. Kim et al. [13], for instance,

also experimented with automated rights assignment based on social network and
phone records analysis.



244 S. Werner et al.

always be revoked manually, directly issuing them for a limited timeframe would
thus be of particular value for smart home platforms, also serving the goal of
frictionless usage. Technology-wise, access tokens with limited validity periods
are widely used in practice for comparable purposes. These might be used in
combination with pre-existing user accounts (e.g., when access rights have been
temporarily escalated and activities must be attributable to the respective user)
or as a completely isolated modality of authentication, depending on the intended
use case.

Context-Driven Permissions: The existence and relevance of physical con-
text is one of the main specifics distinguishing access control in smart homes from
other application domains. In the smart home domain, any device as well as any
user striving for access has a physical presence and context which can serve as a
foundation for access control concepts specific to smart home scenarios. In the
above-mentioned case of cleaning or nursing staff legitimately being in a house,
for example, any evidence proving that a user actually is within certain premises
may be deemed a sufficient basis for granting access to all devices located in these
premises [13]. Sufficiently reliable proofs for being in a certain room might, for
example, be based on ultrasonic sound [7] or indoor light [11] used to transfer
secrets to the client device. Independently from the concrete mechanisms used,
however, we see permissions based on physical context – a particular form of
attribute-based access control [16,19] – as an important component of suitable
access control for smart home and IoT scenarios.

Rights Delegation: Scenarios like the one referring to cleaning or nursing staff
above also motivate a need for rights delegation. Instead of access being granted
based on physical access (which particularly proves impractical in the case that
door locks are also managed by the access control system), rights delegation
could also be used: The cleaning company would then be granted access to cer-
tain devices, combined with the possibility to “hand over” these access rights to
its employees. Such capabilities for rights delegation may also serve the overall
goal of frictionless usage and the need to “prepare for the unanticipated”, as it
allows to dynamically align access rights to changing needs. Rights delegation
can be implemented in various ways, ranging from role delegation [1] to certifi-
cate driven solutions [4]. With a particular focus on IoT, rights delegation can
be implemented through capability-based delegation [3], attribute-based access
control, or through adaptations of the OAuth protocol [9].

On-request Access Provisioning by Authorized Parties: Closely coupled
with the basic need for rights delegation is the requirement of being able to
explicitly request access. As laid out in the scenario with a non-responding
person and as obviously given in many less dramatic situations, actual access
needs in smart home environments can hardly be foreseen completely but rather
often emerge and need to be fulfilled ad-hoc. Beyond pure rights delegation,
well-defined mechanisms for requesting not yet existing access from autho-
rized persons and for respective “on-request delegation”6 are thus an important
6 Elsewhere, this model is also called “ask for permission” [13].



Designing Suitable Access Control 245

building block of “preparing for the unanticipated”. In addition to those mech-
anisms already used for basic rights delegation, techniques for on-request dele-
gation can build upon established concepts such as authentication proxies [15]
or dynamic consent [12].

Break-Glass Overrides: Another approach of “preparing for the unantici-
pated” is the concept of break-glass access control. In this model, emergency
access to resources (like, in the example above, the camera within a non-
responding person’s flat) is possible as soon as the “breaking” party (e.g., a
police officer) can be reliably identified and appropriate notifications about the
act of breaking are sent out to trigger ex-post evaluations. Having their roots in
healthcare and disaster management, break-glass override mechanisms are highly
relevant whenever strict access restrictions could potentially lead to significant
harm in unanticipated situations. They might thus be of particular relevance in
the smart home context whenever reasonable emergency access would today be
achieved my means of physical destruction, for example. Technically, break-glass
mechanisms can be implemented on top of or natively integrated into existing
access control mechanisms [6], whereas the ability to actually perform an emer-
gency access might be given to anybody or limited to a well-defined set of parties.
Blockchain technology might be helpful for implementing non-disputable break-
glass logs.

