
Chapter 5
Performance and Robustness Measures

A theory of design tradeoffs requires broadly applicable measures of cost, per-
formance, stability, and robustness. For example, the PID controller in the pre-
vious example performs reasonably well, but we ignored costs. That PID con-
troller achieved good tracking performance by using high gain amplification of low-
frequency input signals. High gain in a negative feedback loop quickly drives the
error to zero.

High gain has two potential problems. First, high signal amplificationmay require
excessive energy in physical or biological systems. We must consider those costs for
a high gain controller.

Second, high gain can cause system instability, with potential for system failure.
We must consider the tradeoff between the benefits of high gain and the loss of
robustness against perturbations or uncertainties in system dynamics.

Beyond the simple PID example, we must consider a variety of tradeoffs in per-
formance and robustness (Zhou and Doyle 1998; Qiu and Zhou 2010). Earlier, I
discussed tradeoffs in system sensitivities to disturbance and noise. I also presented
qualitative descriptions of systemperformance in terms of response time and tracking
performance.

To advance the theory, we need specific measures of cost, performance, stability
and robustness. We also need techniques to find optimal designs in relation to those
conflicting measures of system attributes.

We will never find a perfect universal approach. There are too many dimensions
of costs and benefits, and too many alternative ways to measure system attributes.
Nonetheless, basic measures and simple optimization methods provide consider-
able insight into the nature of design. Those insights apply both to the building
of human-designed systems to achieve engineering goals and to the interpretation
and understanding of naturally designed biological systems built by evolutionary
processes.
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5.1 Performance and Cost: J

To analyze performance, we must measure the costs and benefits associated with a
particular system.We often measure those costs and benefits by the distance between
a system’s trajectory and some idealized trajectory with zero cost and perfect per-
formance.

Squared deviations provide a distance measure between the actual trajectory and
the idealized trajectory. Consider, for example, the control signal, u(t), which the
controller produces to feed into the system process, as in Fig. 2.1c.

The value of |u(t)|2 = u2 measures the magnitude of the signal as a squared
distance from zero. We can think of u2 as the instantaneous power of the control
signal. Typically, the power requirements for control are a cost to be minimized.

The square of the error output signal, |e(t)|2 = e2, measures the distance of the
system from the ideal performance of e = 0.Minimizing the squared errormaximizes
performance. Thus, wemay think of performance at any particular instant, t , in terms
of the cost function

J (t) = u2 + ρ2e2,

for which minimum cost corresponds to maximum performance. Here, ρ is a weight-
ing factor that determines the relative value of minimizing the control signal power,
u2, versus minimizing the tracking error, e2.

Typically, we measure the cost function over a time interval. Summing up J (t)
continuously from t = 0 to T yields

J =
∫ T

0
(u2 + ρ2e2)dt. (5.1)

Most squared distance or quadratic performance analyses arise from extensions of
this basic equation. Given this measure, optimal design trades off minimizing the
energy cost to drive the system versus maximizing the benefit of tracking a target
goal.

5.2 Performance Metrics: Energy and H2

The cost measure in Eq. 5.1 analyzes signals with respect to time. It is natural to think
of inputs and outputs as changing over time. With temporal dynamics, we can easily
incorporate multivariate signals and nonlinearities. In spite of those advantages, we
often obtain greater insight by switching to a frequency analysis of signals, as in the
previous chapters.

In this section, I present alternative measures of cost and performance in terms
of transfer functions and complex signals. Those alternative measures emphasize
frequencies of fluctuations rather than changes through time. Frequency and complex
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analysis allow us to take advantage of transfer functions, Bode plots, and other
powerful analytical tools that arise when we assume linear dynamics.

The assumption of linearity does not mean that we think the actual dynamics of
physical and biological processes are linear. Instead, starting with the linear case
provides a powerful way in which to gain insight about dynamics.

In the previous section, we considered how to measure the magnitude of fluctu-
ating control and error signals. A magnitude that summarizes some key measure is
often called a norm. In the prior section, we chose the sum of squared deviations
from zero, which is related to the 2–norm of a signal

‖u(t)‖2 =
(∫ ∞

0
|u(t)|2dt

)1/2

. (5.2)

The energy of the signal is the square of the 2–norm, ‖u(t)‖22. When the time period
in the cost function of Eq. 5.1 goes to infinity, T → ∞, we canwrite the cost function
as

J = ‖u(t)‖22 + ρ2‖e(t)‖22. (5.3)

The signal u(t) is a function of time. The associated transfer functionU (s) describes
exactly the same signal, but as a function of the complex number, s, rather than of
time, t .

