Chapter 5 )
Song: The Learned Language of Three s
Major Bird Clades

Martin Pickert

Abstract Vocal learning has evolved several times independently in mammals and
three major orders of birds. Of these only hummingbirds and passerine birds have
complex songs, whereas the large vocal repertoires of parrots comprise various call
types associated with different behavioral contexts. Generally, bird song has two
major functions: territorial defense and mate attraction. In the latter context, partic-
ularly in songbirds (Oscines), the evolution of male song repertoires has strongly
been driven by sexual selection: Song complexity and repertoire size have been
shown to be indicators of male quality and are thus crucial traits for female choice.
Today, the age of phylogenetics provides new methods for the study of the mode and
tempo of organismic diversification and of trait evolution, e.g., of vocal learning. As
a striking result, song learning seems to be associated with species richness across
the avian tree of life. This provided recent evidence for the theory that song learning
can act as a pacemaker of evolution. The spatial variation of song dialects is often
correlated with genetic diversification. Extreme cases are small isolated populations,
for example, on islands. In the field, the effect of song diversification as a barrier for
gene flow can best be observed in zones of secondary contact between close
relatives. Even in cases of hybridization, differences of song might affect female
choice and thus lead to assortative mating and prevent gene flow in one or even in
both directions. These are probably the most exciting case studies, where speciation
in action (or in reverse) can be studied in the wild.
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76 M. Pickert
5.1 Eager Birds: The Advanced Learners

The capacity of vocal learning is found only in three larger branches of the avian tree
of life: hummingbirds (Trochilidae), parrots (Psittacidae), and perching birds
(Passeriformes). These three advanced learners represent quite different groups of
birds with respect to anatomy, behavior, and ecology. Indeed, parrots and passerines
are closest relatives, but hummingbirds belong to a totally different branch of the
bird phylogeny: They are sister to swifts (Apodidae) that dispose of rather simple-
structured vocal repertoires. This basically means that in birds, vocal learning and
the associated brain structures have evolved at least twice independently (Jarvis
2006; Suh et al. 2011; Nowicki and Searcy 2014). Even in perching birds
(Passeriformes), not every species is capable of vocal learning: Only the true
songbirds of the suborder Passeri are the real vocal learners: the Oscines. Apart
from this species-rich group, two tropical suborders of passerines dispose of mainly
innate vocalizations: the New Zealand wrens (Acanthisittidae) and the highly diverse
tyrant flycatchers (Tyranni, also called Suboscines). Learning capacity has been
shown to correspond with similarities in forebrain areas of hummingbirds and
Oscines that were not found in their non-learning sister groups (swifts and
Suboscines; Gahr 2000).

Of the three vocal learners, passerines have by far the most complex vocalizations
with respect to the diversity and combinations of single sounds in complex compo-
sitions such as territorial songs. Let’s say passerines are the greatest performers. For
their immense diversity, passerine vocal repertoires probably show the greatest
variation in space and time. Therefore, in the following, I mainly focus on these
most eager learners among birds.

5.2 Passerine Song

Almost all passerine birds have a large repertoire of highly diverse vocalizations
displayed in various behavioral contexts. We distinguish two main classes of
vocalizations: calls and songs (Catchpole and Slater 1995). Calls are simple rather
short vocalizations for communication among mates, rivals, parents and young,
within a flock and even among different species like in case of alarm calls (Marler
2004b). The characteristic “rain calls” of chaffinches (Fig. 5.1) are highly variable
among regions, even among different quarters of a city. Their function is not fully
understood; however, for the resemblance of these regularly repeated buzzing
sounds with those of other finch species, they have sometimes been considered an
energy-saving rudimentary song type (Constantine 2006).