3 Case Study: OpenHAB

In the following, we discuss openHAB, the IoT framework we used to prototyp-
ically implement some of the mechanisms described in Sect. 2.2. We first give a
brief overview of openHAB, its architecture and how it handles access control
in its default configuration. Afterwards, we delineate how we extended its access
control mechanisms to better meet the requirements we developed in Sect. 2.

3.1 System Overview

As a case study, we chose the OpenHAB project, mainly because it represents a
typical IoT eco system and unlike most others is open source. OpenHAB is an
extension of the Eclipse SmartHome project and explicitly built for easy inte-
gration of new devices, protocols, and services. Most of its components interact
through a pub/sub event stream, the “Open Home Automation Bus”.

The project also comes with a modern interface and one of the most exhaus-
tive and fastest-growing repositories for device bindings and third party integra-
tions on the market, which together led to a growing community of users.

The framework is based on Java and composed of a set of OSGi (Open
Service Gateway Initiative) services and components. Its architecture can be
broken down into three major component groups: (1) the core: including the
message bus, configuration storage, logging; (2) binding provider: responsible for
communicating with devices and services; (3) user interfaces and user services,
including the rule engine employed to run user-defined code and the REST



246 S. Werner et al.

Fig. 1. Overview of the OpenHAB System Architecture. Showing the Eclise
SmartHome Core (left) and the OpenHAB specific extensions (right) as well as common
modules.

interface that can be utilized by external services. Figure 1 shows a more detailed
view of the OpenHAB architecture.

Any extension to OpenHAB is added as an OSGi binding, which can access
every other service within the OpenHAB runtime including all data stored within
the system without any constraints.

3.2 Access Control in OpenHAB

OpenHAB has a very basic access control system, which only allows a single
user/password combination to be set. If set, the respective user becomes the
only entity able to access any and all of the openHAB features. By default,
however, setting a user/password combination is neither enforced nor at least
suggested. Having only one single account clearly limits openHAB’s usability for
more complex use cases as presented in Sect. 2.1.

Furthermore, OpenHAB enforces access control only in the third group of
components (user interfaces), while bindings and user-defined rules can access
any internal service or any other resource on the local or public network with-
out providing any means of authentication. Even though clearly fostering the
easy development and addition of new types of services and system resources as
OpenHAB components, such a full-access paradigm is obviously unsuitable for
more complex settings with hundreds or thousands of controlled devices, with the
platform being interconnected with multiple external services, and with external
users potentially being able to connect their own devices and external services:
Under the current concept, just one exploitable or unexpectedly behaving com-
ponent could suffice to compromise or disturb the whole installation. Together
with the risk-prone dynamic update or addition of components inherent to the
OSGi concept, this sums up to a security concept and subsystem that is every-
thing but “production-ready” beyond rather trivial use cases in closed networks.
Finally, none of the advanced requirements identified in Sect. 2.2 is currently
fulfilled by OpenHAB.



Designing Suitable Access Control 247

3.3 Extending Access Control

Given OpenHAB’s above-mentioned shortcomings, we set out to fix its core
security model and to prototypically implement mechanisms for meeting the
requirements identified in Sect. 2.2. For doing so, we had to overhaul most parts
of OpenHAB’s existing access control mechanisms and retrofit our own. To ease
management effort and heighten practical usability in non-trivial use cases, we
added a way to group devices in multiple overlapping security groups, established
a way to record the use of each device, and introduced a rudimentary user
registry.

In order to concentrate on the internal processes of the access control sys-
tem, we confined our development efforts to an installation with only the REST
interface being active. With our extensions, all access control information is
transmitted using a mechanism based on JSON web token (JWT) in a custom
HTTP-header. For use cases involving attribute-based access control, a client
can either compute these tokens (based on context information, for example) or
listen for a local broadcast token. Each response from our system can also con-
tain a new token for the client to use, like a generated identifier that is similar
to an automatically generated username.

