
Improving Legacy Applications
with Client-Side Augmentations

José Matías Rivero1(&), Matías Urbieta1,2, Sergio Firmenich1,2,
Mauricio Witkin1, Ramón Serrano1, Viviana Elizabeth Cajas1,3,

and Gustavo Rossi1,2

1 LIFIA, Facultad de Informática, Universidad Nacional de La Plata,
La Plata, Argentina

{jose.matias.rivero,matias.urbieta,sergio.firmenich,

gustavo.rossi}@lifia.info.unlp.edu.ar,

mjwitkin@gmail.com, serrano.ramon.m@gmail.com
2 CONICET, Buenos Aires, Argentina

3 Facultad de Ciencias Administrativas y Económicas,
Universidad Tecnológica Indoamérica, Quito, Ecuador

vivianacajas@uti.edu.ec

Abstract. Mobile devices have become the most prominent channel to access
Web applications. While every mobile device platform like Android or iOS has
their own application ecosystem, they are also often used to access Web sites
which are not property rendered in such devices. Adapting existing sites to be
usable on this kind of devices (with a reduced viewport), techniques like
Responsive Design and Progressive Web Applications have appeared, propos-
ing guidelines and good practices to cope with device interface limitations.
However, these techniques require a notable engineering effort and cost to adapt
sites to be mobile-friendly. In this work, we present an approach and tool that
allows to quickly adapt an existing Web application to be usable for mobile
devices. The approach does not require to redesign its frontend and can be
applied even without having control of the servers in which the application is
hosted since we use a client-side approach. To assess its applicability, a con-
trolled experiment has been carried out in which we evaluated the usability of
the adapted sites.

Keywords: Mobile � Software engineering � Responsive design
Web augmentation

1 Introduction

The increasing usage of mobile devices [2, 26] allows users to access a variety of
developed applications which have not being designed to be browsed from smart-
phones or tablets. Consequently, the user might face usability problems related to the
required page, e.g. needing to zoom or scroll for reaching information or a feature
available in a Web page which can detriment the application adoption in the long-term.
Since the appearance of Responsive Design and Progressive Web Applications [9]
concepts, application developers rely on guidelines to provide a fluid experience when

© Springer International Publishing AG, part of Springer Nature 2018
T. Mikkonen et al. (Eds.): ICWE 2018, LNCS 10845, pp. 162–176, 2018.
https://doi.org/10.1007/978-3-319-91662-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91662-0_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91662-0_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91662-0_12&domain=pdf

browsing from mobile devices. These guidelines do not only suggest how content
should be rendered but also brings new architectural and behavioral approaches to get
real mobile experience such as off-line first support. The availability of guidelines for
native, hybrid and Web development [12] gives support to new mobile solutions which
are often built from scratch. However, for legacy applications which were not thought
to be run in mobile devices, this implies migration or even re-engineering the appli-
cation. The migration of a Web-based solution to a mobile one can be delayed, and
even avoided, in many cases due to the high cost of re-engineering the application for a
proper mobile access, which for small businesses could represent almost prohibitive
costs.

The dawning of techniques like Augmentation [4] enable developers to enhance
existing Web applications with new functionalities or contents by altering Web pages
once those are loaded at the client-side. Any Web page may be enhanced through the
manipulation of its Document Object Model (DOM); it is possible to add, remove or
change content, styles and functionalities through local scripts or browser extensions
without requiring changes on the server-side. This way, Augmentation approaches
provide the power to add behavior or adapt existing sites directly in a non-expensive
fashion, without any intervention of the owner of the Web application. Most aug-
mentation approaches rely on the client-side for introducing new functional require-
ments such as new forms or actions. However, augmentation can also be used to
restructure the application for improving non-functional requirements such as Usability
or Performance. Deep changes in the way the application is browsed and perceived
may improve its adoption on new devices even after the application is online.

Current trends in agile software development [10] rely on quick prototyping since
they help to validate easily whether a new requirement meets the users’ needs. For
instance, agile approaches promote the incremental development of Minimum Viable
Product (MVP) [18] delivered in a few iterations by considering the value-based
contribution to the business. In this context augmentation approaches can be used to
help a development team wanting to obtain a running example for the improvement of
the User Experience of a Web application, or to analyze the result of including another
Website’s content. By using Web Augmentation, it is possible to perform advanced
A/B testing without the need of branching the current version of an application, coding
the new feature, and build and release both versions for comparison.