In contrast, songs are long and complex vocalizations that in many species are
composed of many different notes and motifs. The sequential order of notes or song
parts (syntax) is a characteristic for most passerine species. Generally, the single bird
displays many songs in succession during song bouts that can last over several
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Fig. 5.1 Sonagraphic analysis of bird vocalizations. A sonagram is a spectrographic image of
sound events, i.e., a plot of frequency (y-axis) versus time (x-axis). Different frequency and time

parameters can be measured for scientific analysis (see song 1). Each sound

event (note) is

represented by a continuous black line. The plate shows different calls and dialect song types of
the Common Chaffinch Fringilla coelebs (picture: F. c. moreletti, Sio Miguel Azores; M. Pickert
2017). Typical chaffinch songs are composed of different phrases (stereotyped repetitions of one
element or motif) and a variable terminal flourish. All recordings of M. Pickert except song
3 (S. Eck) and song 4: a hand-reared bird recorded by Thorpe in the year 1954 (from Marler and

Slabbekoorn 2004)
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minutes. The successive songs can have more or less the same structure like in the
Common Chaffinch Fringilla coelebs (Fig. 5.1), or they can show a great variation
of many different song types like in the Common Blackbird Turdus merula or the
Common Starling Sturnus vulgaris. The entirety of all different song types of a bird
is termed a repertoire. Unlike calls, songs have two main functions and receivers:
territorial defense in communication between males and mate attraction in commu-
nication between males and females. As a consequence, territorial song is often
displayed by males only, mainly throughout the breeding season and rarely heard,
for example, in the wintering grounds. That seasonality and male monopoly of song
display is more or less the rule in the temperate parts of the Northern Hemisphere,
whereas in the Tropics the situation is quite different. There, a fascinating variant of
vocal display can be observed: duetting of mated males and females. It has been
considered a rare phenomenon, but in fact duetting has been observed in about
400 species from about 40% of all bird families (Hall 2009; Logue and Krupp 2016).
Not to forget that duetting is also present in the two other eager learners among birds,
the hummingbirds (Ficken et al. 2000) and the parrots (Dahlin and Wright 2012).
Strikingly, duetting is almost exclusively limited to tropical species, and a recent
study suggested that it seems to be firmly associated with the absence of migration
rather than with sexual dichromatism, for example (Logue and Hall 2014). This
particular behavior is not limited to male-female interaction: For example, White-
browed Sparrow-Weavers Plocepasser mahali, cooperative breeders from
sub-Saharan Africa, regularly perform complex group duets with the dominant
male performing solo displays (Voigt et al. 2006). Not least, increasing knowledge
of duetting behavior has challenged the paradigm that in most passerines only males
would sing. In fact, current studies showed that female song is much more common
than previously believed and present in at least 71% of all songbird species (Odom
et al. 2014; Amy et al. 2015; Price 2015). Though knowledge on female song is still
scarce, it is beyond dispute that females have played a key role in avian song
evolution, because it is them who generally decide about mating success of males.