It is often much easier to work with the transfer function for analysis, noting that
we can go back and forth between time and transfer function descriptions. For the
analysis of squared distance metrics, the 2–norm of the transfer function expression
is

‖U (s)‖2 =
(

1

2π

∫ ∞

−∞
|U ( jω)|2dω

)1/2

. (5.4)

This transfer function 2–norm is often referred to as theH2 norm. The term |U ( jω)|2
is the square of the Bode gain or magnitude, as in Fig. 2.2e. That gain describes the
amplification of a sinusoidal input at frequencyω. TheH2 norm expresses the average
amplification of input signals over all input frequencies.

If the goal is to minimize the control input signal, u, or the error deviation from
zero, e, then the greater the amplification of a signal, the greater the cost. Thus, we
can use the H2 norm to define an alternative cost function as

J = ‖U (s)‖22 + ρ2‖E(s)‖22, (5.5)

which leads to methods that are often called H2 analysis. This cost describes the
amplification of input signals with respect to control and error outputs when averaged
overall input frequencies. Minimizing this cost reduces the average amplification of
input signals.
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If the energy 2–norm in Eq. 5.2 is finite, then the energy 2–norm and the H2 norm
are equivalent, ‖u(t)‖2 = ‖U (s)‖2, and we can use Eqs. 5.3 and 5.5 interchangeably.
Often, it is more convenient to work with the transfer function form of the H2 norm.

We can use any combination of signals in the cost functions. And we can use
different weightings for the relative importance of various signals. Thus, the cost
functions provide a method to analyze a variety of tradeoffs.

5.3 Technical Aspects of Energy and H2 Norms

I have given three different cost functions. The first in Eq 5.1 analyzes temporal
changes in signals, such as u(t), over a finite time interval. That cost function is the
most general, in the sense that we can apply it to any finite signals. We do not require
assumptions about linearity or other special attributes of the processes that create the
signals.

The second function in Eq. 5.3 measures cost over an infinite time interval and is
otherwise identical to the first measure. Why consider the unrealistic case of infinite
time?

Often, analysis focuses on a perturbation that moves a stable system away from its
equilibrium state. As the system returns to equilibrium, the error and control signals
go to zero. Thus, the signals have positive magnitude only over a finite time period,
and the signal energy remains finite. As noted above, if the energy 2–norm is finite,
then the energy 2–norm and the H2 norm are equivalent, and the third cost function
in Eq. 5.5 is equivalent to the second cost function in Eq. 5.3.

If the signal energy of the second cost function in Eq. 5.3 is infinite, then that cost
function is not useful. In an unstable system, the error often grows with time, leading
to infinite energy of the error signal. For example, the transfer function 1/(s − 1)
has temporal dynamics given by y(t) = y(0)et , growing exponentially with time.
The system continuously amplifies an input signal, creating instability and an output
signal with infinite energy.

When the energy is infinite, the H2 norm may remain finite. For the transfer func-
tion 1/(s − 1), the H2 norm is 1/

√
2. The average amplification of signals remains

finite. In general, for a transfer function, G(s), the H2 norm remains finite as long
as G( jω) does not go to infinity for any value of ω, and G( jω) → 0 as ω → ±∞.
Thus, the H2 norm cost in Eq. 5.5 can be used in a wider range of applications.

The H2 norm is related to many common aspects of signal processing and time
series analysis, such as Fourier analysis, spectral density, and autocorrelation.
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5.4 Robustness and Stability: H∞

A transfer function for a system, G(s), defines the system’s amplification of input
signals. For a sinusoidal input at frequency ω, the amplification, or gain, is the
absolute value of the transfer function at that frequency, |G( jω)|.

Often, the smaller a system’s amplification of inputs, the more robust the system
is against perturbations. Thus, one common optimization method for designing con-
trollers seeks to minimize a system’s greatest amplification of inputs. Minimizing
the greatest amplification guarantees a certain level of protection against the worst
case perturbation. In some situations, one can also guarantee that a system is stable
if its maximum signal amplification is held below a key threshold.

A system’smaximumamplification of sinusoidal inputs over all input frequencies,
ω, is called its H∞ norm. For a system G(s), the H∞ norm is written as ‖G(s)‖∞.
The norm describes the maximum of |G( jω)| over all ω. The maximum is also the
peak gain on a Bode magnitude plot, which is equivalent to the resonance peak.

System stability and protection against perturbations set two fundamental criteria
for system design. Thus, H∞ methods are widely used in the engineering design of
controllers and system architectures (Zhou and Doyle 1998).
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