In this paper, we describe PortAug, an approach that uses Response Design
guidelines, and non-expensive adaptation techniques facilitated by Augmentation to
provide an efficient, assisted and production-ready adaptation approach for Web
applications that are not specifically adapted for mobile devices. The nature of the
approach makes it agile-ready, since it allows to work in short iterations and provide
working software outputs after every iteration. Concretely we present:

(i) An approach for supporting the adaptation of sites, centered on the user inter-
face, requiring minor user intervention and no re-engineering tasks

(ii) A supporting tool for (i)
(iii) A set of Architectural refactorings, that are performed without user or developer

intervention, that help to improve application responsiveness and scalability.

Improving Legacy Applications with Client-Side Augmentations 163

In order to evaluate the effectiveness of our approach, we conducted an evaluation
that measures how the application usability is improved with our approach.

The rest of the paper is organized as follows: In Sect. 2 we describe some back-
ground work; we discuss related work to the approach in Sect. 3 and describe the
user-interface centric part of the approach in Sect. 4. In Sect. 5 we describe the details
of an evaluation we did over the approach to assess the usability of the adapted Web
applications using Responsive Patterns and assistance by the tool through a controlled
experiment. Finally, in Sect. 6 we conclude the paper and discuss some future work we
are pursuing.

2 Background

Web Augmentation is a set of techniques allowing to modify, enrich or adapt existing
Websites from the client-side without altering the original site. It is mostly imple-
mented installing scripts that run locally on the browser and it is being used by a
growing and large number of users. Thousands of extensions for adapting Web content
may be found at the Web browser stores, and significant communities support some of
these tools. End-users and other stakeholders with programming skills may interact in
such communities for the creation, sharing, and improvement of specific augmentation
artifacts. For instance, the Userstyles community (http://userstyles.org) offers a wide
number of scripts that augment Web sites by adding further CSS specifications that
change the content presentation. Userscripts communities, such as Greasyfork (https://
greasyfork.org/), offer repositories of scripts with a wider spectrum of purposes, since
they support different weavers of JavaScript code (e.g. GreaseMonkey or Tam-
perMonkey). In all these communities, no matter which tool they support, there is a
dependency between users with and without programming skills, since not all of them
can implement the solutions they need and ask others for help. In this light, some
research works proposed End-User Development (EUD) approaches to let users specify
their own augmentation artifacts; these works are discussed in the related work section.

Responsive Design [12] is a set of techniques that allow Web user interfaces to be
defined in a way that it will adapt to different viewports in order to be usable in a
variety of devices, including both desktop and mobile environments. This implies that,
instead of writing different, isolated versions for specific devices, pages are written only
once but with a set of rules and restrictions that allow them to adapt to the device
characteristics. From the frontend layout perspective, Responsive Design requires and
involves (1) a flexible, grid-based layout, (2) flexible images and (3) media queries, a
CSS3 module that allows to write specific rules to be applied depending on the
characteristics like the viewport size. While pages have to be designed considering
these 3 technical considerations, several libraries and frameworks like Twitter Boot-
strap [24] provide a set of tools and concepts that help respecting them. Libraries like
these include, for instance, CSS3 media queries compliant containers for standard
device sizes to ease development.

164 J. M. Rivero et al.

http://userstyles.org
https://greasyfork.org/
https://greasyfork.org/

3 Related Work

In the field of native mobile applications (e.g. applications that are designed to run over
a specific platform like OS X or Android), several approaches have been proposed to
avoid the cost of writing an entire app from scratch for every platform to overcome the
aforementioned portability problems. One way to cope with heterogeneity is to use
Model-Driven Development approaches that allow to abstract concept in a platform-
independent way, leaving detailed specifications to be coded manually. A summary of
those approaches is described in [5]. In this context, [20] proposes a framework based
on cloud services that allows to build applications in a platform-independent fashion.
A similar approach is proposed by [17], in which a framework to adapt cloud content to
different platforms is proposed. Under this approach, the content is specified only once
and then only the adaptations for custom platforms have to be coded independently.

General user interface (UI) adaptation for mobile devices is an extensively studied
field, including a range of semi-automatic and manually assisted approaches. In this
context, [7] proposes a prototype of a tool that uses machine learning to recognize use
patterns in a UI to generate adapted interfaces for mobile devices. While the approach is
automatic, it requires final user intervention to assess the final UIs. Similarly, [1] proposes
a tool that uses genetic evolutionary algorithms that is able to generate and deliver
adapted versions of existing Web sites. This tool uses the existing content to create
alternative designs considering designer preferences, device limitations and destination
viewport size. While authors prove that this approach is feasible, the quality of the UIs
generated is not comparable to those built manually and it still requires human inter-
vention to define detailed preferences and solve conflicts in the generated UIs.