5.3 The Best Singer Takes It All: Female Preference
and Sexual Selection

For their different functions in behavioral interaction within and among sexes, bird
songs are considered both armaments and sexually selected ornaments (Tobias et al.
2011). It was indeed Darwin, who first developed the theory of sexual selection and
considered that vocalizations could play a major role for female choice. Originally,
Darwin’s view on female choice was merely an “aesthetic”” conception of bird song
and this has been immediately criticized by Wallace, who postulated that from the
perspective of females, song would be an indicator of male vigor and viability (review
in Prum 2012).
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There is good knowledge that across a broad spectrum of vertebrate species, mate
preference is learned by both males and females during a phase of sexual imprinting
(Irwin and Price 2009; Verzijden et al. 2012). Also in birds, females discriminate
between different variations of songs, and like male song female choice is learned
from different tutors. Likewise, female birds were shown to react more positively and
intensively toward song types of their own mate (O’Loghlen and Beecher 1997) or
toward the local dialect from their own population (Danner et al. 2011). Furthermore,
in many species like the Song Sparrow Melospiza melodia, female preference is
firmly associated with repertoire size (Reid et al. 2004). Another famous example
comes from reed warblers of the genus Acrocephalus: Their long warbling songs
displayed from dense riverine vegetation can comprise a multitude of different notes.
For example, Marsh Warblers A. palustris are great learners, because in their African
wintering grounds, they can pick up vocalizations of many tropical bird species and
remember them next spring in their Eurasian breeding territories (Dowsett-Lemaire
1979). Likewise, a reed warbler male in its first year can easily double its vocal
repertoire by mimicking other species (Kroodsma 2004: Box 18). Repertoire size and
composition can accordingly change between successive breeding seasons (Wegrzyn
and Leniowski 2009). Female reed warblers seem to have a preference for long and
complex songs, because apparently the males with the largest repertoires get mated
first and have a greater breeding success (Catchpole 1980, 1986; Catchpole and
Leisler 1996; Kroodsma 2004: Box 17; Darolova et al. 2012). These classical studies
became a textbook example for sexual selection on repertoire size. However, reser-
vations are standing, because mating and breeding success are influenced by a few
more factors than female choice only. About 10 years later, Forstmeier and Leisler
(2004) meticulously repeated those experiments by Catchpole and his team on Great
Reed Warblers A. arundinaceus and came to an astonishing result: In the same
Swedish population, male repertoire sizes were positively correlated with male
pairing success and clutch size in the 1980s, but not in the 1990s. The authors
suggested that recent population decline of Scandinavian Great Reed Warblers
might have changed the role of territory quality and thus of repertoire sizes as a
putative indicator. We will later see that a change of ecological factors (both biotic
and abiotic) might lead to remarkable changes of local song types. However, despite
the critical reevaluation of Catchpole’s studies (see also Darolovd et al. 2012), there is
still good evidence that female birds can infer reliable information on male quality
from their songs (Nowicki et al. 1998). The so-called good-genes hypothesis origi-
nally referred only to visual ornamental traits such as coloration. However, soon the
assumption was made that this hypothesis would apply to bird vocalizations, too. For
example, according to general belief, animals tend to avoid inbreeding depression,
i.e., they avoid mating among members of close kinship or even with individuals
from an inbred population (Pusey and Wolf 1996). Just recently, researchers found
out that captive female Atlantic Canaries Serinus canaria indeed discriminate
between inbred and outbred birds by their different songs. As a consequence, they
mated less often with an inbred male, and, if they did, breeding success was lower
than that of couples with an outbred male (deBoer et al. 2016). We will see that male
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quality does not relate only to inherited but also to acquired traits in a later paragraph;
but let’s first step back on a brief walk through history of bioacoustic research.

5.4 How It All Began: A Brief History of Bioacoustic
Studies

In the second half of the twentieth century, experimental studies on song learning in
birds were developed by behaviorist scholars like the neurobiologist Fernando
Nottebohm or the zoologist William H. Thorpe, who pursued a comparative etho-
logical approach. He was a pioneer of bioacoustic studies, and he was also the first
scientist to use spectrography (Fig. 5.1)—a newly emerging technique in these
days—for analysis of bird song (Marler 2004a). Generally, the core question of
the early behaviorist studies was to disentangle learned and innate components of
bird song; however, their experimental designs differed.

For example, classical neuroscientific experiments focused on test birds that were
surgically deafened a few days after hatching (Nottebohm 1970) or whose innerva-
tion of the vocal apparatus (the syrinx) had been manipulated (Nottebohm 1970,
1971). Ethological experiments had a more simplified setting: They studied cage
birds that were hand-reared in acoustic isolation. For the deprived situation of the test
birds, these studies later became famous as Kaspar-Hauser experiments, named after
the mysterious foundling from Niirnberg of the early nineteenth century. The simple
design with completely isolated individuals was expected to unmistakably unveil the
ancestral innate structure of a bird’s song. However, in a second step, scientists tried
to find out more about a birds learning capacity by exposing the test birds to different
tutors (of the same and of different species), to tape recordings or even to human
whistles that resulted in exact copies of a German folk tune by Eurasian Bullfinches
Pyrrhula pyrrhula (Nicolai et al. 2014). The probably most popular model species
of early ethologists was the Common Chaffinch (review in Riebel et al. 2015).
Figure 5.1 shows the comparison of two fully developed songs from wild birds
with a recording of a hand-reared bird by Thorpe (1958). Evidently, the Kaspar-
Hauser song is more simplified in structure and note variation, and it lacks the
characteristic partition into distinct phrases. However, the test bird’s song still bares
striking similarities with the song of wild birds: The frequency course is slightly
descending toward the simplified terminal flourish at the end of the strophe.

