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Abstract. We optimize the evaluation of conjunctive SPARQL queries,
on big RDF graphs, by taking advantage of ShEx schema constraints.
Our optimization is based on computing ranks for query triple pat-
terns, which indicates their order of execution. We first define a set of
well-formed ShEx schemas, that possess interesting characteristics for
SPARQL query optimization. We then define our optimization method
by exploiting information extracted from a ShEx schema. The experimen-
tations performed shows the advantages of applying our optimization on
the top of an existing state-of-the-art query evaluation system.

1 Introduction

ShEx (Shape Expressions) [12] is a language for expressing constraints on RDF
graphs [14]. ShEx schemas can be used to validate RDF documents, generate
RDF documents, or communicate expected graph patterns.

In this work we investigate how the evaluation of SPARQL queries [15] on
big RDF graphs can be optimized in the presence of ShEx constraints. We pro-
pose a method for optimizing the order of evaluation of subqueries, by taking
advantage of the information on the data described in ShEx. While SPARQL
query optimization by static analysis is important and well-studied, the emer-
gence of constraint languages (such as ShEx) raises new questions on how the
knowledge of additional constraints can be effectively leveraged as a part of the
static analysis and optimization, especially in the context of big data. In this
work, we focus on the logical query structure. We consider SPARQL basic graph
patterns (BGPs), and we target the order of execution of triple patterns that
aim to minimize the overall execution cost of the query.

Optimization opportunities arise from the presence of joins between query
triple patterns. In several situations, the order of execution of triple patterns
can be rearranged so that the size of intermediate results for join variables are
minimized. Consider the following arbitrary query example with 3 triple patterns
and a join on the variable ?x.
SELECT ?x WHERE { ?x :p1000 :a . ?x :p700 :b . ?x :p1 :c . }
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Assume that we know that the triple with predicate : p1000 will return 1000
values for ?x, that of : p700 will return 700, and that of : p1 will return 1. The
join between the first two triple patterns may give up to 700 values which should
be reserved in memory for another join with the third triple. A wise choice in
this case is to reorder the triple pattern execution, knowing that the third triple
is more selective than the other two triples.

Hence, our main purpose in this work is to infer better execution orders
for triple patterns, based on the knowledge extracted from a ShEx schema. We
implemented our procedure on the top of SPARQLGX, which is one of the most
efficient engines for distributed SPARQL evaluation and known to outperform
many competitors in the field [6]. SPARQLGX already implements various query
optimization techniques including reordering triple patterns [6], but without con-
sidering schema constraints. We show that our technique further improves the
efficiency of query execution times.

Outline: In Sect. 2 we review the closest related works. In Sect. 3 we introduce
some preliminaries necessary for understanding the rest of the paper. In Sect. 4
we define well-formation rules for data-schema pairs that are of interest for
our optimization process. In Sect. 5 we define a graph representation of a ShEx
schema. In Sect. 6 we formally define our optimization process. In Sect. 7 we
report on experimental results with our optimization technique.

2 Related Works

Query optimization for the RDF data model has been studied with various
approaches in the literature. Most existing works are based on scanning the
data a-priori. The works in [5,9,10] are based on techniques that mainly focus
on join optimizations by indexing the data. In [1] the authors provide query
optimization a approach based on vertical data partitioning. These works do
not consider structured data and data typing.

The works in [7,11] also provide query optimization techniques, by proposing
new data representations, and in [8,18] by providing structural summaries or
representative schemas. None of these works is based on a given schema, and
thus they require an extensive data scan.

For works based on typed data, an approach was proposed in [3] that consid-
ers typed XML data trees. Unlike RDF, the tree data-type model of XML allows
for extremely efficient subtree pruning. In [13,16] the authors, as in our work,
consider query optimization for typed RDF graphs. These works are mainly ori-
ented towards schema violations. In our work, we assume non-violating queries,
and we study the effect of reordering which is not studied in the previous works.

In [6] the authors provide a SPARQL query evaluator, SPARQLGX, that
relies on a translation of SPARQL queries into executable Spark code that adopts
an evaluation strategy based on a storage method and statistics on data. Within
the system, optimized joins triple patterns reordering are considered by com-
bining those with common variables, but this reordering does not consider the
selectivity of triples based on the structure of the RDF data. Their approach
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scales better than the state-of-the-art systems they compare with [6]. For this
reason we implemented and tested our optimization technique on the top of this
system.

