)

Check for
updates

1

The need and urgency for quality software is higher than any other time in our
history because of the rate of interconnection and dependence on software. Soci-
ety, systems, and businesses are driven by software systems that are integrated
into a complex system of systems (e.g. automation systems, business systems,
Internet of Things, mobile devices). This is changing the threat landscape contin-
uously. Unfortunately, the rise in consumer software technologies and methodolo-
gies for delivering them are not matched with an increase in security investment.
This is evidenced in large-scale vulnerability reports and regular breaches [1].
Information gathering, exploits and hacking tools [e.g. Kali Linux] are now
easily accessible and the ability for an attacker to cause serious damage is more

Myths and Facts About Static
Application Security Testing Tools:
An Action Research at Telenor Digital

Tosin Daniel Oyetoyan'®), Bisera Milosheska?, Mari Grini2,
and Daniela Soares Cruzes'

! Department of Software Engineering, Safety and Security,
SINTEF Digital, Trondheim, Norway
{tosin.oyetoyan,danielac}@sintef.no
2 Telenor Digital, Oslo, Norway
{bisera.milosheska,mari}@telenordigital.com

Abstract. It is claimed that integrating agile and security in practice is
challenging. There is the notion that security is a heavy process, requires
expertise, and consumes developers’ time. These contrast with the agile
vision. Regardless of these challenges, it is important for organizations to
address security within their agile processes since critical assets must be
protected against attacks. One way is to integrate tools that could help
to identify security weaknesses during implementation and suggest meth-
ods to refactor them. We used quantitative and qualitative approaches
to investigate the efficiency of the tools and what they mean to the
actual users (i.e. developers) at Telenor Digital. Our findings, although
not surprising, show that several barriers exist both in terms of tool’s
performance and developers’ perceptions. We suggest practical ways for
improvement.

Keywords: Security defects - Agile - Static analysis
Static application security testing - Software security

Introduction

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 86-103, 2018.
https://doi.org/10.1007/978-3-319-91602-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_6&domain=pdf

Myths and Facts About Static Application Security Testing Tools 87

real than ever. On the other side, developers do not code with the mindset of
an attacker because they care more about delivering functionalities. Common
coding mistakes and inadvertent programming errors are weaknesses that often
evolve into exploitable vulnerabilities'. It is claimed that, about 70-percent of
reported attacks are performed at the application layer rather than the network
layer [12].

Integrating static analysis tool could be envisaged to help developers code
defensively [26]. Tools are important in agile development that values continuous
delivery [21]. Static analysis tools (SATs) play important role to ensure product
meets the quality requirements. SATs exercise application source code and check
them for violations [8]. With respect to security, the decision to implement static
analysis tools has to be guided. Using a static analysis tool does not imply an
automatic improvement in the security of the code. For instance, teams may use
such tools for checking styles, method quality, and maintenance related issues
(e.g. duplicated code). These do not translate directly to security, as elegant
code can still be vulnerable to attacks [20].

The security group at Telenor Digital is focused on integrating security activ-
ities in their agile teams. Telenor Digital is a community within Telenor Group,
a Norwegian based international telecom operator, working to position Telenor
as a digital service provider. As a result, the community researches into new
possibilities and develops the next-generation digital solutions for Telenor cus-
tomers transnationally. Telenor Digital is distributed in Oslo, Trondheim, and
Bangkok. Each team has autonomy in its processes and leverages agile develop-
ment methodologies.

One of the steps the security group has taken is to collaborate with the
SoS-Agile project?, which investigates how to meaningfully integrate software
security into agile software development activities. The method of choice for the
project is Action Research [16]. The combination of scientific and practical objec-
tives align with the basic tenet of action research, which is to merge theory and
practice in a way that real-world problems are solved by theoretically informed
actions in collaboration between researchers and practitioners [16]. Therefore,
the approach taken has considered the usefulness of the results both for the
companies and for research.

Since traditional security engineering process is often associated with addi-
tional development efforts and as a result often invokes resentment among agile
development teams [5]. It is thus important for the security group to approach
development teams in a way that guarantees successful integration. This paper
investigates the efficiency and developers’ perceptions of static application secu-
rity testing (SAST) tool within the agile teams at Telenor Digital. Our findings
have implications for both practice and research. They show the challenges faced
by developers, enumerate practical improvement approaches, and contribute to
the body of knowledge about the performance of static analysis tools.

