
Chapter 2
Control Theory Dynamics

The mathematics of classical control theory depends on linear ordinary differential
equations, which commonly arise in all scientific disciplines. Control theory empha-
sizes a powerful Laplace transform expression of linear differential equations. The
Laplace expression may be less familiar in particular disciplines, such as theoretical
biology.

2.1 Transfer Functions and State Space

Here, I show how and why control applications use the Laplace form. I recommend
an introductory text on control theory for additional background and many example
applications (e.g., Åström and Murray 2008; Ogata 2009; Dorf and Bishop 2016).

Suppose we have a process, P , that transforms a command input, u, into an
output, y. Figure2.1a shows the input–output flow. Typically, we write the process
as a differential equation, for example

ẍ + a1 ẋ + a2x = u̇ + bu, (2.1)

in which x(t) is an internal state variable of the process that depends on time, u(t)
is the forcing command input signal, and overdots denote derivatives with respect to
time. Here, for simplicity, we let the output be equivalent to the internal state, y ≡ x .

The dynamics of the input signal, u, may be described by another differential
equation, driven by reference input, r (Fig. 2.1b). Mathematically, there is no prob-
lem cascading sequences of differential equations in this manner. However, the rapid
growth of various symbols and interactions make such cascades of differential equa-
tions difficult to analyze and impossible to understand intuitively.
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Fig. 2.1 Basic process and control flow. a The input–output flow in Eq.2.2. The input, U (s), is
itself a transfer function. However, for convenience in diagramming, lowercase letters are typically
used along pathways to denote inputs and outputs. For example, in a, u can be used in place ofU (s).
In b, only lowercase letters are used for inputs and outputs. Panel b illustrates the input–output flow
of Eq.2.3. These diagrams represent open-loop pathways because no closed-loop feedback pathway
sends a downstream output back as an input to an earlier step. c A basic closed-loop process and
control flow with negative feedback. The circle between r and e denotes addition of the inputs to
produce the output. In this figure, e = r − y

We can use a much simpler way to trace input–output pathways through a system.
If the dynamics of P follow Eq.2.1, we can transform P from an expression of
temporal dynamics in the variable t to an expression in the complex Laplace variable
s as

P(s) = Y (s)

U (s)
= s + b

s2 + a1s + a2
. (2.2)

The numerator simply uses the coefficients of the differential equation in u from the
right side of Eq.2.1 to make a polynomial in s. Similarly, the denominator uses the
coefficients of the differential equation in x from the left side of Eq.2.1 to make
a polynomial in s. The eigenvalues for the process, P , are the roots of s for the
polynomial in the denominator. Control theory refers to the eigenvalues as the poles
of the system.

From this equation and the matching picture in Fig. 2.1, we may write Y (s) =
U (s)P(s). In words, the output signal, Y (s), is the input signal, U (s), multiplied by
the transformation of the signal by the process, P(s). Because P(s) multiplies the
signal, we may think of P(s) as the signal gain, the ratio of output to input, Y /U . The
signal gain is zero at the roots of the numerator’s polynomial in s. Control theory
refers to those numerator roots as the zeros of the system.
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The simple multiplication of the signal by a process means that we can easily
cascade multiple input–output processes. For example, Fig. 2.1b shows a system
with extended input processing. The cascade begins with an initial reference input,
r , which is transformed into the command input, u, by a preprocessing controller,
C , and then finally into the output, y, by the intrinsic process, P . The input–output
calculation for the entire cascade follows easily by noting that C(s) = U (s)/R(s),
yielding

Y (s) = R(s)C(s)P(s) = R(s)
U (s)

R(s)

Y (s)

U (s)
. (2.3)

These functions of s are called transfer functions.
Each transfer function in a cascade can express any general system of ordinary

linear differential equations for vectors of state variables, x , and inputs, u, with
dynamics given by

x (n) + a1x
(n−1) + · · · + an−1x

(1) + anx

= b0u
(m) + b1u

(m−1) + · · · + bm−1u
(1) + bmu, (2.4)

in which parenthetical superscripts denote the order of differentiation. By analogy
with Eq.2.2, the associated general expression for transfer functions is