Based on their experimental results, most scientists agreed that birds have a
sensitive phase for the acquisition of fully developed (crystallized) song (Nottebohm
1968, 1969, 1970). The duration of this phase can vary extremely among species
(Hultsch and Todt 2004) from only a few days in the nest with the father as tutor to
the first breeding season with further tutorial input from the territory neighbor. These
“age-limited learners” (or “close-ended learners”) are opposed to the so-called
“open-ended learners” among them the Common Starling (Eens et al. 1992).
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However, lifelong learning is also known from the other two eager learners of birds:
It has been shown for some hummingbird species (Araya-Salas and Wright 2013)
and of course for parrots above all from the studies of Irene Pepperberg on Grey
Parrots Psittacus erithacus. Her most famous parrot Alex proved to be capable even
of referential learning of human speech (Pepperberg 2004, 2010). Generally, learn-
ing mode seems to be correlated with repertoire size in a way that open-ended
learners have the larger repertoires (Creanza et al. 2016)—which is not too surpris-
ing, because they simply have more time to increase their “vocabulary” annually.
The cage experiment was soon complemented by a great number of studies on wild
bird populations in the field, and their basic conclusion can be summarized in brief:
Bird song is subject to cultural evolution. Because several different cultural traits,
such as song learning or female mating preference are involved and mutually affect
each other, that complex evolutionary process was recently suggested to end up in
the reconstruction of a cultural niche (Creanza et al. 2016).

5.5 Telltale Songs: Evolution and Phylogenetic Information
of Vocalizations

As one result of cultural evolution, the song of a bird species bares ultimate diagnostic
traits that allow for exact species determination by the scientist and for effective
species recognition among the birds themselves. Nevertheless, species of the same
genus, for example, may share common song features that clearly indicate close
kinship. Kinglets are among the smallest passerines, and therefore most species have
a rather high-pitched voice. All of the six Regulus species have clearly structured
songs that are composed of two or three parts (Martens et al. 1998; Packert et al.
2003). Each of these parts is defined by characteristic sound constraints: For example,
all species share one song part (Fig. 5.2) that is steadily increasing within the same
frequency range. Because this rising sequence contains similar whistling notes in all
species, it can be considered an ancestral song part that all kinglet species have in
common. Only three species complete their songs with a terminal flourish, and a
single Goldcrest R. regulus male, for example, can have about 20 different individual
variations of this end part. The molecular family tree of kinglets in Fig. 5.2 shows that
the three flourish-singers are closest relatives and that among these only the Goldcrest
and its sister species R. goodfellowi on Taiwan share a common song introduction.
This basically means that some components of song give us a clue on relatedness,
whereas others do not. In terms of scientists, we say that songs carry phylogenetic
information (Rheindt et al. 2014). This has been demonstrated for treecreepers
Certhia (Tietze et al. 2008) and leaf warblers, Phylloscopidae (Pickert et al. 2004;
Mahler and Gil 2009; Tietze et al. 2015). These case studies also showed that highest
phylogenetic signal was found for innate components of songs like, for example, call-
like elements or the general syntax. For example, like in the previous Chaffinch
example, hand-reared Goldcrests always displayed the typical bi- or tripartite
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Fig. 5.2 Evolution of territorial song in kinglets Regulus; the schematized molecular tree is
modified after Pickert et al. (2003, 2009). For each species, the characteristic and invariable bi-
or tripartite song structure is shown as jigsaw puzzles. Homologous song parts are indicated by
pieces of the puzzle with the same color with typical sonagrams included. Gray pieces indicate
innate vocalizations such as calls integrated in the song of some species. Two species only
occasionally attach a terminal part to their song (unconnected pieces): R. ignicapilla (invariable
terminal call) and R. goodfellowi (variable terminal flourish). In contrast, songs of R. regulus and
R. satrapa regularly include a variable terminal flourish (connected pieces). From the many diverse
dialects of the Goldcrest, a recording from Japan (Hokkaido; R. regulus japonensis) was chosen for
the strong similarities of the yellow phrase (repetition of whistle notes) with that of North American
R. satrapa (see Martens et al. 1998)