Implementing Fine-Grained Access Control: Based on the just discussed
infrastructure functionality, we implemented fine-grained access control by
exploiting the already existing metadata infrastructure of OpenHAB. It pro-
vides a set of tags for each device; we use these tags to identify relationships
between devices. Once an entity can prove access to a device, the user might
also be granted access to other devices with similar tags. We use the groups
and device capabilities encoded in these tags to assess the risk of unauthorized
access. In the absence of other authentication information, the calculated risk is
used to make access decisions. To fully support fine-grained access control, we
also do not enforce access control simply at the user interface but at the core
components responsible for issuing commands to devices.

Implementing Rights Delegation: We implemented rights delegation mainly
by relying on the above-mentioned user management; it holds rights that each
user accumulates over time. Delegation then is handled by linking the delegated
sets of rights to a new user (thus following a user-driven approach to prevent
uncontrolled onward delegation). The original rights holder can still use these
rights, revoke or modify delegations, and delegate the same rights to further
users.

Implementing Temporary, Context-Driven, and On-request Permis-
sions: We used attributes codified in tokens to determine if a user could access
a resource. Each attribute must also be signed, which allows the system to ensure
that an attribute could not be manipulated. These attribute tokens can encode
location information as well as context information. Once a request is issued to
the system, these attributes are evaluated by the respective controller classes.
All attributes are evaluated individually for each device affected by the request.
Depending on the evaluation outcome, it might be that the response only con-
tains a filtered set of information. A controller might also decide only to perform



248 S. Werner et al.

a subset of the actions that were requested. Using similar concepts, we also
implemented on-request access provisioning, where the controller puts respec-
tive commands on hold until a privileged user has approved it.

Implementing Break-Glass Overrides: Finally, we added a break-glass over-
ride mechanism by allowing our access control system to be shutdown if the right
set of keys is used. These keys are generated by a token generator that would
have to be given to those parties that should be able to perform an override (the
local fire department, a neighbor, etc.). The owner of the OpenHAB installa-
tion has total control over these generators and can disable them at any time.
Once the break-glass override is invoked, all access control mechanisms are dis-
abled, and only the audit component is still active. The notification system of
the on-request delegation system is used to inform all privileged users what is
happening and which token was used to invoke the breaking the glass override.

Means for Frictionless Use: To serve the overall goal of frictionless usage
both on the user and the management side, our system can learn from each
interaction and over time build a simplified model about what a specific user
is allowed to do. Once multiple comparable requests (like “light X in room Y”)
have repeatedly been approved, the user no longer needs to ask for permission
for similar requests. This is done by recording each request, each attribute used
for that request and the outcome of these requests. We use this information to
train a simple risk model. If the risk factor for a given request is low enough,
then the request will be successful regardless of the content of other provided
attributes. We also record these automatic approvals for a later audit.

Specific Challenges of OpenHAB: Intuitively, implementing these features
should have been comparably simple. However, OpenHAB’s architecture made
it rather difficult. In particular, the OSGi framework, which openHAB uses to
dynamically load and replace processes at runtime, could have been used to
disable any feature our access control add-on would provide. To get around this
problem, we enhanced the control flow of information between all components
responsible for executing commands (e. g., ItemProvider and Execution Engine).
We did this by implementing an auditing framework that analyzed the stack
trace of each incoming method call and only allows a predefined set of the classes
to execute OpenHAB commands. Any OSGi service can still see all internal
services, but if a non-listed service tries to create a request, all commands are
dropped.

The OSGi framework also leads to another problem regarding the communi-
cation between our access control implementation and other components in the
system. The original design of openHAB did not allow for session information to
be transported to lower-level components. This meant that we could not filter
communication between different layers on a per-resource basis. We, therefore,
had to build a complicated workaround to transport simple session information
between classes: Given that we could not change methods inside the architecture
without rewriting all OpenHAB device bindings, we had to transfer information
indirectly. In particular, we created an OSGi service that interacted with the



Designing Suitable Access Control 249

Java Debug Interface. This service allowed us to correlate session information
with stack traces and method calls which allowed us to evaluate device inter-
actions on an event by event basis. In matters of performance, maintainability,
and transparency, this approach is, however, by no means ideal.