A very studied subtype of UI adaptation for mobile devices is devoted to Web sites.
This type of adaptation consists in modifying the DOM tree – in client- and/or
server-side – to make it usable for mobile devices using geometric algorithms, image
enhancing, element removal, font scaling among other techniques. In this field, [3, 11]
present a methodology for client-side personalization (i.e. in the Web browser) to
existing Web sites oriented to users without detailed knowledge in design. While this
work does not consider adaptations for mobile devices, it shows how client-side
adaptation can be used for successfully implementing personalization and adaptation.

In the context of Responsive Web Applications, in [8] a Web page design method is
proposed through a table adaptable to the resolution of clients, calculating the size of
characters and other elements to obtain the best visual effect.

Nebeling et al. presented the Crowadapt approach [13] leveraging on the crow for
assessing what adaptations provide the best usability improvement on the UI. Although
this approach was focused onWeb desktop improvement, in [14] the authors presented a
tool for re-authoring the content ofWeb pages towork on cross-devices where the content
is distributed and synchronized between devices. Although Nebeling’s work and ours
aim at adapting the UI to improve its responsiveness and usability, our work focuses on
changes in the application’s client-side using augmentations running in standard Web
browsers instead of proposing a cross-device approach. Also, instead of giving a set of
tools to freely transform the UI, we force to implement well-known patterns, layout and
frameworks based on industrial-proven technologies like Bootstrap [24], facilitating

Improving Legacy Applications with Client-Side Augmentations 165

higher level adaptations like, for instance, menu transformations for mobile devices.
Additionally, we consider mobile-related problematics like poor connectivity and UI
architecture refactorings to improve maintainability and facilitating interface
re-engineering. Finally, both approaches present different strategies with the collabora-
tive support for the crowd. Nebeling’s uses its own platform to generate and run the
adaptation rules while our approach uses a browser’s extensions to design the
enhancements and the adaptation script is distributed in well-known repositories like
UserScripts [25].

The approach presented in this paper does not rely on machine learning or
semi-automated algorithms but it allows non-technical users to build adaptations
through structured wizards, relying on well-known Responsive Design patterns.
Through the tooling provided, end users can build a mobile adaptation to an existing
Web application, generating client-side adaptations that can be run locally and, if
proven to work effectively, they can be easily implemented in productive environments
making it available for all users. This assistance and simplicity allows to implement
adapted version of existing Web applications in a quick and cost-effective fashion and
also includes architectural and non-functional aspects that improve application per-
formance and maintainability in the future.

4 Our Approach in a Nutshell

The PortAug process, briefly described in Fig. 1, starts selecting one Web page in a
Web site that presents usability issues on a reduced viewport like, for instance, a mobile
phone screen (Step 1). This process can be performed by any Web user (from now on,
the User) with no technical knowledge i.e., with no knowledge in Web standards like
HTML, CSS or JavaScript. After this step, one of the different responsive layouts have
to be manually selected to adapt the page (Step 2). Step 2 and the rest of the further
steps are accomplished with the assistance of a tool implemented as a Web browser
extension, thus allowing to apply and test the adaptation in the same environment in
which the non-responsive application is accessed. When a layout is chosen, the real
adaptation process (Step 3) starts; it consists in selecting visual components of the
non-responsive site and determining where they will be located in the responsive layout
chosen. The User who is building the adaptation is able to check, in real time, how the
adaptation will look in a mobile device, undo adaptations if they do not look good or
apply any correction to the current adaptation configuration (Step 4); several cycles of
Step 3 and Step 4 are performed until the User reaches a desirable adaptation result for
the page. After this adaptation is completed, a script that runs the adaptation can be
generated and published to a repository (Step 5). This script is generated automatically
based on the configured adaptation and it basically initializes the responsive layout and
applies all the transformations required to adapt the content. It also includes a set of
improvements for mobile platforms that will be commented later. This script can be
used to test the adaptation directly in the browser and it can be further published in
well-known Web Augmentation repositories like Userscripts [25]. Since a Web site
comprises a set of Web pages, the aforementioned process should be repeated for every
page in the site resulting in an aggregated script.

166 J. M. Rivero et al.

The lasts steps in the process consist in using the adaptation generated and it
implies downloading from the repository and installing it in a Web browser with a
script manager enabled (like Tampermonkey [23]) and reloading the site (Step 6 and
Step 7 respectively). As a case study to describe the adaptation process we use the
Redmine site [22] which has not been optimized for being accessed from mobile
devices. Throughout this section we will use this case study to describe deeply every
step, including screenshots of the PortAug tool in action.