partitioned song with a simple flourish motif at the end (Thaler 1990). On the other
hand, Common Firecrests R. ignicapilla have rather simple songs that can contain call
elements usually displayed in a different behavioral context, e.g., in close aggressive
contact. Only very occasionally Common Firecrests end their songs with such calls
that pretty much resemble single motifs in the terminal flourish repertoires of
R. regulus and R. satrapa. In so far, crests and kinglets provide a stunning example
of vocal evolution of complex song structures and repertoires derived from ancestral
simple vocalizations such as calls (Fig. 5.2).

5.6 Vocal Learning as a Pacemaker of Evolution

Strikingly, passerines represent by far the greatest part of the global avian biodiver-
sity: About 60% of all bird species belong to the order of Passeriformes. At the same
time, their top position in the avian tree of life makes passerines the “youngest” bird
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order, and on average they have higher diversification rates than nonpasserines (Jetz
et al. 2012). This basically means that the immense passerine species richness has
evolved over a rather short period of time compared to other bird orders. Since long,
ornithologists and evolutionary biologists have been trying to find an explanation for
this overwhelming success of passerine birds. It was the famous evolutionary
biologist Ernst Mayr, who came up first with the idea that evolutionary change can
be effectively caused by newly acquired behavior (reviewed in Corning 2014). Later,
it was Gerhard Thielcke (1970, 1972), another pioneer in the field of bioacoustics,
who adopted Mayr’s ideas and hypothesized that song learning can be a “pacemaker
of evolution.” Like behaviorists of the 1960s, Thielcke based his ideas on the results
of Kaspar-Hauser experiments that he carried out with captive treecreepers of
species Certhia familiaris and C. brachydactyla. Since then, the pacemaker theory
has been lively and controversially discussed, but the original idea was kept alive: If
songs of two birds differ to a certain degree, they will not consider each other as a
member of their own species, i.e., song variation affects species recognition in both
males and females. Therefore, avian vocalizations can be an effective premating
barrier and cause reproductive isolation (to a certain degree) among closest relatives
(Martens 1996, 1998).

These theories have been recently put to test with modern analytical methods. The
basic question was: Are song-learners greater speciators than those birds that do not
learn? This can be done in a totally theoretical approach using simulations under
different evolutionary models. To put it simple, in theory, the learning model always
produced greater mean differentiation of songs as a response of males to female
preferences and sexual selection (Lachlan and Servedio 2004). Further evidence
came from phylogenetic studies posing the basic question: Do song-learners gener-
ate more branches of the avian tree of life over time than non-learners? A comparison
of two Neotropical passerine families yielded two striking results (Mason et al.
2017): Each burst of speciation (i.e., accelerated emergence of new branches) was
associated with increased diversification of songs in both groups. However, the
mean speciation rates were greater in the oscine study family with learned songs
(tanagers and allies, Thraupidae) than in the non-learning suboscine study family
(antbirds, Thamnophilidae).

5.7 Dialects: Spatial Variation

In analogy to human language, spatially separated song types of the same species are
called dialects. Possibly the most comprehensive fine-scale monitoring of passerine
song dialects is available for the Yellowhammer Emberiza citrinella: Across its
European breeding range, a mosaic distribution of distinct song types and the
corresponding dialect boundaries has been documented over the last decades
(Petruskova et al. 2015). Just recently, an exciting newsflash announced that lost
birdsong had been discovered in introduced Yellowhammer populations from
New Zealand. There, far beyond the species’ native breeding range on the other
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side of the globe, some dialect types were registered that apparently went lost in the
British area of origin of the species (Pipek et al. 2017). In analogy to population
genetic processes, such timely change of local song repertoires has been considered a
merely stochastic effect termed cultural drift (Lynch 1996). That means just by
chance, rare song types become either fixed in a local population, or they do
completely vanish from the local repertoire. As stochastic processes have greatest
effects on small samplings, cultural drift is believed to act most effectively on small
isolated populations such as on remote islands (Potvin and Clegg 2015). However,
under the assumption of neutral evolution, no general pattern or directionality of
song evolution on islands can be hypothesized, and this has been confirmed by some
empirical comparative studies (Baker et al. 2006). Taking the Macaronesian archi-
pelagic chain as an example, we find both increase of acoustic variation and greater
song repertoires on islands like in Goldcrests on the Azores (Pickert and Martens
2004) as well as impoverishment of song and loss of syntactical structure in
Common Chaffinch island populations (Lachlan et al. 2013). Like on oceanic
islands, cultural drift has been suggested to act on passerine song divergence
among sky islands such as isolated mountain chains (Purushotham and Robin 2016).