P(s) = b0sm + b1sm−1 + · · · + bm−1s + bm
sn + a1sn−1 + · · · + an−1s + an

. (2.5)

The actual biological or physical process does not have to include higher-order
derivatives. Instead, the dynamics of Eq.2.4 and its associated transfer function can
always be expressed by a system of first-order processes of the form

ẋi =
∑

j

ai j x j +
∑

j

bi j u j , (2.6)

which allows for multiple inputs, u j . This system describes the first-order rate of
change in the state variables, ẋi , in terms of the current states and inputs. This state-
space description for the dynamics is usually written in vector notation as

ẋ = Ax + Bu

y = Cx + Du,

which potentially has multiple inputs and outputs, u and y.
For example, the single input–output dynamics in Eq.2.1 translate into the state-

space model
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ẋ1 = −a2x2 + bu

ẋ2 = x1 − a1x2 + u

y = x2,

in which the rates of change in the states depend only on the current states and the
current input.

2.2 Nonlinearity and Other Problems

Classical control theory focuses on transfer functions. Those functions apply only to
linear, time-invariant dynamics. By contrast, state-space models can be extended to
any type of nonlinear, time-varying process.

Real systems are typically nonlinear. Nonetheless, four reasons justify the study
of linear theory.

First, linear analysis clarifies fundamental principles of dynamics and control.
For example, feedback often leads to complex, nonintuitive pathways of causation.
Linear analysis has clarified the costs and benefits of feedback in terms of trade-
offs between performance, stability, and robustness. Those principles carry over to
nonlinear systems, although the quantitative details may differ.

Second, many insights into nonlinear aspects of control come from linear the-
ory (Isidori 1995; Khalil 2002; Astolfi et al. 2008). In addition to feedback, other
principles include how to filter out disturbances at particular frequencies, how time
delays alter dynamics and the potential for control, how to track external setpoints,
and how to evaluate the costs and benefits of adding sensors to monitor state and
adjust dynamics.

Third, linear theory includes methods to analyze departures from model assump-
tions. Those linear methods of robustness often apply to nonlinear departures from
assumed linearity. One can often analyze the bounds on a system’s performance,
stability, and robustness to specific types of nonlinear dynamics.

Fourth, analysis of particular nonlinear systems often comes down to studying
an approximately linearized version of the system. If the system state remains near
an equilibrium point, then the system will be approximately linear near that point.
If the system varies more widely, one can sometimes consider a series of changing
linear models that characterize the system in each region. Alternatively, a rescaling
of a nonlinear system may transform the dynamics into a nearly linear system.

Given a particular nonlinear system, one can always simulate the dynamics explic-
itly. The methods one uses to understand and to control a simulated system arise
mostly from the core linear theory and from the ways that particular nonlinearities
depart from that core theory.
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2.3 Exponential Decay and Oscillations

Two simple examples illustrate the match between standard models of dynamics and
the transfer function expressions. First, the simplest first-order differential equation
in x(t) forced by the input u(t), with initial condition x(0) = 0, is given by

ẋ + ax = u, (2.7)

which has the solution

x(t) =
∫ t

0
e−aτu(t − τ)dτ. (2.8)

This process describes how x accumulates over time, as inputs arrive at each time
point with intensity u, and x decays at rate a.

If the input into this system is the impulse or Dirac delta function, u(t)dt = 1 at
t = 0 and u(t) = 0 for all other times, then

x(t) = e−at .

If the input is the unit step function, u(t) = 1 for t ≥ 0 and u(t) = 0 for t < 0, then

x(t) = 1

a

(
1 − e−at

)
.

Many processes follow the basic exponential decay in Eq.2.8. For example, a
quantity u of a molecule may arrive in a compartment at each point in time and then
decay at rate a within the compartment. At any time, the total amount of themolecule
in the compartment is the sum of the amounts that arrived at each time in the past,
u(t − τ), weighted by the fraction that remains after decay, e−aτ .

The process in Eq.2.7 corresponds exactly to the transfer function

P(s) = 1

s + a
, (2.9)

in which the output is equivalent to the internal state, y ≡ x .
In the second example, an intrinsic process may oscillate at a particular frequency,

ω0, described by
ẍ + ω2

0x = u.