Besides these limitations, we were able to add the on-request-delegation sys-
tem, location broadcasts and other extensions mentioned in Sect. 2.2 without
any hindrance. Besides implementing the user interfaces for these services, we
also added a set of cryptographic utilities that are, for instance, used to generate
the time-dependent tokens using a HMAC-based one-time password algorithm.

4 Discussion

The lesson learned no.1 is that retrofitting access control is a rather bad idea;
instead, it needs to be considered as a core design goal from the very beginning
especially for an open, web-connected platform that integrates external services
and data sources with a non-fixed user base. It is also important to handle access
control not only on an exterior interface but rather internally on a component
or device level. With OpenHAB’s current overall system architecture, however,
applying the presented techniques from Sect. 2.2 or even making the slightest
extensions to the existing security design is virtually impossible even though we
managed to achieve a working solution. However, considering that complexity
is the worst enemy of security, the necessary workarounds and indirections for
retrofitting advanced access control that we took cannot be recommended safely.

While we only analyzed OpenHAB in such detail, access control does not
seem to be a core design goal in other platforms either. For addressing advanced
scenarios as described in Sect. 2.1 and being web-ready including interaction with
third party services, smart home platform developers should probably rethink
their priorities. In this context, technology such as OSGi also has both benefits
and disadvantages – deciding on such technology stacks should be the result of
careful deliberation.

Finally, an important consideration is also to design access control in a way
that is compatible with widely used, established web standards such as OAuth or
even WS-Security. Otherwise, all integration of external services, data sources,
and APIs is ripe for malicious exploitation and not advisable.

5 Conclusion and Future Work

The Internet of Things has been finding more and more adoption in the last
few years and is seeing continuous growth; particularly, smart home technol-
ogy has found more and more adoption. Smart home platforms, however, still
mainly run in isolated networks not connected to the public Internet. We expect
this to gradually change towards more open deployments including external ser-
vices on the web and in the cloud. In such deployments, however, access control
based on mechanisms specifically tailored to the smart home domain is of utmost
importance.



250 S. Werner et al.

In this paper, we started by discussing unique use cases in future smart
home platforms and used these to derive specific requirements for access control.
Afterwards, as a case study, we analyzed OpenHAB (as a popular example of a
smart home platform) in detail with regards to its access control mechanisms.
Since we found these rather lacking, we then tried to retrofit state-of-the-art
access control in compliance with our identified requirements. Through this case
study, we learned that at least one of the current smart home platforms (and
potentially even other more general IoT platforms) is not ready for future, more
complex application scenarios. We also identified how smart home environments
offer unique ways for access control based on physical context. Finally, we learned
that retrofitting access control in existing smart home platforms is painfully
complicated and cannot be recommended – both from a security and an effort
perspective.

In our future work, we plan to test other IoT Hub platforms and see if
some of the limitations we observed can be improved by using a more suitable
platform where fewer indirections and workarounds are needed to integrate our
fine-grained access control method. Furthermore, we intend to test our methods
not only on edge devices but also expand our access control approach to the
dispersed and interconnected fabric of fog computation.

Acknowledgments. This work partly been supported by the European Commission
through the Horizon 2020 Research and Innovation program under contract 731945
(DITAS project).