An extreme case of stochastic effect on island song repertoires is so-called
withdrawal of learning. This assumes a scenario where a small group of young
birds without fully crystallized song colonizes an island and in succession develops a
specific island song type composed of innate vocalizations (Thielcke 1970). In a
way, this theory postulates a Kaspar-Hauser experiment under natural conditions.
Madeira Firecrests R. madeirensis provide a striking example. In contrast to songs of
European R. ignicapilla, songs on the island of Madeira are composed of innate
vocalizations only (Fig. 5.2). The typical ascending kinglet phrase is accompanied
by two different call types that are also displayed in different behavioral contexts:
contact calls at the beginning and aggressive calls at the end of the song (Pickert
et al. 2001; Constantine 2006).

All predictions on the effect of cultural drift are based on the a priori assumption
of merely stochastic processes on selectively neutral variants of song. However, as
we have already seen, sexual selection plays a key role on individual and spatial song
variation and on the evolution of bird song in general. Moreover, there are further
environmental selective pressures shaping song variation within and among species.

5.8 Competition for Acoustic Space: The Role of Ecology

A strong pressure of natural selection on bird vocalizations is ecology, i.e., habitat
characteristics, community structure, intra- and interspecific concurrence, etc.
(reviews in: Catchpole and Slater 1995: pp. 71-92; Slabbekoorn and Smith 2002;
Slabbekoorn 2004). Optimal sound transmission strongly depends on habitat char-
acteristics above all on vegetation density. This is actually one reason why many
birds choose elevated song perches to bring their message across densely vegetated
areas. In fact, in dense tropical forests, songs of closely related passerine species
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differ in predictable adaptive parameters according to perch height and vegetation
cover (Nemeth et al. 2001; Barker and Menill 2009). Apparently, in a given local
assemblage, different bird species compete for acoustic space (Luther 2009; Azar
and Bell 2016). For the same reasons, song of one and the same species can strongly
vary in frequency and time characteristics among open habitat and densely covered
vegetation (Hunter and Krebs 1979). In high mountain systems such as the Andes
and the Himalayas, strong ecological segregation of closely related species has also
triggered divergence of their songs according to specific local habitat characteristics
along both latitudinal and elevational gradients (Caro et al. 2013; Singh and Price
2015). Separation of gene pools can be a consequence.