! https://cwe.mitre.org)/.
2 http://www.sintef.no/sos-agile.

https://cwe.mitre.org/
http://www.sintef.no/sos-agile

88 T. D. Oyetoyan et al.

The rest of this paper is structured as follows: In Sect.2, we present the
background to the study and our research questions. In Sect. 3, we describe our
case study and present the results. Section4 discusses the implications of the
study for both practice and research. We present the limitations to the study in
Sect. 5 and conclude in Sect. 6.

2 Background

Different studies have investigated why developers do not use static analysis tool
to find bugs e.g. [18] or how developers interact with such tools when diagnos-
ing potential security vulnerabilities e.g. [23]. Findings show that false positives
and the way warnings are presented are barriers to use. Similarly, deep interac-
tion by developers with tool’s result and several questions they asked highlight
another challenge of cognitively demanding tasks that could threaten the use of
such tool [23]. Baca et al. [4] evaluated the use of a commercial static analysis
tool to improve security in an industrial settings. They found that, although
the tool reported some relevant warnings, it was hard for developers to classify
them. In addition, developers corrected false positive warnings, which created
vulnerabilities in previously safe code. Hofer [17] has used some other metrics to
guide tools’ selection such as installation, configuration, support, reports, errors
found, and whether the tools can handle a whole project rather than parsing
single files.

Other researchers have also performed independent quantitative evaluation
of static analysis tools with regards to their performances to detect security
weaknesses. The Center for Assured Software (CAS) [19] developed a bench-
mark testsuite with “good code” and “flawed code” across different languages
to evaluate the performance of static analysis tools. They assessed 5 commer-
cial tools and reported the highest recall of 0.67 and highest precision of 0.45.
Goseva-Popstojanova and Perhinschi [15] investigated the capabilities of 3 com-
mercial tools. Their findings showed that the capability of the tools to detect
vulnerabilities was close to or worse than average. Diaz and Bermejo [10] com-
pared the performance of nine tools mostly commercial tools using the SAMATE
security benchmark test suites. They found an average recall of 0.527 and aver-
age precision of 0.7. They found also that the tools detected different kinds of
weaknesses. Charest [7] compared 4 tools against 4 out of the 112 CWEs in the
SAMATE Juliet test case. The best average performance in terms of recall was
0.46 for CWES9 with an average precision of 0.21.

The methodology employed by the security group and the SoS-Agile research
team combined both the qualitative and quantitative approaches. Although, we
could learn from the reported studies in the literature, we could not directly
apply these results to the organization’s case because of context issue. First,
the set of tools that are to be evaluated against the benchmark of our choice
are mostly not within the set reported in the literature and in many cases the
names of the tools are not disclosed. Second, tools’ evolution over time is also a
context factor that makes it reasonable to re-evaluate them even if they have been

Myths and Facts About Static Application Security Testing Tools 89

previously evaluated. Third, the developers in the organization could express
specific challenges that might not have been mentioned in the literature but
would be important if the security team wants to succeed with introducing a
static analysis tool.

Therefore, there are 2 research questions that are of interest to the secu-
rity group at Telenor Digital and the SoS-Agile research team with regards to
integrating SAST tools in the organization:

RQ1. What are the capabilities of the SAST tools in order to make
informed decision for the development team? Implementing SAST tools in
a meaningful and useful ways requires evaluating various tools independently in
order to make informed decision. We disregard statements from vendors as they
can overrate the capability of their tools. We do not distinguish between open
source and commercial tools because implementing inefficient tools irrespective
of license type has implications with respect to cost, time, and long-term per-
ception/future adoption.

Furthermore, different classes of weaknesses are of interest. For instance,
how does a SAST tool perform with regards to authentication and authoriza-
tion weaknesses or with regards to control flow management weaknesses. Such
understanding is crucial to know the strengths and weaknesses so that even if
a tool is adopted, our knowledge of its strengths would prevents overestimation
and a false sense of security and our knowledge of its weaknesses would guide
further testing activities later in the development lifecycle.