References

1. Ahn, G.J., Mohan, B.: Secure information sharing using role-based delegation.
In: International Conference on Information Technology: Coding and Computing,
2004. Proceedings. ITCC 2004, vol. 2, pp. 810–815 (2004)

2. Andy Greenberg: Hackers Remotely Kill a Jeep on the Highway–With Me in It.
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

3. Anggorojati, B., Mahalle, P.N., Prasad, N.R., Prasad, R.: Capability-based access
control delegation model on the federated IoT network. In: 2012 15th International
Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 604–
608 (2012)

4. Aura, T.: Distributed access-rights management with delegation certificates. In:
Vitek, J., Jensen, C.D. (eds.) Secure Internet Programming. LNCS, vol. 1603, pp.
211–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48749-2 9

5. Blackstock, M., Lea, R.: Fred: a hosted data flow platform for the IOT built using
node-red. In Proceedings of MoTA 2016 (2016)

6. Brucker, A.D., Petritsch, H.: Extending access control models with break-glass. In:
Proceedings of the 14th ACM Symposium on Access Control Models and Tech-
nologies. pp. 197–206. ACM (2009)

7. Chen, K., Aljarrah, M., Bonnet, P.: Leveraging physical locality to integrate Smart
appliances in non-residential buildings with ultrasound and Bluetooth Low energy.
In: Proceedings - 2016 IEEE 1st International Conference on Internet-of-Things
Design and Implementation, IoTDI 2016 1(iii), pp. 199–209 (2016)

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://doi.org/10.1007/3-540-48749-2_9


Designing Suitable Access Control 251

8. Dong, R., Ratliff, L.J.: Privacy in the Internet of Things. Next Wave 21(2), 8–16
(2016)

9. Emerson, S., Choi, Y.K., Hwang, D.Y., Kim, K.S., Kim, K.H.: An oauth based
authentication mechanism for IoT networks. In: International Conference on ICT
Convergence 2015: Innovations Toward the IoT, 5G, and Smart Media Era, ICTC
2015, pp. 1072–1074 (2015)

10. Gartner: Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, Up
31 Percent From 2016 (2017). http://www.gartner.com/newsroom/id/3598917

11. Grobe, L., Paraskevopoulos, A.: High-speed visible light communication systems.
IEEE Commun. Mag. 51(12), 60–66 (2013)

12. Kaye, J., Whitley, E.A., Lund, D., Morrison, M., Teare, H., Melham, K.: Dynamic
consent: a patient interface for twenty-first century research networks. Eur. J. Hum.
Genet. 23(2), 141–146 (2015)

13. Kim, T.H.J., Bauer, L., Newsome, J., Perrig, A., Walker, J.: Access right assign-
ment mechanisms for secure home networks. J. Commun. Netw. 13(2), 175–186
(2011)

14. Liu, J., Xiao, Y., Chen, C.P.: Authentication and access control in the Internet of
Things. In: Proceedings of the 32nd IEEE International Conference on Distributed
Computing Systems Workshops 2012, pp. 588–592 (2012)

15. Mayrhofer, R.: A context authentication proxy for IPSec using spatial reference.
In: Proceedings of TwUC 2006: 1st International Workshop on Trustworthy Ubiq-
uitous Computing, pp. 449–462. Austrian Computer Society (OCG), December
2006

16. Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust
in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015)

17. Vallance, C.: Car hack uses digital-radio broadcasts to seize control (2015). http://
www.bbc.com/news/technology-33622298

18. Weiser, M.: The computer for the twenty-first century. Sci. Am. 265, 94–100 (1991)
19. Yuan, E., Tong, J.: Attributed Based Access Control (ABAC) for web services. In:

Proceedings - 2005 IEEE International Conference on Web Services, ICWS 2005,
pp. 561–569 (2005)

http://www.gartner.com/newsroom/id/3598917
http://www.bbc.com/news/technology-33622298
http://www.bbc.com/news/technology-33622298

	Designing Suitable Access Control for Web-Connected Smart Home Platforms
	1 Introduction
	2 Access Control in Smart Home Systems
	2.1 Relevant Usage Scenarios
	2.2 Technical Requirements and Mechanisms

	3 Case Study: OpenHAB
	3.1 System Overview
	3.2 Access Control in OpenHAB
	3.3 Extending Access Control

	4 Discussion
	5 Conclusion and Future Work
	References