3 Definitions

3.1 SPARQL

SPARQL is an RDF query language and a W3C Recommendation, where RDF is
a directed, labeled graph data format for representing information in the web [14]
SPARQL contains capabilities for querying required and optional graph patterns
along with their conjunctions and disjunctions [15].

A SPARQL graph pattern is defined inductively from triple patterns. Given
disjoint infinite sets of IRIs - Internationalized Resource Identifiers - (I), blank
nodes (B), literals (L), and variables (V ), a triple pattern is defined as an
instance of (I ∪ B ∪ V )(I ∪ V )(I ∪ B ∪ L ∪ V ) denoted by IBV × IV × IBLV .

In this work we focus on the conjunctive SPARQL fragment, including only
BGPs (basic graph patterns), which can be defined abstractly as q:: = t |
q AND q′ where t is a triple pattern.

3.2 ShEx

ShEx (or Shape Expressions) is intended to be an RDF constraint language.
Logical operators in Shape Expressions such as grouping, conjunction, disjunc-
tion and cardinality constraints, are defined to make as closely as possible to
their counterparts in regular expressions and grammar languages like BNF [17].
A Shape Expression describes the constraints associated with a subject RDF
node as in the following example:
<Shape1> { ex:name xsd:string , ex:phone xsd:string }
This example shows a definition of a shape in ShEx, where ex:name and
ex:phone are predicates and xsd:string is a basic type. This definition means
that for an RDF node n to satisfy the requirements of Shape1, there must exist
exactly two outgoing edges starting from n and labeled with predicates ex:name
and ex:phone. The objects corresponding to these predicates must be of type
xsd:string. In general, a ShEx schema allows defining several shapes, and allows
using several logical operators, in a way defined formally hereafter.

Abstract Syntax of the Considered ShEx Fragment. Given a finite set
of edge labels Σ and a finite set of types Γ , we define a shape expression e
over Σ × Γ as follows: e:: = ε | Σ × Γ | e+ | (e|e′) | (e‖e′) where “|” denotes
disjunction, “||” denotes unordered concatenation, and “+” denotes repetition
for a positive number of times. e? (optional), e∗ (unordered Kleene star), e[m;n]

(m to n repetitions) can be defined as macros and are also part of the ShEx
syntax. In the sequel we write a::t as a shorthand for (a, t) ∈ Σ × Γ .



198 A. Abbas et al.

A shape expression schema (ShEx), or simply a schema, is a tuple S =
(Σ,Γ, δ), where Σ is a finite set of edge labels, Γ is a finite set of types, and δ is
a type definition function that maps elements of Γ to shape expressions e over
Σ × Γ . If δ is not defined for some type t ∈ Γ , the default definition is δ(t) = ε.

We notice that a ShEx shape (or simply a shape) is itself a type. While a
shape is considered as a user-defined type, more generally a type may also be a
basic built-in type (like xsd:string in the concrete syntaxes of ShEx).

Semantics of ShEx [17]. Semantically, an RDF graph is valid against a ShEx
schema if it is possible to assign types to the nodes of the graph in a manner that
satisfies the type definitions of the schema. We assume a fixed graph G = (V,E)
which resembles an RDF graph, and a fixed schema S = (Σ,Γ, δ). A typing of
G w.r.t. S is a function λ : V → 2Γ that associates with every node of G a set of
types. Next, the conditions that a typing needs to satisfy are identified. Given a
typing λ and a node n ∈ V we define the neighborhood-typing of n w.r.t. λ as bag
(i.e. multiset) over Σ×2Γ as neighborTypingλ

G(n) = {|a::λ(m) | (n, a,m) ∈ E|}.
We note by L(e) the bag language of a shape expression e, i.e. L(e) is the set of
bags allowed by the language of e. Now, λ is a valid typing of S on G if and only
if every node satisfies the type definitions of its associated type i.e., for every
n ∈ V , neighborTypingλ

G(n) ∈ L(δ(t)), for all t ∈ λ(n).

3.3 Our Preliminary Definitions

In accordance with the aforementioned abstract syntax and semantics, we define
a shape expression inclusion relation which we use in the rest of the paper.

