
Semantic Data Stream Mapping
and Shape Constraint Validation Based
on Collaboratively Created Annotations

Matthias T. Frank(B) and Viliam Simko

FZI Research Center for Information Technology, Information Process Engineering,
Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany

{frank,simko}@fzi.de

Abstract. Due to the Internet of Things, more and more data streams
like environmental or traffic observations become publicly available over
Web APIs. However, most of these APIs are still provided with ambigu-
ous key-value pairs which do not contain any explicit semantics and
are therefore hard to be processed without further data understanding
and data transformation. We address this issue by mapping these data
streams to a stream with explicit semantics based on collaboratively cre-
ated annotations. Moreover, we enable shape constraint validation for
observation messages which are evaluated on-the-fly. These shape con-
straints allow for generic pre-processing of data streams without further
coding. To evaluate our approach, we process non-semantic data streams
of public and private environmental observation stations, map them using
explicit semantics from a semantic wiki platform and validate each mes-
sage based on shape constraints from the same wiki platform. Any change
on the metadata in the wiki immediately affects the resulting message
stream without the need of adopting the code.

1 Introduction

More and more data streams like environmental or traffic observations become
publicly available over Web application programming interfaces (APIs). Exam-
ples are public observation stations for traffic noise1 or air pollution2, but also
private observation stations like senseBoxes3 or other weather stations which
post their observations in a machine readable format on the Internet. Preferen-
tial, these observations are also available over Web APIs. However, most of these
APIs are still provided with ambiguous key-value pairs which do not contain any
explicit semantics and are therefore hard to be processed without further data
understanding and transformation. However, without explicit semantics, these
values cannot be evaluated on-the-fly. A developer has to read and understand
the human readable documentation of the data structure and build a tailored
1 http://www4.lubw.baden-wuerttemberg.de/servlet/is/224275/.
2 http://mnz.lubw.baden-wuerttemberg.de/messwerte/aktuell/statDEBW080.htm.
3 https://sensebox.de/en/.

c© Springer International Publishing AG, part of Springer Nature 2018
T. Mikkonen et al. (Eds.): ICWE 2018, LNCS 10845, pp. 321–329, 2018.
https://doi.org/10.1007/978-3-319-91662-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91662-0_26&domain=pdf
http://www4.lubw.baden-wuerttemberg.de/servlet/is/224275/
http://mnz.lubw.baden-wuerttemberg.de/messwerte/aktuell/statDEBW080.htm
https://sensebox.de/en/


322 M. T. Frank and V. Simko

solution that fits the implicit semantics in order to process the messages correctly.
In some cases, where the documentation is unclear, incomplete, deprecated or
even not present, a developer for a consuming application has to consult the data
provider to fully understand and correctly implement the semantics of the data.
Also, further transformation of the data could be required to interpret the values
correctly. Whenever the data provider changes syntax or semantics of the data
stream, the developer has to adopt the code of the consuming application man-
ually. This challenge has also be identified by Wiener et al. [7] when integrating
heterogeneous spatio-temporal data.

In this paper, we address the issue of lacking semantics in observation data
streams by mapping data streams of public and private observation stations on-
the-fly to explicit semantics for each observation. The semantic information is
derived from collaboratively created semantic annotations of non-semantic data
streams within a semantic wiki platform, based on the foundation we laid in [3].
In addition, we enable shape constraints for API messages which are validated
during run time. These shape constraints allow for generic pre-processing of data
streams without further coding.

In Sect. 2, we discuss related work in the field of Resource Description Frame-
work (RDF) mappings of heterogeneous data, RDF stream processing and RDF
shape constraints. Based on the related work, we introduce our approach for
semantic annotations for data streams of observation data, semantic mapping of
non-semantic data streams and constraint checking based on user created anno-
tations in Sect. 3. The implementation of our approach is illustrated in Sect. 4. In
Sect. 5, we show how our implementation performs on exemplary data streams
of a public observation station and a private observation station. Finally, the
results are discussed in Sect. 6.