4.1 Step 1: Select the Web Site to Adapt

As aforementioned, the first step in the PortAug process is to select a site to adapt. The
site presents a usability issue (not implementing a Responsive Design), which implies
that, when the viewport is reduced, the general layout does not change, widgets are not
hidden, and fonts and images are not adapted to improve their look accordingly to the
device. In Fig. 1, Step 1, the reader can appreciate how the Redmine’s site does not
adapt to the viewport of the smartphone from which it is accessed; As it can be seen, no
layout or font adjustment are performed in the page and, as a result, all the text in the
page becomes hard to read and the top and left menu become inaccessible without
zooming.

Fig. 1. Application improvement process using redmine example

Improving Legacy Applications with Client-Side Augmentations 167

4.2 Step 2: Template Configuration

After a non-responsive page has been identified, one of the available responsive layouts
must be chosen to reconfigure the page content for a proper mobile rendering. Figure 2.
a shows the layout selection page that the PortAug tool provides. Responsive layouts
offered include several rows and optionally columns depending on User preferences. It
is important to note that, even if a multi-column layout is chosen, it will be adapted
automatically (using the aforementioned techniques for Responsive Design imple-
mentation) to a single-column layout if the viewport becomes too small, which will
ensure that the site adapts to all types of viewport sizes. This behavior is implemented
by making use of the well-known responsive framework Bootstrap [24], which is
included in the tool and in the final scripts generated by it. In Fig. 2.a it can be seen that
a simple column layout has been chosen for adapting the page available at [22].

4.3 Step 3 and 4: Element Selection, Adaptation and Validation

After a layout is chosen, it must be populated with elements of the original,
non-responsive Website. This is done iteratively through a set of linear steps: (1) se-
lecting the element from the non-responsive page that has to be placed into a container
of the responsive layout, (2) choosing such container and (3) selecting an adaptation
strategy. While (1) and (2) are simple and basic tasks, (3) requires some extra
knowledge of how the adaptation will work. The adaptation pattern is basically a DOM
transformation that will be used when or before inserting the element being adapted in
the new layout. Some of the adaptation patterns provided by the tool are:

– Insert, where the element and all its children are simply cloned into the new layout.
– Transform to menu, where all the links are grouped into an expansible menu. For

example, a hamburger menu is used instead of showing the links directly.
– Splash screen, where the element is shown as a splash screen for the page as it is

usual in mobile applications.
– Form, in which internal data-entry and related elements like input field, dropdowns

and labels are re-located for a better rendering and use in mobile contexts.

The UI used for selecting the container and the adaptation strategy is depicted in
Fig. 2.b. The output of this process is a set of 3-uples consisting of the original element,
the destination container, and the adaptation pattern. After several iterations of these 3
steps, a first version of the adaptation will be available. The user User can preview how
the current adaptation looks like through a specific window that augments the original
Website as it can be appreciated in Fig. 1, Step 4.

168 J. M. Rivero et al.

4.4 Step 5: Script Publishing and Execution

After a first acceptable iteration of the adaptation is reached, the User can opt to publish
an adaptation script. This script1 (1) imports required libraries, (2) creates the adapted
layout and (3) applies all the transformations and operations needed to instantiate the
adaptation. From the technical point of view, Step 1 is performed by just adding some
script references in the HTML < head > element of the page. Step 2 creates the
required elements in the HTML < body >. Finally, Step 3 iterates over the afore-
mentioned 3-uples (original element, destination container, adaptation pattern), gathers
the original element, applies any transformation required if needed depending on the
adaptation strategy and inserts the result on the destination container using a specific
insertion method that also depends on the adaptation strategy chosen. The default
insertion method of the potentially transformed element is to add it at the end of the last
element in the container. If one or more of the elements of the original site that are
referenced in the 3-uples are not found, then as a protective measure the execution of
the whole transformation is cancelled to prevent making the site non-functional.

The resulting script can be imported into any Web augmentation extension for
current browsers like GreaseMonkey or GreasyFork and, since it will contain all the
required metadata to adapt the destination site, no extra user involvement will be
required. When a final-user visits the site (in this case, redmine.org) the script will
match the URL and will be run by the augmentation extension, thus applying the
generated adaptation.