Definition 1. Given a shape expression e, a predicate p and a ShEx shape s.
The inclusion relation (p, s) ∈ e is defined inductively as follows:

– (p, s) ∈ e if e = (p, s)
– (p, s) ∈ e if e = e+1 and (p, s) ∈ e1
– (p, s) ∈ e if e = e1 | e2, and (p, s) ∈ e1 or (p, s) ∈ e2
– (p, s) ∈ e if e = e1 || e2, and (p, s) ∈ e1 or (p, s) ∈ e2

We also define the following shape expression optional condition.

Definition 2. Given a shape expression e, a predicate p and a ShEx shape s.
The atomic shape expression (p, s) is optional in e, written as (p, s) ∈opt e if:

– e = e1 | e2 and (p, s) �∈ e1 and (p, s) ∈ e2, OR
– e = e1 | e2 and (p, s) ∈ e1 and (p, s) �∈ e2, OR
– e = e1 | e2 and (p, s) ∈opt e1 or (p, s) ∈opt e2, OR
– e = e1 || e2 and (p, s) ∈opt e1 and (p, s) ∈opt e2, OR
– e = e+1 , and (p, s) ∈opt e1
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4 Well Formed Data-Schema Pairs

Using RDF as a data format often raises a number of data modelling issues for
which choices must be made. The same information might end up being repre-
sented in different ways according to the designer choices. Thus, different ShEx
schemas – all of which correctly and usefully describe different aspects of the
same data graph – might be suggested. Accordingly, we introduce a notion of
well-formed data-schema pairs which provide the maximal set of desired infor-
mation that can be inferred from the ranking procedure described in Sect. 6,
without adding new constraints.

The rules for well-formation guarantee that the necessary information needed
for our ranking can be deduced from the ShEx schema, yet the ranking procedure
is not deterministic. For some shapes, the relations attached to them are not
indicative for the selectivity of those shapes. We also define in this section the
schema formation rules that makes our shape ranking procedure deterministic.

Definition 3 (Well-Formed Data-Schema Pair). A data-schema pair
(G,S) is well-formed if and only if the following rules hold.
1. Cardinality rule: Every m-to-n relation between two schema shapes in S,

where m > n or m is not bound, is modelled from the m-sided shape to the
n-sided shape.

2. Shape distinction rule: For every 4 schema shapes s1, s2, so1, so2 ∈ S (not
necessarily distinct), and for every 2 predicates pa and pb (not necessarily
distinct), so1 and so2 are distinct if the following conditions hold:
– (pa, so1) ∈ δ(s1)
– (pb, so2) ∈ δ(s2)
– O1 is the set of nodes of G which occur as objects of pa whose subject

belongs to the shape s1
– O2 is the set of nodes of G which occur as objects of pb whose subject

belongs to the shape s2
– O1 ∩ O2 = ∅

The well-formation rules are particularly interesting because they can be
applied on the top of any schema, yet keeping it valid for all the datasets which
correspond to it. They are also sufficient and useful for optimizations of real life
data-schema examples, although not totally deterministic. A restrictive superset
of rules which makes our ranking deterministic is given in the following definition.

Definition 4 (Ranking-Deterministic Data-Schema Pair). A data-
schema pair (G,S) is ranking-deterministic if and only if the following rules
hold.
1. Well-formedness: (G,S) is well-formed.
2. Cardinality rule: There is no closure cardinality (+,*) in S.
3. Shape distinction rule: For every 3 shapes so, s1, s2 ∈ S (not necessarily

distinct), if there exist 2 predicates pa and pb (not necessarily distinct) where
(pa, so) ∈ δ(s1) and (pb, so) ∈ δ(s2), then s1 and s2 refers to the same shape,
and pa and pb refers to the same predicate.
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4. Data nodes isolation rule: For every data IRI instance d, every 2 shapes
s1, s2 ∈ S, and every predicate p, if (p, s2) ∈ δ(s1) and d belongs to the
shape s2, then there exists a data IRI instance d′ such that the RDF triple
〈d′, p, d〉 ∈ G. (This states that a data instance shall not be isolated from other
data instances unless isolation is required by the given schema.)

In the following Subsects. 4.1 and 4.2, we give examples and additional
descriptions of the well-formedness rules, aiding to understand how they con-
tribute to our ranking procedure.