2 Related Work

Mapping to explicit semantics: Dimou et al. [2] have outlined limitations of cur-
rent mapping approaches like the need of manual alignment on a per-source,
per-format or even per-case basis. The authors claim that incorporating data
from multiple sources and different formats to Linked Open Data (LOD) remains
complicated, although a significant number of tools exist for that purpose and
introduce the RDF Mapping Language (RML) as a generic language for inte-
grated RDF mappings of heterogeneous data. In contrast to their work, we aim
on processing continuous streams of observation messages, rather than mapping
gradually shaped data sets. Although our primary aim is not to incorporate
the data of observation stations to LOD, but to enable consuming applications
to correctly process observation data of heterogeneous data sources based on
explicit semantics, we benefit from adopting the basic principle of uniform and
interoperable mapping definitions.

Semantic stream processing: Several ways on how to process data streams are
possible, especially when explicit semantic annotations have to be evaluated.



Semantic Data Stream Mapping and Shape Constraint Validation 323

As an example, the stream processing could be implemented from scratch using
any suitable programming language. This would enable the highest flexibility
and minimize the complexity of the infrastructure needed. However, building
the whole stream processing framework from scratch for every project would
cause a lot of unnecessary workload which would make the development process
inefficient. For this reason, distributed systems like Apache Spark4 or Apache
Flink5 focus specifically on stream processing. Spark relies on micro batching
which adds latency at the value of the batch interval, whereas Flink is designed
as a real time stream processing engine. However, this difference is only relevant
if observation messages have to be processed with high frequency in a latency
critical setting, which is not the case in our scenario. For processing of RDF
streams, Tommasini et al. [6] have introduced RSPLab, a cloud-ready and open-
source framework for designing and executing tests that can be used to compare
different implementations.

Semantic shape constraints: Rules, reasoning and constraint checking on RDF
data are supported by Web Ontology Language (OWL)6, Semantic Web Rule
Language (SWRL)7 or SPARQL Inferencing Notation (SPIN)8. Although OWL
is primarily an ontology language that provides classes, properties, individuals,
and data values for RDF documents, it also includes basic mechanisms for val-
idation and inference that can be executed by OWL reasoners. As OWL allows
only for basic reasoning like co-reference resolution respectively distinguishing
and property restrictions for values and cardinality, SWRL has been introduced
as an extension for the OWL terminology which makes use of the Rule Markup
Language for more advanced rules, for example derived properties and asser-
tions. SWRL does also provide a set of build-in functions for comparisons, math
operations, and XML Schema Definition (XSD) data type specific manipulation
functions. However, SWRL does not provide templates for shape constraints or
a notion for user-defined functions. These limitations are addressed by SPIN,
which aims to provide general business rules expressed in SPARQL Protocol
and RDF Query Language (SPARQL). SPIN therefore allows for a more flexi-
ble implementation of user-defined models and constraints as they are required
for our work. Knublauch et al. [4] have introduced the Shapes Constraint Lan-
guage (SHACL) which can be regarded as the legitimate successor of SPIN9.
It aims to describe and constraint especially the contents of RDF graphs by
defining shapes that specify conditions that apply to a given RDF node using a
high-level vocabulary. SHACL, which was firstly introduced as World Wide Web
Consortium (W3C) public working10 draft in October 2015 and is now available
as W3C recommendation, lastly updated on 20 July 2017.
4 https://spark.apache.org/.
5 https://flink.apache.org/.
6 https://www.w3.org/TR/owl2-overview/.
7 https://www.w3.org/Submission/SWRL/.
8 http://spinRDF.org/.
9 http://spinRDF.org/spin-shacl.html.

10 https://www.w3.org/TR/2015/WD-shacl-20151008/.

https://spark.apache.org/
https://flink.apache.org/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/Submission/SWRL/
http://spinRDF.org/
http://spinRDF.org/spin-shacl.html
https://www.w3.org/TR/2015/WD-shacl-20151008/


324 M. T. Frank and V. Simko

Discussion: From the related work we can learn that there are already tools that
allow for RDF mapping, executing, processing and evaluation of RDF streams
and also frameworks for modelling RDF constraints using explicit semantics
and shared vocabularies. What is still missing is a framework that maps non-
semantic data streams of heterogeneous observation stations to an RDF stream
with meaningful explicit semantics based on collaboratively gathered annota-
tions, including constraint validation and data provenance.