(a) Tool user interfaces (b) Element mapping and adap-
tation strategy

Fig. 2. Tool user interfaces

1 PortAug adaptation implementation - https://github.com/serranorm/UNLP, last accessed 4-Apr-2018.

Improving Legacy Applications with Client-Side Augmentations 169

http://redmine.org
https://github.com/serranorm/UNLP

4.5 Architectural Application Refactorings

So far, we have introduced one aspect of the approach aimed to provide assisted layout
adaptation for legacy Web sites. However, as aforementioned, the approach also
includes the implementation, execution, and generation of several meaningful refac-
torings (to the target application) which allow better tolerance to connectivity prob-
lems, improved responsiveness and potential architectural improvements that will ease
a re-engineering of the application. For the sake of space, we briefly comment these
improvements in this subsection:

Caching and Offline Support. Draft standards like ServiceWorkers2 and CacheS-
torage3 allow Web applications to load even when there is no connectivity at all.
Leveraging on these technologies, the generated script is able to (1) cache the layout
used across the pages, (2) cache the content of every container in the layout and
(3) load the page in no-connectivity contexts. End-users or developers do not have to
change or code anything to have this support.

Splash Screen. If the Splash Screen adaptation strategy is used, the script pre-loads an
empty screen, shows the content of the splash screen in parallel with the loading of the
rest of the contents, and then makes it disappear when the site becomes ready. The
Splash screen is also cached.

UI Reengineering. Even though the focus of the approach was centered on avoiding
re-engineering the site and using Augmentation techniques to adapt it for mobile
environments on the client side, the adaptation defined at the client-side can be used to
generate a modern architecture for the legacy Web application (Step 8 in Fig. 1). For
every 3-uple extracted from the adaptation process, Component and Service elements
can be generated for the Angular4 Web MVC framework. In this context, all the
JavaScript and TypeScript files are generated and added to the original Web Appli-
cation which, after some minimal deployment changes, will look as in the adapted
version. In this case it will not be required to run the adaptation, since the adaptations
will be generated and packaged by default and all libraries will be included natively.

Mobile Packaging. Having all the assets indexed as a side effect of marking the DOM
that is adapted to a responsive layout, the application can be seamlessly packaged for
hybrid platforms using technologies like Apache Cordova and Ionic5. Finally, if the
engineering team decides to re-implement or adjust the site, they can start from the
packaged and refactored site, now with client-side MVC Web support.

2 W3C - Service Workers - https://goo.gl/yaU3BU, last accessed 21-Jan-2018.
3 Cache Storage - https://goo.gl/vF9jiQ, last accessed 21-Jan-2018.
4 Angular - https://angular.io/, last accessed 21-Jan-2018.
5 Ionic - https://ionicframework.com/, last accessed 21-Jan-2018.

170 J. M. Rivero et al.

https://goo.gl/yaU3BU
https://goo.gl/vF9jiQ
https://angular.io/
https://ionicframework.com/

5 Evaluation

5.1 Goals, Hypotheses and Metrics

Following the reporting guidelines of experiments suggested in [19], we defined the
goal of the evaluation experiment in the following way:

Analyze legacy Web applications transformed to Web mobile for the purpose of
measuring how the user experience is improved with respect to their usability from the
point of view of researchers in the context of end-users who daily uses a smartphone.

After defining the Goal, we proceeded to define the different questions that will
allow to answer them.

Our main Research Question (RQ) is: is the application’s usability improved after
the UI transformation?

Whereas the Null Hypothesis (NH) in the experiment means no improvement
between tested samples, we presented the Alternative Hypothesis (AH) to each metric
which will be studied later additionally. The µOriginal denotes the mean of the metric
gathered from the original UI with no adaptation while the µAugmented denotes the mean
of the metric measured from the enhanced UI. We considered the well-known usability
metrics [6] to answer the question:

• Binary task completion. It refers to measures whether the users complete tasks or
not. The researches marks if the task is completely performed after the experiment.
HA: µOriginal � µAugmented.

• Task completion time. The time users take to complete the tasks. The researched
performed the corresponding time-keeping during the experiment recording the
spent seconds. HA: µOriginal � µAugmented.

• Event rate. The display events (zooming, clicking, and scrolling) introduced by de
user. Based on the recorded user activity during the experiment, the researched
counted the performed events. HA: µOriginal � µAugmented.

• Standard satisfaction. Measure satisfaction level by using a question for an interval
data from 1 (poor) to 5 (excellent). HA: µOriginal � µAugmented.

For a sake of space, some metrics were not considered in this study such as Recall,
Learnability, etc.