We shortly return to the island example once more, because effects of any selective
pressure on phenotype, behavior, and local gene pools are strongest and most visible
in small isolated populations. In a comparative study, island songs strikingly did not
differ in complexity from those of adjacent continental populations but included
fewer features associated with aggressive behavior such as rattles, buzzes, and fast
trills (Morinay et al. 2013). This stunning observation has been explained by reduced
territoriality due to a lesser need of discrimination against closely related species in
species-poor communities. Further insight on how competition might affect song
variation came from a long-term study of Darwin’s finches from the Galapagos
Islands (Grant and Grant 2010). On Daphne Major, the finch community changed
dramatically when in 1983 an alien species, Large Ground Finch Geospiza
magnirostris, colonized the island and rapidly increased in numbers. In response to
the invasion, the songs of the two native species (Common Cactus Finch G. scandens
and Medium Ground Finch G. fortis) dramatically changed within a few years with
respect to frequency bandwidth, trill rate, and song duration. These selective shifts of
song characteristics went along with significant decrease of beak sizes due to com-
petition with a larger species. This reciprocal effect is well-known, because in
Darwin’s finches, beak size correlates strongly with song characteristics (Podos
2001; Podos et al. 2004). A different story is told from the conquest of Galapagos
by another invasive species: a parasitic fly, Philornis downsi, which in the 1960s was
accidentally introduced to the archipelago. Finches infected by the parasites showed
in many cases massive beak deformations, and mortality of nestlings and fledglings
increased. Infected survivors had greater beaks; thus not only natural selection would
act on feeding and foraging strategies, but also sexual selection would act on songs
that would modify along with beak modifications (Kleindorfer and Dudaniec 2016).
The reason is bird song is considered an honest signal of male quality (Gil and Gahr
2002; Spencer et al. 2003; Murphy et al. 2008). In our example, the infected males
would be recognized by their aberrant songs, and females would thus avoid a risky
parental investment and mate with a fitter male (Spencer et al. 2005; Bischoff et al.
2009). Such parasite-mediated sexual selection has been previously found for visual
signals (e.g., phenotypical traits such as plumage coloration) and became better
known as the Hamilton-Zuk hypothesis (Balenger and Zuk 2014).
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5.9 Dialects as a Language Barrier and Isolating
Mechanism

Across a species’ breeding range, variation of songs can change gradually and contin-
uously along a cline. For example, in many species, frequency and time parameters of
songs can clinally change with latitude or longitude (Tietze et al. 2011, 2015; Singh and
Price 2015; see also ring species example in Fig. 5.3). This holds also true for
comparisons across different species (Weir and Wheatcroft 2011; Tietze et al. 2015).
On the other hand, large distribution gaps are often correlated with strong character
discontinuities of songs, the most extreme examples being found on islands (see above).
Already before the era of molecular systematics, a correlation between bioacoustic and
genetic divergence has been assumed based on the example of North American White-
crowned Sparrows Zonotrichia leucophrys (Baker 1975). Meanwhile, this interrelation-
ship has been demonstrated in numerous case studies that came to a concordant
conclusion: Divergence of song dialects contributes to speciation processes, €.g., in
White-crowned Sparrows (MacDougall-Shackleton and MacDougall-Shackleton 2001;
Toews 2017; Lipshutz et al. 2017) or in Mediterranean Subalpine Warblers Sylvia
cantillans and allies (Brambilla et al. 2008). Another extreme and controversial example
was reported from a so-called ring species, the Greenish Warbler Phylloscopus
trochiloides. Ring species have a ring-shaped distribution around a geographic barrier
such as continental waters or big mountains, like in our bird example the Tibetan Plateau
(Fig. 5.3; for the theoretical background, see Martens and Pzckert 2007). On each side of
the barrier, biometric and bioacoustic traits change gradually along a chain of Greenish
Warbler populations that are connected by gene flow. However, in a Siberian contact
zone north of the plateau, gene pools and songs of the two terminal populations
(viridanus in the West and plumbeitarsus in the East) differ dramatically (Irwin 2000;
Irwin et al. 2001). Character divergence is as high that apparently gene flow between
eastern and western Greenish Warblers is strongly limited due to a strong reproductive
barrier (Alcaide et al. 2014). Strikingly, the effect of song dialects is not as strong as
predicted by Irwin (2000), because a comprehensive study across the Siberian contact
zone provided clear evidence of clinal variation of several frequency and time param-
eters of songs along a transect of recording sites (Kovylov et al. 2012). So, why would
we find restricted gene flow despite apparent admixture of song dialects? In the next
paragraph, we gain further insight in these processes from another Siberian contact zone.