3 Approach

Initial situation: For our approach, we assume that series of observations from
multiple observation stations are given as data streams S of continuous observa-
tion messages O. Each data stream is defined as Si = {O1, . . . On}. Observation
messages in a stream are represented as sets of key-value pairs which do not con-
tain any explicit semantics, such as “temperature=40”. An observation message
is defined as O = {(k, v) : k ∈ STR, v ∈ VAL}. Keys are interpreted as strings,
whereas the values could be strings, numbers, booleans, objects, arrays, or null.

Requirement: In order to address the issue of lacking semantics of data streams,
we require an adequate description of metadata. Let M = {(k, u) : k ∈ STR, u ∈
URI} be a metadata description containing key-value pairs that we use for map-
ping keys to Uniform Resource Identifiers (URIs) which identify the linked con-
cept, e.g. (temperature, “quantity11:ThermodynamicTemperature”).

Metadata management: To manage the metadata, we introduce an annotation
platform that allows for collaboratively created annotations of non-semantic data
streams. With the annotation platform, we enable domain experts and other non-
developers to intuitively annotate data sources with explicit semantics. Users of
the annotation platform are provided with forms, where they can easily select
applicable quantities, units and data types from a list of shared vocabularies.
For context specific vocabularies, where no shared vocabularies can be used,
it is also possible to define new classes and properties. The benefit of having
one collaborative platform for all annotations in contrast to annotations per-
source, per-format or even per-case is the logical abstraction of the underlying
formats, data structures and serialization, and the possibility to reuse semantic
annotations for similar data sources.

Semantic mapping: To combine messages of observation streams with the seman-
tic annotations in a meaningful way, we introduce a semantic mapping process
SemMap. For that process, we assume at least two diverse input streams S1

and S2 of observation messages. In addition, we assume a metadata repository
which contains a machine processable representation of the semantic annotations
and a mechanism that sends update notifications whenever there is a change in
the metadata repository. The mapping of each observation message O based on
11 http://qudt.org/schema/quantity#.

http://qudt.org/schema/quantity


Semantic Data Stream Mapping and Shape Constraint Validation 325

metadata M is defined as SemMap(O,M) = {(u, v) : (k, v) ∈ O, (k, u) ∈ M}.
The output of the SemMap process is data stream SLD which consists of contin-
uous messages from all input streams mapped to the explicit semantics of con-
text, observed quantities, units and provenance. The output stream is defined as
SLD = {{SemMap(O,M1) : O ∈ S1}∩{SemMap(O,M2) : O ∈ S2}}. The addi-
tional explicit semantics information enables a consuming application of data
stream SLD to interpret each message correctly without the need of any fur-
ther data understanding or coding. Moreover, whenever there is a change in the
metadata repository, for example due to a newly added or modified annotation,
data stream SLD immediately includes that new semantics and the consumer is
able to interpret it correctly without any adoption of the code. An overview of
this semantic mapping process is shown in Fig. 1.

S1

S2

Metadata 
Repository

M

ConsumerSLD

Observa on 
Sta on 1

Observa on 
Sta on 2

Seman c 
Mapping

Fig. 1. Overview of semantic mapping process

Shape constraints: In addition to adding explicit semantics to observation mes-
sages, we do also allow for defining and evaluating shape constraints. These
shape constraints can help to identify and filter invalid observations or add
derived properties. For example, a message stream with values of air pollution
can be evaluated on-the-fly whether the legal limit is exceeded or not, based on
the metadata associated with that class of observations. Generic evaluation of
observation data based on metadata which can easily be adopted by changing
the related annotation spares developers to alter the programming code. The
shape constraints can then be used for shape validation without adopting the
code, just by creating annotations on the collaboration platform.