5.2 Experiment Design

In order to answer these questions, we designed a between-subject design experiment
where subjects were asked to use two different applications (experiment factors) which
each one has two versions (alternatives of the factor) of their UI: original UI (control)
and enhanced UI (treatment). Each subject was asked to complete a task in each
application where the application’s version was randomly assigned.

In this experiment, we focused on measuring how the user experience is improved
with UIs enhancements in order to transform the application into a mobile friendly one.
Therefore, we did not consider evaluating the user experience related to another
approach.

Improving Legacy Applications with Client-Side Augmentations 171

5.3 Experimental Unit, Subjects, Instrumentation, and Data Collection

The Web sites of Redmine [22] and Pidgin [21] are the experimental units which were
enhanced with augmentations that improved their UI for a mobile device’ s viewport.
The former is a well-known open-source issue tracker and the latter is an open-source
instant messaging application. For each application, we designed a set of transforma-
tions for the UI so as to be mobile ready.

To evaluate the subjects’ behavior, we asked the them to fill out a form where they
should provide demographic information and their satisfaction level about the appli-
cation. The tasks were simple requirements for browsing the site to reach some content:

In Redmine’s site:

• Task 1 (RT1): Locate information about the Redmine’s book in the main page;
• Task 2 (RT2): Browse the application for accessing a recorded issue.

In Pidgin’s site:

• Task 1 (PT1): Check if the application is available in Italian language.
• Task 2 (PT2): Sign on in the development section of the site.

The participants were 34 end-users that included professionals, scientists, students,
and government employees. The participants had a mix of gender (Male 68%, Female
32%), age (0–19yo 6%, 20–39yo 50%, 40–59yo 32%, and 60–79yo 12%), education
(Primary education 15%, Secondary education 12%, Technician 9%, Undergraduate
29%, Bachelor or superior 35%), and Information Technology employee (yes 56%, no
44%).

The experiment protocol was executed in the same way with all the subjects. First
of all, they filled out a demographic questionnaire, then they were asked to perform the
tasks mentioned in previous subsection. Finally, we asked them some questions about
their perception of the usability.

5.4 Analysis and Implication

All samples were processed using Mann–Whitney U test [16], which is a
non-parametric statistical hypothesis test technique, considering a standard confidence
level (a) of 0.05. This technique can be used with unequal sample size which is the case
of this experiment. Additionally, we computed the effect size using Cliff’s Delta
technique.

To achieve the task of processing the collected results, we first processed and
digitalized responses. Then, we used different scripts based on Python language
(version 3.6.1) and Scipy library (version 0.19.0) to compute nonparametric hypothesis
tests.

In order to answer the RQ, we will discuss the result of metrics introduced in
Subsect. 5.1 which is shown in Table 1. For each one, we report Cliff’s delta value for
the effect size, and the p-value resulting from the hypothesis testing that compares the
means of both approaches.

The experiment was accomplished by all the participants; that is, there is no dif-
ference in the Binary task completion metric. However, the satisfaction’s metric excels

172 J. M. Rivero et al.

in performance in all tasks. In all cases, the p-value was lower than the alpha level 0.05
which allows to reject the null hypothesis and support the alternative one meaning a
better performance of the metric.

The Event rate was split into three sub-metrics: Zoom, Scroll, and Clicks. Zoom UI
events present a significant improvement for all the tasks with a p-value lower than
0.05. The scroll events reported a better performance when using augmented UIs but
the PT1 shows no difference (p = 0.986). A post hoc study showed the end-users start
using scrolling events in place of the zoom in/out because the content was rendered
fitting the viewport’s width in a longer page to check whether or not the Italian
language was supported. And the Click events show some but not a statistically sig-
nificant improvement in RT1 (p = 1.73) and Pidgin T2 (p = 1.73) and no difference in
RT2 (p = 1) and PT1 (p = 1). After studying the samples, we realized that UI trans-
formations did not introduced a refactoring that reduces the required clicks events for
accomplishing the task. This fact supports why the metric’s measures.

Finally, regarding the time completion metric, a half of tasks show an improvement
in the time required for performing the task. The PT1 shows some but not statistically
significant improvement (p = 1.175) and RT2 shows no preference (p = 0.640).
A posteriori study points out that the introduction of a ‘hamburger’ menu required an
additional click event to open it and consumed time animating the menu’s expansion.

To calculate the effect size, we used cliff’s delta technique which has as a result
value in (−1,1) range. In this case, the values are bigger than 0.778 [15] in all eval-
uation where the NH is rejected depicting a high meaningfulness.