RQ2. How do developers perceive static analysis tools with respect
to successful implementation and long-term adoption by teams? Under-
standing the desired features in SAST tools that could increase the chance of
adoption would be important. Likewise, understanding the challenges and devel-
opers’ fears regarding new security tools that could lessen the chance of adoption
would also be useful. By using this complimentary information, managements
have better possibility to improve the chance of adoption by the team.

3 Case Study

We have used quantitative and qualitative approaches to investigate our research
questions. For RQ1, we performed an independent evaluation using a bench-
marking approach [2,19] of open source SAST tools and a commercial SAST
tool being considered for adoption at the organization. For RQ2, we interviewed
6 developers in one of the teams regarding their perceptions about SAST tool.

3.1 Evaluating Static Analysis Tools

Our approach to evaluate SAST tools includes the selection of benchmark test-
suites, selection of static analysis tools, running the analysis tools on the test-
suites, and presenting the results using performance metrics. Evaluating tools
using natural code is very challenging [14]. One challenge is reviewing each result
of the tool to determine whether it is correct or not. This is a time consuming

90 T. D. Oyetoyan et al.

activity with no guarantee of correctness. Another is the difficulty to compare
results from different tools since they report differently. We thus decided to use
an artificial benchmark test suite.

Benchmark for Evaluating SAST Tools: Different benchmark test suites
exist for testing security tools. Common examples are the OWASP Benchmark
[2] and the NIST test suites [19]. We decided for NIST dataset because it is not
only limited to top 10 vulnerabilities unlike OWASP benchmark test dataset.
In addition, NIST dataset is designed for all range of weaknesses and not only
limited to web-based weaknesses like OWASP.

NIST Test Suite: The National Institute of Standards and Technology (NIST)
Software Assurance Reference Dataset (SARD) Project [19] provides a collection
of test suites intended to evaluate the performance of different SAST tools. The
test suite uses the common weaknesses and enumeration (CWE) dictionary by
MITRE (see footnote 1) and contains artificial bad and good files/methods. The
bad file/method contains the actual weakness to be tested by the tool. The good
file/method contains no exploitable weakness. Figure 1 shows an example of a
test case that is vulnerable to cross-site scripting (XSS) attack since the user-
supplied value stored in the variable “data” is not properly sanitized before being
displayed. However, Fig.2 shows a fix by using a hardcoded value for “data”
(trusted input). Although, the sink still contains the weakness that could lead
to XSS attack, no user-supplied value is passed to the variable “data”. Therefore,
this weakness cannot be exploited. This simple design is valuable to differentiate
between tools that only perform string pattern matching against those that use
more sophisticated approaches (e.g. control/data-flow analysis). We have used
the Juliet Test Suite v1.2 with a total of 26,120 test cases covering 112 different
weaknesses (CWESs). In order to compare the tools at a higher granularity level,
the CWEs are aggregated into 13 categories as shown in Table 1.

/* uses badsource and badsink */
public void bad(HttpServletRequest request, HttpServletResponse response)
throws Throwable

String data;

/* POTENTIAL FLAW: Read data from a
* guerystring using getParameter
*y

data = request.getParameter("name");
if (data != null)

/* POTENTIAL FLAW: Display of data in web page
* after using replaceAll() to remove script
* tags, which will still allow XSS with strings
* like <scr<script>ipt> (CWE 182: Collapse
* of Data into Unsafe Value)
4
response.getWriter().println("
bad(): data = "
+ data.replaceAll("(<script>)", ""));
}

}

Fig. 1. Bad source and bad sink method for XSS - CWES80

Myths and Facts About Static Application Security Testing Tools 91

/* goodG2B() - uses goodsource and badsink */
private void goodG2B(HttpServletRequest request, HttpServletResponse response)
throws Throwable
{
String data;

/* FIX: Use a hardcoded string */
data = "foo";
if (data != null)
/* POTENTIAL FLAW: Display of data in web page
* after using replaceAll() to remove script
* tags, which will still allow XSS with strings
* like <scr<script>ipt> (CWE 182: Collapse
* of Data into Unsafe Value)
L/
response.getWriter().println("
bad(): data = "
+ data.replaceAll("(<script>)", ""));
}

Fig. 2. Good source and bad sink method for XSS - CWES80

Selected Static Analysis Tools: We have evaluated 5 open source tools (Find-
Bugs, FindSecBugs, SonarQube, JLint, and Lapse+) and a mainstream commer-
cial tool. Commercial tools use proprietary license and are thus challenging for
research purposes. The open source tools are selected based on language support,
ease of installation and that they can be used to find security flaws. Additionally,
FindBugs, FindSecBugs, and SonarQube are widely adopted. The commercial
static analysis tool is being considered for adoption at Telenor Digital.