4 Implementation

For the first implementation of the annotation platform, we have decided to use
the technically mature Semantic MediaWiki (SMW) [5] to ensure a reproducible
result for the evaluation of our approach. SMW comes with hardly any predefined



326 M. T. Frank and V. Simko

shared vocabularies, therefore the first step is to import shared vocabularies for
sensor observations of observation stations, for describing quantities and units
and to define shape constraints. For this purpose, we provide Semantic Sensor
Network (SSN) [1] for describing sensors of observation stations and Quantities,
Units, Dimensions and Data Types Ontologies (QUDT) for describing quantities,
units and data types, but additional vocabularies can be imported. As discussed
in Sect. 2, we employ SHACL as the basis for shape constraints. Therefore, we
also import the SHACL shared vocabularies to our annotation platform and
allow the platform user to annotate data sources with shape constraints and val-
idate the shape of the produced messages based on the SHACL shape definitions
provided by the metadata repository. For an easy editing of metadata and shape
constraints of data sources, we implement templates and forms.

In the background, the terms are linked with the imported shared vocabular-
ies which allows for interchange of these terms on other platforms with explicit
semantics. However, it has to be ensured that the string value of the key for
the new annotations is equal to the string value of the key produced by the
annotated data source in order to ensure the correct assignment of metadata to
observed values. The annotation platforms links these constraints to the accord-
ing SHACL terms in the background for the evaluation later on.

For the stream mapping, we implement a consumer for configurable topics
in Java, based on Apache Flink. Flink provides adapters for Apache Kafka12

which we employ as our message broker. Whenever a new data source is reg-
istered to the metadata repository, the stream processing application receives
an update notification and starts a new consumer for the according topic. We
assume that messages in each input stream are serialized in JavaScript Object
Notation (JSON). For each JSON object in the stream, the semantic mapping
function performs a matching of keys for each member with keys received for the
metadata from the metadata repository. For creating the RDF model, we employ
Apache Jena13. For each message from an observation station, a Flink map func-
tion creates a new RDF instance of the class defined in the metadata repository
for this station. For this instance, RDF properties are derived from the metadata
repository for each match of a JSON member key and a metadata key. The value
for the properties are extracted from the JSON object. Members of the message
which are not defined in the metadata repository are interpreted as plain literal
values and added to the RDF model as well. Finally, the RDF model is serialized
to JSON-LD and published to the output stream. This output stream contains
all the explicit semantics provided in the metadata repository and enables con-
sumers to evaluate each message correctly, including provenance information.
Whenever an annotation changes in the annotation platform, another update
notification is send to the processing application and immediately affects the
semantic mapping process without the need of any code adaption.

Rather than just adding explicit semantic to the observation messages,
it is also possible to validate the semantic of each message based on shape

12 https://kafka.apache.org/.
13 https://jena.apache.org/.

https://kafka.apache.org/
https://jena.apache.org/


Semantic Data Stream Mapping and Shape Constraint Validation 327

constraints defined in the metadata repository. As we have imported and linked
SHACL vocabularies to our annotation platform, any application that imple-
ments SHACL validation is suitable to perform the message validation.

5 Evaluation

To evaluate our approach, we process non-semantic data streams of public and
private environmental observation stations, map them to a representation with
explicit semantics retrieved from a semantic wiki platform and interpret each
message based on shape constraints from the same wiki platform. The whole
framework is executed on a system with Intel(R) Core(TM) i7-5600U CPU at
2.6 GHz and 12 GB memory.

For the evaluation, we implement a Kafka producer that creates a config-
urable amount of non-semantic messages to simulate third-party data streams.
As templates for these messages we use the structure of a public environmental
observation station and also a private environment observation station. For both
types of messages we provide annotations on our annotation platform that fits
to the keys of the members of each message type and also the shape information
that we assume for a valid message from an observation station.