Summarizing, participants that were assigned to augmented UIs were more
time-efficient and precise in the task execution than those that worked with the original
one. We claim these results are preliminary evidence of augmentation approach ben-
efits but a throughout analysis including a post-hoc study is required but for the sake of
space these were not included.

5.5 Threats to Validity

There are several threats to validity that were considered during the experiment design.

Construct Validity. The experiment was designed to measure how the use of aug-
mented UIs with a mobile-friendly layout improves the application usability. In order to

Table 1. Sample results

Usability Time Zoom Scroll Clicks

Effect
size

p-value Effect
size

p-value Effect
size

p-value Effect
size

p-value Effect
size

p-value

Redmine T1 1,520 0,000 −0,778 0,024 −2,805 0,000 −1,264 0,001 −0,343 0,173
Redmine T2 1,688 0,000 0,151 0,640 −2,358 0,000 −0.928 0,002 1,086 1,000

Pidgin T1 1,641 0,000 −0,195 0,172 −3,684 0,000 0,919 0,986 – 1,000
Pidgin T2 1,735 0,000 −1,075 0,003 −1,879 0,000 −2,450 0,000 −0,343 0,173

Improving Legacy Applications with Client-Side Augmentations 173

reduce the experiment’s complexity and bias introduction possibility, we defined the
method (with or without augmentation) as the only independent variable.

Internal Validity. The subjects were selected randomly. The provided material was
the same to all subject. We also checked that all the users had basic knowledge of
smartphone usage and had not usage experience in any application of this kind.

External Validity. The subjects were mixed end-users. A broader experiment con-
sidering different subject of different cultures who have worked on different business
domains will improve the generality of our claims.

Conclusion Validity. The experiment was based on objective metrics evaluated with
all gathered data without any exclusion to guaranty that the outcome of the experiment
analysis will be the same and avoiding hypothesis fishing. Finally, in order to avoid the
impact of random irrelevancies on the experiment, we used a large number set of
samples that helped the irrelevancies to become diluted.

6 Conclusions, Discussion and Future Work

In this paper, we described PortAug, an approach with its associated tooling that assists
in creating adapted Responsive versions for non-Responsive Web sites in an assisted,
quick and cost-effective manner using Web Augmentation techniques. We described
the usability problems present on that area and the high costs involved to solve them,
and then introduced our approach, described step by step with a real-world example
and showing examples of the supporting tooling at work. It is noteworthy that this work
contributes an emerging technology that brings to legacy systems mobile features in a
feasible and economic which improve the user experience. Finally, we described the
results of a controlled experiment which showed an improvement in the usability of
augmented applications as well as a reduction in the scrolling and zoom in/out events.

While the approach showed to be productive through the use of augmentation
techniques, it inherits some limitations from them. One of the most important is related
to site changes. Since augmentation strategies work transforming the original DOM
model of a web application, they use more or less concrete ways of identifying ele-
ments to be transformed within it. If the original website changed in some way in which
that it prevents to apply the adaptation, all adaptation is cancelled as a preventive
measure.

There are several threads and sub-areas for future work. Extending the tooling for
supporting more adaptation strategies and layouts is clearly one need, since the current
catalog is limited. Though the tooling provides assistance in building the adaptation, it
still has to be iteratively and manually which, although saving a notable amount of
work, it requires a noticeable time of manual intervention. Using page analysis and
processing algorithms, a first version of an adaptation, including the selection of the
best-matching template can be offered thus saving part of the manual work involved,
represents another interesting area for future work. Also, we plan to include principles
of Progressive Web Applications which transcend layout including features like
responsiveness, load speed, tolerance to network failures etc. using a similar Web

174 J. M. Rivero et al.

Augmentation approach and assisting in performing backend changes if required. Also,
providing an alert system to notify users if the site changes and facilitating a quick
adaptation re-builder system is another interesting work path that we are pursuing.
Finally, as an additional work path we plan to conduct an enterprise-wide acceptance
test of the tool and methodology in local startup companies to validate its usefulness
and provided added value.