4.1 Cardinality

Example 1. Assume we want to model a schema describing the relation between
students and schools. If we know that the relation in the data between schools
and students will be 1-to-many, then the following two schema examples are
legitimate, but only the first one is well formed w.r.t. the data.
Schema proposition 1: (Well-Formed)
<Student> { :name xsd:string , :school @<School> }
<School> { :name xsd:string }
Schema proposition 2: (Not Well-Formed)
<Student> { :name xsd:string }
<School> { :name xsd:string, :student @<Student> + }

As it is evident from Example 1, the well-formation cardinality rule tries to
avoid the usage of positive and Kleene closures (+, ∗). Formally, the semantics of
the two proposed schemas are different. Schema proposition 1 is more restrictive.
Schema proposition 2 misses the restriction that a student should belong to 1
and only 1 school, although it is still an acceptable schema even if this restriction
is inherent in the data.

Indeed, the well-formation cardinality rule helps us to determine the relative
quantity of shape occurrences in the data. For example Schema proposition 1
allows us to know that the 〈Student〉 instances occur in the data at least as
much as 〈School〉 instances, and normally more.

4.2 Shape Distinction

A shape in a ShEx schema can be as general as allowing any node in any RDF
graph to belong to it. The more the shape has restrictions, the more it describes a
specific type of nodes. The well-formation shape distinction rule puts restrictions
on shapes that seem to be too general that they surely miss expressing some
constraints that are inherent in the data.

Example 2. Assume we want to model a schema describing the relation between
students and researchers to their corresponding schools and research companies.
Knowing that schools are not research companies, then the following two schema
examples are legitimate, but only the first one is well formed w.r.t. the data.
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Schema proposition 1: (Well-Formed)
<Student> { :name xsd:string, :school @<School> }
<Researcher>{:name xsd:string, :company @<Company>}
Schema proposition 2: (Not Well-Formed)
<Student>{:name xsd:string,:school @<Establishment>}
<Researcher>{:name xsd:string,:company @<Establishment>}

In Example 2, Schema proposition 2 will not allow us to determine the relative
quantity of 〈Student〉 instances to those of 〈Establishment〉 instances in the
data, while with Schema proposition 1 we are confident that the quantity of
〈Student〉 instances are more than that of 〈School〉 instances.

5 Shape Relation Graph

In this section we define a shape graph representation that we use to assign
ranks to shapes in Sect. 6. A shape relation graph is a graphical representation
focusing on the relations existing between shapes in a ShEx document. It is an
intermediate structure that will be used later for selectivity estimation analyses.

Definition 5 (Shape Relation Graph). Given a ShEx document S, we define
a shape relation graph G = SRG(S) as a tuple (N,E) of set of nodes N , each
corresponding to a ShEx shape, and an labelled directed relation E between nodes
such that:

– E(n1, x, n2) defines an edge from n1 to n2 labeled with x.
– Given any two nodes n1, n2 ∈ N , and any predicate p, then E(n1, p, n2) if

and only if (p, n2) ∈ δ(n1) and (p, n2) �∈opt δ(n1)
– Given any two nodes n1, n2 ∈ N , and any predicate p, then E(n1, p

ε, n2) if
and only if (p, n2) ∈opt δ(n1)

Figure 1 shows the shape relation graph of a real life schema used in our
experimentation (Sect. 7). User-defined types are shown as ovals while built-in
types (like xsd:string) and IRIs are shown as rectangles.

Given a shape relation graph G, we denote by R(G) the set of all root nodes
(i.e. has no incoming edges) of G, and we denote by C(G) the set of all cycles in
the graph G.

6 Ranking

In order to decide the order of execution of query triple patterns, we assign them
ranks inferred from the analysis of the ShEx document. These ranks are based
on two main concepts: (1) The hierarchical relations between ShEx shapes, and
(2) The predicate distributions among ShEx shapes.

The first concept gives rankings to shapes, and the second concept gives rank-
ing to predicates. The ranking of query triple patterns is based on the product
of both rankings together.
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6.1 Hierarchical Relations Between ShEx Shapes

In ShEx, the definition of a shape may be based on other shapes defined in
the same schema. This notion, called shape inclusion, is explicitly represented
by the edges of the shape relation graph defined in Sect. 5. Such edge relations
between shapes allow us to infer information about the relative frequency of data
corresponding to these shapes.