Automated Analysis and Comparison: Tools report results in different for-
mats and thus makes the comparison of tools a somewhat cumbersome process.
We need to create a uniform format to compare the results from the tools. We
adopted the approach by Wagner and Sametinger [24] and transformed each
report into a CSV file, where each line contains details about each detected flaw,
such as: name of the scanner (tool), abbreviation of the flaw reported by the
scanner, name of the file and line number where the flaw was located, as well
as the message reported by the scanner. To map the reported flaws from each
scanner to their possible CWE codes, we used the CWE XML-mapping file as
shown in Fig. 3 for each scanner (tool). This file contains the tool’s code for a
reported flaw and their possible CWE equivalent. Where vendors do not provide
this information, we look for the best possible matching from the CWE database.
The flaws reported in the CSV reports for each tool are then mapped to CWE
numbers using the scanner’s CWE XML-mapping files.

We automate some parts of the process and manually process the other parts
due to how the tools can be configured and accessed (e.g. through a command
line, user interface or integrated development environment) and the different
operating systems they support. For example, only FindBugs, FindSecBugs, and
SonarQube could be executed via command line on OS X platform. JLint is only
compatible with Windows OS and for Lapse+, we have to generate the result
through the IDE.

We have used the tool in [24] for tools accessible via command line. The tool
did not perform recursive scanning of files in subfolders and thus missed several

92

T. D. Oyetoyan et al.

Table 1. Weakness categories [13]

Weakness class

Description

Examples

Authentication and
Access Control

Testing for unauthorized
access to a system

CWE-620: Unverified
Password Change

Code Quality

Issues not typically security
related but could lead to
performance and
maintenance issues

CWE-478: Omitted Default
Case in a Switch

Control Flow
Management

Timing and synchronization
issues

CWE-362: Race Condition

Encryption and
Randomness

Weak or wrong encryption
algorithms

CWE-328: Reversible
One-Way Hash

Error Handling

Failure to handle errors
properly that could lead to
unexpected consequences

CWE-252: Unchecked Return
Value

File Handling

Checks for proper file
handling during read and
write operations to a file on
the hard-disk

CWE-23: Relative Path
Traversal

Information Leaks

Unintended leakage of
sensitive information

CWE-534: Information Leak
Through Debug Log Files

Initialization and

Checks for proper initializing

CWE-415: Double Free

Shutdown and shutting down of
resources
Injection Input validation weaknesses | CWE-89: SQL Injection

Malicious Logic

Implementation of a program
that performs an
unauthorized or harmful
action (e.g. worms,
backdoors)

CWE-506: Embedded
Malicious Code

Miscellaneous

Other weaknesses types not
in the defined categories

CWE-482: Comparing
instead of Assigning

Number Handling

Incorrect calculations,
number storage, and
conversion weaknesses

CWE-369: Divide by Zero

Pointer and
Reference Handling

Proper pointer and reference
handling

CWE-476: Null Pointer
Dereference

of the test suite files. We fixed this serious bug and provided an extension of
the tool®. For Lapse+ and Commercial tool, we processed the reports separately
and converted them to the uniform CSV format because of platform differences.

3 Bisera Milosheska and Tosin Daniel Oyetoyan. Analyzetoolextended. https: //github.
com/biseram/AnalyzeToolExtended.

https://github.com/biseram/AnalyzeToolExtended
https://github.com/biseram/AnalyzeToolExtended

Myths and Facts About Static Application Security Testing Tools 93

<mappings scanner="SonarQube'">
<scannerCode desc="Credentials should not be hard-coded" name='"S2068">
<cwe id="259" />
<cwe id="798" />
</scannerCode>
<scannerCode desc="Security constraints should be defined" name="S3369">
<cwe 1d="284" />
</scannerCode>
</mappings>

Fig. 3. XML mapping of tools to CWE

Lastly, we developed additional Java tool to compute the performance metrics
to fit the metrics originally defined by CAS [13].