To evaluate the processing time, we create a timestamp when (1) a JSON
message from the input stream is loaded into the application, (2) the RDF model
is created including all metadata from the annotation platform, (3) the RDF
model is serialized to JSON-LD and (4) the JSON-LD message is evaluated using
the TopBraid SHACL API14 in conjunction with the according shape constraint
from the annotation platform. The test run covers a number of exactly 10,000
messages. As the test runs with limited hardware resources, a frequency of about
150 messages per second can be processed at the most. The results are shown in
Table 1. The minimal and median values show that even with limited hardware
resources a message from an observation stream can be mapped to an RDF model
with explicit semantics, serialized to JSON-LD an validated with SHACL in less
than one millisecond. Arithmetic mean, standard deviation and the maximum
values show that there are also some outliers which require more processing
time. Multiple executions of the test setup have produced similar results which

Table 1. Time in milliseconds for creating, serializing and validating one message

f ≈ 150messages
second

Arithmetic
mean

Median value Standard
deviation

Min value Max value

Creation 1.460 0.341 3.699 0.196 47.750

Serialization 0.342 0.270 1.372 0.135 130.886

Validation 3.020 0.195 5.684 0.062 129.788

Total 4.822 0.979 6.813 0.468 276.622

14 https://github.com/TopQuadrant/shacl.

https://github.com/TopQuadrant/shacl


328 M. T. Frank and V. Simko

confirm this findings. As the architecture of our implementation is optimized
for distributed systems, a higher message throughput can be realized by adding
more nodes to the processing framework.

6 Conclusion

In this paper, we have shown how collaboratively created annotations from a
semantic wiki platform can be exploited to map non-semantic data streams of
public and private observation stations to a representation with explicit semantic
information of observations, measured quantities, measuring units, and context
information. Furthermore, we have shown how data shape constraints can be
defined on a collaborative wiki platform and employed for constraint validation
of observation data streams on-the-fly. To evaluate our approach, we have mea-
sured the time interval for creation, serialization and validation of messages from
a continuous data stream using the message format of exemplary public and
private environmental observation stations. The results show that our generic
approach for mapping non-semantic streams of observation messages to a mean-
ingful representation with explicit semantic information and validating the shape
constraints of messages can be done efficiently on-the-fly without adopting the
code to specific data sources.

As future work, we plan to assist domain experts in creating semantic anno-
tations by deriving metadata of observation messages directly from data streams
using collaboratively created pattern definitions of commonly observed quanti-
ties. Further, we plan to apply more cognitive consumers of semantically mapped
data streams for exploiting the benefits of the explicit semantic information.

References

1. Compton, M., et al.: The SSN ontology of the W3C semantic sensor network incu-
bator group. J. Web. Sem. 17, 25–32 (2012)

2. Dimou, A., et al.: RML: a generic language for integrated RDF mappings of het-
erogeneous data. In: Proceedings of the 7th Workshop on Linked Data on the Web
(2014)

3. Frank, M.: Integrating big spatio-temporal data using collaborative semantic data
management. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016.
LNCS, vol. 9671, pp. 507–512. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-38791-8 38

4. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL): W3C rec-
ommendation, 20 July 2017 (2017). https://www.w3.org/TR/shacl/

5. Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic wikipedia.
J. Web Sem. 5(4), 251–261 (2007)

https://doi.org/10.1007/978-3-319-38791-8_38
https://doi.org/10.1007/978-3-319-38791-8_38
https://www.w3.org/TR/shacl/


Semantic Data Stream Mapping and Shape Constraint Validation 329

6. Tommasini, R., Della Valle, E., Mauri, A., Brambilla, M.: RSPLab: RDF stream
processing benchmarking made easy. In: d’Amato, C., Fernandez, M., Tamma, V.,
Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017.
LNCS, vol. 10588, pp. 202–209. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68204-4 21

7. Wiener, P., et al.: BigGIS: a continuous refinement approach to master heterogeneity
and uncertainty in spatio-temporal big data. In: Proceedings of the 24th ACM
SIGSPATIAL 2016, Burlingame, California, USA. ACM (2016)

https://doi.org/10.1007/978-3-319-68204-4_21
https://doi.org/10.1007/978-3-319-68204-4_21

	Semantic Data Stream Mapping and Shape Constraint Validation Based on Collaboratively Created Annotations
	1 Introduction
	2 Related Work
	3 Approach
	4 Implementation
	5 Evaluation
	6 Conclusion
	References