Consider Schema proposition 1 in of Example 1. Representing it as a shape
relation graph, 〈School〉 is a child of 〈Student〉. Each student in the data should
have exactly one registered school, and multiple students may be registered in
the same school according to the schema. Such a relation between shapes allows
us to know that a student instance occurs more in the database than a school
instance. Actually the number of schools is at most equivalent to the number
of students, where this is a worst case assumption - each student has a unique
school. It is evident that this is an extreme case that should not be considered as
an average distribution. Thus, it is important to study the hierarchical relations
between ShEx shapes. In the example we give the 〈School〉 shape a priority
ranking, since we know that they occur less than the 〈Student〉 shape, and thus
rendering variables corresponding to it more selective.

Concerning cardinality, we notice that a higher cardinality is independent
on the actual number of data instances of a shape. For example, if we have
:registeredIn @<School> {1,3} instead of :registeredIn @<School>, that
does not necessarily means an increase in the number of schools; the same set of
schools may apply in both cases. For the ranking system it is sufficient to consider
the relation structure rather than the structure and cardinalities together, and
that is why we ignore explicit cardinalities of edges in the shape relation graph
defined in Sect. 5.

The ranking procedure we propose starts from the root shapes (root nodes).
A root shape will have a ranking of 1. Going down through the descendant
shapes from the root shape the ranking increases. If there are two (or more)
incoming edges to a shape, the lower ranking is transferred. A problem in such
a procedure is when there is a cycle between shapes in the graph representation
of the schema, that means that the ranking will propagate forever. In such case
there is no preference for any of the shapes in the cycles, and all of them must
have the same ranking. In some cases, a cycle has an optional relation(s) within
it, given by the cardinalities “?”, “*”, or “{0,n}”. In such case, we know that
a cut in the cycle can only occur at these points. For asserting the strength of
normal relations against such optional relations, the preference for ranking is to
actually cut the cycles at these points and apply the ranking system by avoiding
such kind of cycles.

Now we formally define all the procedures described, step by step.

Schema Graph Adjustment. First, given the shape relation graph G of a
ShEx schema, we modify it by detecting optional relations and cycles.
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1. For each cycle Ci(Ni, Ei) ∈ C(G):
– For all predicate p, if there exist nodes n1, n2 ∈ Ni such that there exists

an edge E(n1, p
ε, n2), then remove this edge. Let the new resulting graph

be Gnor.
2. For each cycle Ci(Ni, Ei) ∈ C(Gnor):

– Merge all the nodes x ∈ Ni into a single node ci.

Schema Shapes Ranking. Now let the output of the Schema Graph Adjust-
ment be Gadj(N,E). We define the ranking function δS(x) for all x ∈ N as
follows:
1. For each node r ∈ R(Gadj), δS(r) = 1
2. For each node r ∈ R(Gadj), apply the procedure P (r) defined next.

Given a node x ∈ N , the procedure P (x) is defined as follows:

– For each s ∈ N , and for each predicate p where there exists an edge E(x, p, s)
1. If δS(s) is not initialized: δS(s) = δS(x) + 1
2. If δS(x) + 1 < δS(s), then δS(s) = δS(x) + 1
3. Apply P (s)

Finally, we transmit the cycle rankings to the original nodes.

– For each cycle Ci(Ni, Ei) in Gnor:
– For each node x ∈ Ni, δS(x) = δS(ci)

6.2 Predicate Distributions Among ShEx Shapes

In the previous section we ranked shapes according to their relative frequency of
occurrences based on relations between them. Such a ranking is not sufficient for
deciding rankings of triple patterns in a query since such ranking is also affected
by the uniqueness versus globality of predicates within shapes.

Given a predicate p used in the shapes s1, s2, . . . , sn. The ranking of p within
a shape s, denoted as δP (p, s) is defined as follows.

δP (p, s) =
δS(s)

δS(s1) × δS(s2) × · · · × δS(sn)
, if s ∈ {s1, s2, . . . , sn}

δP (p, s) =
1

δS(s1) × δS(s2) × · · · × δS(sn)
, otherwise

The previous formula works by reducing the ranking of a predicate when it is
more global, i.e. when it is used with more shapes. With more shapes the factors
in the denominator will increase and thus reducing the overall ranking. Such
predicates are frequent, they are used for many node types, and this means there
will be a large set of nodes in the database associated with such predicates. The
ranking system tends to leave such predicates to be executed lastly, and that is
why the modelled function reduces its ranking. On the other hand, if a predicate
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is unique for a certain shape, its ranking tends to be bigger by reducing the
number of denominators to only one, which is the shape it corresponds to.