References

1. Armenise, R. et al.: A tool for automatic adaptation of web pages to different screen size. In:
ICEIS 2010 - Proceedings of the 12th International Conference on Enterprise Information
Systems. pp. 91–98 (2010)

2. Barboutov, K., et al.: Ericsson Mobility Report. https://goo.gl/FMNgUQ
3. Bosetti, G.A., et al.: An approach for building mobile web applications through web

augmentation. J. Web Eng. 16(2), 75–102 (2017)
4. Díaz, O.: Understanding web augmentation. In: Grossniklaus, M., Wimmer, M. (eds.) ICWE

2012. LNCS, vol. 7703, pp. 79–80. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-35623-0_8

5. Gaouar, L., et al.: Model driven approaches to cross platform mobile development. In:
Proceedings of the International Conference on Intelligent Information Processing, Security
and Advanced Communication - IPAC 2015, pp. 1–5 (2015)

6. Hornbæk, K.: Current practice in measuring usability: challenges to usability studies and
research. Int. J. Hum Comput Stud. 64(2), 79–102 (2006)

7. Leeladevi, B., et al.: Transforming a website from desktop to mobile a cross platform
viewpoint. In: Proceedings of the 2015 International Conference on Green Computing and
Internet of Things, ICGCIoT 2015 (2016)

8. Liu, Q., et al.: A web page design method for multi-terminal devices. In: 2015 International
Symposium on Educational Technology, vol. 3(1), pp. 3–7 (2015)

9. Marcotte, E.: Responsive Web Design. A Book Apart (2011)
10. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices. Prentice

Hall PTR, Upper Saddle River (2003)
11. Miján, J.L., Garrigós, I., Firmenich, S.: Supporting personalization in legacy web sites

through client-side adaptation. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE
2016. LNCS, vol. 9671, pp. 588–592. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-38791-8_54

12. Natda, K.: Responsive web design. Eduvantage 306, 1–22 (2013)
13. Nebeling, M., et al.: CrowdAdapt: enabling crowdsourced web page adaptation for

individual viewing conditions and preferences. In: Proceedings of the 5th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, pp. 23–32. ACM, New York
(2013)

14. Nebeling, M.: XDBrowser 2.0: semi-automatic generation of cross-device interfaces. In:
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,
pp. 4574–4584. ACM, New York (2017)

15. Romano, J., et al.: Appropriate statistics for ordinal level data: Should we really be using
t-test and Cohen’s d for evaluating group differences on the NSSE and other surveys? In:
Florida Association of Institutional Research Annual Meeting, pp. 1–33 (2006)

16. Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists. Academic
Press, Cambridge (2004)

Improving Legacy Applications with Client-Side Augmentations 175

https://goo.gl/FMNgUQ
http://dx.doi.org/10.1007/978-3-642-35623-0_8
http://dx.doi.org/10.1007/978-3-642-35623-0_8
http://dx.doi.org/10.1007/978-3-319-38791-8_54
http://dx.doi.org/10.1007/978-3-319-38791-8_54

17. Song, R., et al.: Design and implementation of the web content adaptation for intelligent
tourism cloud platform. In: Proceedings - 2012 International Conference on Control
Engineering and Communication Technology, ICCECT 2012 (2012)

18. Torrecilla-Salinas, C.J., et al.: Estimating, planning and managing Agile web development
projects under a value-based perspective. Inf. Softw. Technol. 61, 124–144 (2015)

19. Wohlin, C., et al.: Experimentation in Software Engineering: An Introduction. Kluwer
Academic Publishers Norwell, Netherlands (2000)

20. Wu, K.C., et al.: Development model and environment for dynamic mobile cloud services.
In: Proceedings - 2012 IEEE Asia Pacific Cloud Computing Congress, APCloudCC 2012
(2012)

21. Pidgin, the universal chat client. https://www.pidgin.im/
22. Redmine. http://www.redmine.org/
23. Tampermonkey. https://tampermonkey.net/
24. Twitter Bootstrap. http://getbootstrap.com/
25. Userscripts. http://userscripts-mirror.org/
26. World Internet Users Statistics and 2017 World Population Stats. http://www.internetworldstats.

com/stats.htm

176 J. M. Rivero et al.

https://www.pidgin.im/
http://www.redmine.org/
https://tampermonkey.net/
http://getbootstrap.com/
http://userscripts-mirror.org/
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

	Improving Legacy Applications with Client-Side Augmentations
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Our Approach in a Nutshell
	4.1 Step 1: Select the Web Site to Adapt
	4.2 Step 2: Template Configuration
	4.3 Step 3 and 4: Element Selection, Adaptation and Validation
	4.4 Step 5: Script Publishing and Execution
	4.5 Architectural Application Refactorings

	5 Evaluation
	5.1 Goals, Hypotheses and Metrics
	5.2 Experiment Design
	5.3 Experimental Unit, Subjects, Instrumentation, and Data Collection
	5.4 Analysis and Implication
	5.5 Threats to Validity

	6 Conclusions, Discussion and Future Work
	References