5.10 Sympathy in Sympatry: Bilingual Birds
in a Hybrid Zone

Spatial patterns of song dialects give us a clue not only on intraspecific variation but
also putative premating barriers in areas of overlap where populations “of different
languages” get into contact. The middle Amur valley of Far Eastern Russia is where
two tit species meet: the yellow-bellied western Great Tit Parus major and the white-
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Fig. 5.4 Bilingual song repertoires in the Far East Russian hybrid zone of the yellow-bellied Great
Tit Parus major (map, orange dots) and the white-bellied Japanese Tit P. minor (map, white dots;
core zone of overlap, pale yellow dots). In the core zone of overlap, males can sing both major and
minor song types, and they also display mixed songs composed of both note types; all recordings of
M. Pickert, June 1996; population data from study sites 1-18 according to Péckert et al. (2005),
Kvist and Rytkonen (2006), Fedorov et al. (2009); localities: 1 = Shimanovsk, 2 = Belogorsk, 3 =
Novobureysk, 4 = Akhara, 5 = Pashkovo, 6 = Radde, 7 = Obluchje, 8 = Izvestkovyi, 9 = Birakan,
10 = Kuldur, 11 = Birobidzhan (spelled “Birobidschan” in the sonograms), 12 = Khabarovsk,
13 = Maleshevo, 14 = Amurzet, 15 = Bikin, 16 = Arsenev, 17 = Buluga-Fadeyevo

bellied Japanese Tit P. minor. Songs of the two species are similar in syntax but
differ fundamentally in the tonal quality of alternating notes (Fig. 5.4). Beyond the
Amur valley, the different note repertoires seem to have an effect on species
recognition, because playback of Asian minor songs does not provoke strong
territorial reactions in European Great Tits—simply because the birds do not con-
sider the Asian song their own language. The situation in the contact zone is
different: There, from their first day in the nest, the young birds are reared in an
acoustic environment where they can hear both European and Asian songs. As a
consequence, in the middle Amur, male repertoires comprise both European and
Asian song types and even mixed song types that combine notes of different tonal
quality (Fig. 5.4; see also Martens 1996; Pickert et al. 2005). The juvenile birds
effectively received a bilingual education! These mixed repertoires confirmed what
could already be observed in the field about 100 years before: There is a lot of
hybridization going on between Great and Japanese Tits in the middle Amur,
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because local populations include a high percentage of individuals with intermediate
plumage coloration—a yellow-tinge of all tones.

Analysis of local song repertoires revealed another striking thing: All bilingual
males had yellow plumage to a certain degree, whereas almost all purely white minor
birds sang pure Asian minor dialect (Péackert et al. 2005). So for some reason, the
yellow major birds and their hybrids are better learners. This apparently has an effect
on female choice, because like in other bird species, female Great Tits seem to prefer
males with larger and more variable repertoires (McGregor and Krebs 1982; Baker
et al. 1986). It was thus not surprising that most solitary males in the middle Amur
populations were white (Nazarenko et al. 1999): The lazy learners were apparently
less attractive to females and had to go solo. Olofsson and Servedio (2008) postu-
lated that female preference for mixed repertoires could act as a positive feedback
mechanism and as a selective pressure on repertoire composition. In conclusion, they
considered sympatry an effective driver of cultural evolution.

Such bias in female mating preferences is also called assortative mating, and this
is rather the rule than the exception in avian hybrid zones. At a closer look, the
situation of the two Russian tit species is perfectly paralleled in other hybrid zones,
such as in the eastern European contact area of the European Pied Flycatcher
Ficedula hypoleuca and the Collared Flycatcher F. albicollis. There, the majority
of male Pied Flycatchers (65%) include various parts of Collared Flycatcher song in
their song repertoire, but not vice versa (Qvarnstrom et al. 2006). From individual
mixed repertoires, researchers could make exact predictions on hybridization: female
Collared Flycatchers only paired with Pied Flycatchers when they were mixed
singers (Haavie et al. 2004).

Limited or asymmetric gene flow due to song-biased assortative mating has also
been shown in two contact zones between two species of chiffchaffs in the Pyrenees
(Phylloscopus collybita, P. ibericus: Helbig et al. 2001) and between two subspecies
of P. collybita in western Siberia (Shipilina et al. 2017). All these examples
impressively demonstrate a strong effect of the variation of learned vocal signals
on species recognition, mate choice, and thus gene flow among populations of what
one observer would consider the same species whereas others would speak of two
species. In fact, these borderline cases are the most fascinating examples to study
speciation in action in the field.
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