We notice that if a predicate p corresponds to only one shape sm, then the
ranking corresponding to it will be always 1, where this value represents the
highest ranking possible.

δP (p, sm) =
δS(sm)
δS(sm)

= 1

On the other hand, the lowest possible ranking is when the predicate p is
used globally in all the shapes defined in the ShEx document, and particularly
when the shape considered for the current ranking is a root node, which have the
lowest possible shape ranking of 1, and the denominator is the largest possible
which is the product of all the shape rankings.

δP (p, sroot) =
1∏

∀i, where si is a shape

δS(si)

6.3 SPARQL Query Triple Rankings

Now our purpose is to rank the triple patterns given a BGP query. Triple patterns
with higher ranking will be executed first. Before ranking triples, we need to
validate the BGP against the ShEx document, and for each subject in the triple
patterns the ShEx validator will decide to which shapes this subject may belong.
A subject may belong to multiple shapes at the same time. Thus, for each subject
s occurring in the triple patterns we have a set C(s) of candidate shapes for s.
For convenience, given a triple pattern t, we define C(t) = C(s) if s is a subject
of t. We also define p(t) as the predicate of the triple t.

To define the triple ranking function, we use the two ranking functions δS

and δP defined previously.
Given a BGP B and a triple pattern t ∈ B, we define the ranking of the

triple t, denoted by δT (t), as follows:

δT (t) = Avg

[
δS(Si) × δP (p(t), Si)

]

∀i, Si∈C(t)

For a given triple t, the previous function is the average of the product δS × δP

by considering all the possible candidate shapes for the subject of t.

7 Evaluation

We prepared an experiment in order to show the advantageous effect of our opti-
mization procedure. We generate data according to the Social Network Bench-
mark (SNB) schema of the Linked Data Benchmark Council (LDBC) [4]. The
data and the workload tests are generated by gMark [2]. gMark is a graph and



Selectivity Estimation for SPARQL Triple Patterns 205

query workload generator based on an input schema. Our experiment demon-
strates 4 different datasets of different sizes, thus we show 4 different charts
corresponding to the datasets, and therefore allowing to further comment on the
effect of the data size.

7.1 Generated Data

Using the gMark tool, we generated 4 datasets, all according to the LDBC SNB
schema, which is represented as a shape relation graph in Fig. 1. The datasets
sizes are 5M, 30M, 50M, and 100M nodes, corresponding to about 11M, 67M,
113M, and 227M RDF triples respectively.
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Fig. 1. Shape relation graph (LDBC SNB)

7.2 Workload

Using gMark, we also generated a workload consisting of 12 conjunctive SPARQL
queries based on the LDBC SNB schema. We setup the sizes of the queries such
that in each query there are between 6 and 10 triple patterns, and there are
between 4 and 6 distinguished variables. The choice of the query size is to allow
for structures to form within the schema hierarchy, and not to limit it to simple
variable relations. Going beyond the size where such hierarchies form is pointless
for our evaluation, yet we give a small range to provide a variety of formation
choices.

Our purpose is to compare, for each query, the evaluation of the optimized
triple patterns order resulting from our method with that of counter part queries,
which are just equivalent to the optimized ones but with different order of their
triple patterns. In our experiment we generate 50 random permutations for each
query of the workload.
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7.3 SPARQLGX

An advantage of our optimization technique is that it can be applied on the top
of query systems like SPARQLGX [6]. In our experiment we show how the appli-
cation of our technique further decreases the average run time for SPARQLGX
in the presence of a ShEx document.

SPARQLGX, in the current state, has a triple pattern ordering strategy that
is based on grouping triple patterns with common join variables together, but
the order of the groups themselves is not deterministic; it also depends on their
initial ordering given by the input SPARQL query. In our experiments we show
that with SPARQLGX alone we obtain improved results, yet using our ranking
strategy based on the ShEx information further improves the results.