This system produces output x = sin(ω0t) for u = 0 and an initial condition along
the sine curve. The corresponding transfer function is

P(s) = ω0

s2 + ω2
0

.
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We can combine processes by simply multiplying the transfer functions. For
example, supposewe have an intrinsic exponential decay process, P(s), that is driven
by oscillating inputs, U (s). That combination produces an output

Y (s) = U (s)P(s) = ω0

(s + a)(s2 + ω2
0)

, (2.10)

which describes a third-order differential equation, because the polynomial of s in
the denominator has a highest power of three.

We could have easily obtained that third-order process by combining the two
systems of differential equations given above. However, when systems include many
processes in cascades, including feedback loops, it becomes difficult to combine the
differential equations into very high-order systems.Multiplying the transfer functions
through the system cascade remains easy. That advantage was nicely summarized
by Bode (1964), one of the founders of classical control theory

The typical regulator system can frequently be described, in essentials, by differential equa-
tions of no more than perhaps the second, third or fourth order. … In contrast, the order of
the set of differential equations describing the typical negative feedback amplifier used in
telephony is likely to be very much greater. As a matter of idle curiosity, I once counted to
find out what the order of the set of equations in an amplifier I had just designed would have
been, if I had worked with the differential equations directly. It turned out to be 55.

2.4 Frequency, Gain, and Phase

How do systems perform when parameters vary or when there are external environ-
mental perturbations? We can analyze robustness by using the differential equations
to calculate the dynamics for many combinations of parameters and perturbations.
However, such calculations are tedious and difficult to evaluate for more than a cou-
ple of parameters. Using transfer functions, we can study a wide range of conditions
by evaluating a function’s output response to various inputs.

This chapter uses the Bode plot method. That method provides an easy and rapid
way in which to analyze a system over various inputs. We can apply this method to
individual transfer functions or to cascades of transfer functions that comprise entire
systems.

This section illustrates the method with an example. The following section
describes the general concepts and benefits.

Consider the transfer function

G(s) = a

s + a
, (2.11)

which matches the function for exponential decay in Eq.2.9. Here, I multiplied the
function by a so that the value would be one when s = 0.
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Fig. 2.2 Dynamics, gain, and phase of the low-pass filter in Eq.2.11 in response to sine wave inputs
at varying frequencies, ω. Details provided in the text. a–c Dynamics given by a multiplied by the
transfer function on the right-hand side of Eq.2.10. d Response of Eq.2.11 to unit step input. e
The scaling of the Bode gain plot is 20 log10(gain). That scaling arises from the relation between
the magnitude, M = |G( jω)|, and power, P = M2, of a signal at a particular frequency, ω, or
equivalently M = √

P . If we consider gain as the magnitude of the output signal, then the scale
for the gain is given as 20 log10(

√
P) = 10 log10(P), the standard decibel scaling for the relative

power of a signal. f Bode phase plot

We can learn about a system by studying how it responds to different kinds of
fluctuating environmental inputs. In particular, howdoes a system respond to different
frequencies of sine wave inputs?

Figure2.2 shows the response of the transfer function in Eq.2.11 to sine wave
inputs of frequency, ω. The left column of panels illustrates the fluctuating output
in response to the green sine wave input. The blue (slow) and gold (fast) responses
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correspond to parameter values in Eq.2.11 of a = 1 and a = 10. All calculations and
plots in this book are available in the accompanying Mathematica code (Wolfram
Research 2017) at the site listed in the Preface.

In the top-left panel, at input frequency ω = 1, the fast (gold) response output
closely tracks the input. The slow (blue) response reduces the input by

√
2 ≈ 0.7.

This output–input ratio is called the transfer function’s gain. The slow response
output also lags the input by approximately 0.11 of one complete sine wave cycle of
2π = 6.28 radians, thus the shift to the right of 0.11 × 6.28 ≈ 0.7 radians along the
x-axis.

We may also consider the lagging shift in angular units, in which 2π radians is
equivalent to 360◦. The lag in angular units is called the phase. In this case, the phase
is written as −0.11 × 360◦ ≈ −40◦, in which the negative sign refers to a lagging
response.