We define 3 systems that are included in our experiment as follows:

– S1: Is SPARQLGX with its ordering strategy turned off (the system itself
provides a configuration that stops reordering triple patterns and keeps the
original ordering of the query triple patterns).

– S2: Is SPARQLGX with its ordering strategy turned on.
– Optimized: Is an extension of SPARQLGX. It extends it with the applica-

tion of our ordering strategy based on the ShEx information.

7.4 Results

The results of our workload query evaluations with the 4 datasets are presented
in Fig. 2 which are explained as follows:

– The blue area is the runtime range of system S2 concerning the different
permutations of each test query.

– avg(S2) marks the average runtime of all the permutations of each test query
with system S2.

– avg(S1) marks the average runtime of all the permutations of each test query
with system S1.

– Finally, the green bars shows the runtime of each input query with our
optimized system that has a single deterministic triple patterns ordering
for each test query.

For each query run we set an evaluation timeout, which is a maximal value
result (ttimeout = 15, 110, 110, and 130 seconds respectively) near the top of
each presented results chart. Some queries timeout, and the query run time is
considered equivalent to the timeout value for calculating the average. In our
given charts if the average is shown to be at the top of the chart, then this
means it is ≥ ttimeout (timeout value).

To avoid dispensable information in Fig. 2, we do not show the runtime range
of the queries with system S1 (as done with system S2) since there are always
input permutations that time out for the considered test queries, and thus we
only show the average for this system.

The results show a faster execution of some queries (Q1, Q9, Q10, Q11, and
Q12), while it preserves or slightly improves the execution time of the other
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queries when run using our methodology. Some queries do not show significant
improvement due to the structure of the query and its selectivity. For example if
a query is asking for a pair of variables signifying the relation between countries
and languages, then the result set of such a query is small and constant, since
the number of countries and languages is constant; they do not vary even when
the dataset size is exponentially increased, and thus such results are expected for
some of the generated queries. Actually these kinds of queries are intentionally
generated by gMark for benchmarking purposes (check [2]).

Concerning the dataset sizes, it is clear from the charts that our optimization
is less evident when the 5M nodes dataset is compared to the bigger datasets.
Compared to system S2 in Fig. 2(a), the optimized orderings of queries Q1, Q10,
and Q12 showed a slight improvement. In Fig. 2(b) the improvement is more
significant with the latter queries, in addition to the new improvements in queries
Q9 and Q11. By further increasing the size of the datasets, the improvement
almost stay the same (or precisely it barely increases), which shows a threshold
where the gain, although significant, is stabilized.

The average of the improvement of our system (Optimized) compared to
avg(S2) is given as follows:

– Dataset 5M nodes: Improvement of queries ranged between 1.2% and
20.5%. The mean improvement of all test queries is 3.8%.

– Dataset 30M nodes: Improvement of queries ranged between 1.6% and
87%. The mean improvement of all test queries is 23.5%.

– Dataset 50M nodes: Improvement of queries ranged between 1.4% and
84.6%. The mean improvement of all test queries is 25.2%.
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(a) SNB data: 5M nodes

(c) SNB data: 50M nodes

(b) SNB data: 30M nodes

(d) SNB data: 100M nodes

Fig. 2. Comparing ranking-optimized query evaluation with other systems. (Color
figure online)
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– Dataset 100M nodes: Improvement of queries ranged between 1.6% and
85.1%. The mean improvement of all test queries is 25.7%.

8 Conclusion

The proposed query ranking only requires analysis of ShEx schema, an emerg-
ing schema language, which is particularly interesting when applied on huge
datasets. This is a radically different and promising optimization technique com-
pared to those based on data scans, even with statistical approaches, that are
affected by data updates and requires huge data calculations.

We defined a well-formation notion for data-schema pairs that is useful for
inferring quantitative information about data instances and we defined a proce-
dure for determining rankings. We implemented a prototype of our system on
top of the SPARQLGX query evaluation engine, which is known to outperform
many competitors in the field. We compared the rankings found by our system,
owing to the analysis of ShEx constraints, to the original reordering method of
SPARQLGX in terms of query evaluation times, and with datasets of various
sizes. Preliminary experimental results indicate that most rankings found by
our system lead to improvements in query execution times. This illustrates the
interest of considering ShEx constraints for SPARQL query optimization.
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