A transfer function always transforms a sine wave input into a sine wave output
modulated by the gain and phase. Thus, the values of gain and phase completely
describe the transfer function response.

Figure2.2b shows the same process but driven at a higher input frequency of
ω = 10. The fast response is equivalent to the slow response of the upper panel.
The slow response has been reduced to a gain of approximately 0.1, with a phase
of approximately −80◦. At the higher frequency of ω = 100 in the bottom panel,
the fast response again matches the slow response of the panel above, and the slow
response’s gain is reduced to approximately 0.01.

Both the slow and fast transfer functions pass low-frequency inputs into nearly
unchanged outputs. At higher frequencies, they filter the inputs to produce greatly
reduced, phase-shifted outputs. The transfer function form of Eq.2.11 is therefore
called a low-pass filter, passing low frequencies and blocking high frequencies. The
two filters in this example differ in the frequencies at which they switch from passing
low-frequency inputs to blocking high-frequency inputs.

2.5 Bode Plots of Gain and Phase

A Bode plot shows a transfer function’s gain and phase at various input frequencies.
The Bode gain plot in Fig. 2.2e presents the gain on a log scale, so that a value of
zero corresponds to a gain of one, log(1) = 0.

For the system with the slower response, a = 1 in blue, the gain is nearly one
for frequencies less than a and then drops off quickly for frequencies greater than
a. Similarly, the system with faster response, a = 10, transitions from a system that
passes low frequencies to one that blocks high frequencies at a point near its a value.
Figure2.2f shows the phase changes for these two low-pass filters. The slower blue
system begins to lag at lower input frequencies.
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Low-pass filters are very important because low-frequency inputs are often exter-
nal signals that the system benefits by tracking, whereas high-frequency inputs are
often noisy disturbances that the system benefits by ignoring.

In engineering, a designer can attach a low-pass filter with a particular transition
parameter a to obtain the benefits of filtering an input signal. In biology, natural
selection must often favor appending biochemical processes or physical responses
that act as low-pass filters. In this example, the low-pass filter is simply a basic
exponential decay process.

Figure2.2d shows a key tradeoff between the fast and slow responses. In that panel,
the system input is increased in a step from zero to one at time zero. The fast system
responds quickly by increasing its state to a matching value of one, whereas the slow
system takes much longer to increase to a matching value. Thus, the fast system
may benefit from its quick response to environmental changes, but it may lose by
its greater sensitivity to high-frequency noise. That tradeoff between responsiveness
and noise rejection forms a common theme in the overall performance of systems.

Tomake theBodeplot,wemust calculate the gain andphaseof a transfer function’s
response to a sinusoidal input of frequency ω. Most control theory textbooks show
the details (e.g.,Ogata 2009). Here, I briefly describe the calculations, which will be
helpful later.

Transfer functions express linear dynamical systems in terms of the complex
Laplace variable s = σ + jω. I use j for the imaginary number to match the control
theory literature.

The gain of a transfer function describes how much the function multiplies its
input to produce its output. The gain of a transfer function G(s) varies with the input
value, s. For complex-valued numbers, we use magnitudes to analyze gain, in which
the magnitude of a complex value is |s| = √

σ 2 + ω2.
It turns out that the gain of a transfer function in response to a sinusoidal input

at frequency ω is simply |G( jω)|, the magnitude of the transfer function at s = jω.
The phase angle is the arctangent of the ratio of the imaginary to the real parts of
G( jω).

For the exponential decay dynamics that form the low-pass filter of Eq.2.11, the
gain magnitude, M , and phase angle, φ, are

M = |G( jω)| = a√
ω2 + a2

φ = ∠G( jω) = − tan−1 ω

a
.

Any stable transfer function’s long-term steady-state response to a sine wave input
at frequency ω is a sine wave output at the same frequency, multiplied by the gain
magnitude, M , and shifted by the phase angle, φ, as
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sin(ωt)
G−−→ M sin(ωt + φ), (2.12)

in which the angle is given in radians. For example, if the phase lags by one-half of
a cycle, φ = −π ≡ −180◦, then M sin(ωt + φ) = −M sin(ωt).
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