3.2 Performance Metrics

We use the following performance metrics [13].

True Positive (TP): The number of cases where the tool correctly reports the
flaw that is the target of the test case.

False Positive (FP): The number of cases where tool reports a flaw with a
type that is the target of the test case, but the flaw is reported in non-flawed
code.

False Negative (FIN): This is not a tool result. A false negative result is added
for each test case for which there is no true positive.

Discrimination: The number of cases where tool correctly reports the flaw and
does not report the non-flaw (i.e. TP = 1 and FP = 0). The discrimination rate
is usually equal or lower than the TP rate (Recall).

Blank (Incidental flaws): This represents tool’s result where none of the types
above apply. More specifically, either the tool’s result is not in a test case file or
the tool’s result is not associated with the test case in which it is reported.

B _ _TP
Recall = 7515w
— Precision = 75155 P
R —_ — #Discriminations
— DiscriminationRate = TPIEN

It is possible to have both TP and FP in the same file as shown in Fig. 2. In
this case, the tool is not sophisticated enough to discriminate for instance when
data source is hardcoded and therefore does not need to be sanitized. When we
compute discrimination, we are only concerned with cases when the tool reports
TP. We set the discrimination to 1 if it does not report FP on the same file.

We adopt the “strict” metrics defined by CAS [13] as they truly reflect real-
world situation. For instance, Wagner and Sametinger [24] modified this metrics
by accepting tools’ detection in the “non-flaw” part of the code as valid as
long as they are reported in the target CWE file. While this modification may
make a tool’s performance look better, in the true sense, it does not reflect
how developers interact with tool’s report. Precision of reported issue in a file
is important otherwise it might lead to confusion and cognitive stress when
developers try to make sense of it.

94 T. D. Oyetoyan et al.

3.3 Results of Tools’ Evaluation

We report the evaluation results of the 6 tools on Juliet Test Suite v1.2. As
shown in Table2 and Fig. 4, FindSecBugs records the highest recall of 18.4%
with approximately 90% precision. It also has the highest discrimination rate,
which is slightly lower than its recall. Lapse+ follows with a detection rate of
9.76% but with poor discrimination rate of 0.41%. However, when we break down
the result into different weakness categories, this number was found only in “File
Handling” and “Injection” weaknesses. The results from the Commercial tool is
not as competitive as it ranked third. However, results in the categories revealed
certain areas where the tool could be ahead of others.

The tools reported several other warnings, which are recorded under “inci-
dental flaws”. These warnings are not the target of the test but they indicate the
“noise” levels of the tools. Many of the warnings could be categorized as “trivial”
when compared with security issues. An example is warning about code styling.

We made the following observations under each weakness category (see
Table 3):

Authentication and Authorization: FindSecBugs has the best detection rate
of 57.20% and followed by “Commercial” tool with 29.39%. The discrimination
rate is as good as the detection rate for all the tools. Both JLint and Lapse+
did not detect any weakness in this category.

Number Handling: None of the tools could detect the weaknesses under this
category. The tools report different issues in the “Number Handling” CWE files,

Table 2. Number of identified weaknesses by tools from a total of 26120 flaws

Tool TP |FP | #Discrimination | Incidental flaws
SonarQube | 1292|1275 | 200 237845
Commercial | 2038|3834 | 1085 360212
FindSecBugs | 4811 | 604 | 4338 41637
Lapse+ 2550 12736 | 108 18950
JLint 125 26 104 586
FindBugs 426 98 | 341 22245
Recall Discrimination Rate Precision
FindSecBugs INII———— FindSecBugs I FindSecBugs III——
FindBugs B FindBugs M FindBugs NI—
Lapse+ T Lapse+ Lapse+ [
Jiint Jint A Jint
Commercial [IEEEG—_—— Commercial IS Commercial I
SonarQube NN SonarQube 1§ SonarQube I

o
«»
5
N
S
o
«
5
&
S
o

20 40 60 80 100

Fig. 4. Overall performance results from the tools

Myths and Facts About Static Application Security Testing Tools 95

Table 3. Performance of tools against weakness categories

SonarQube Commercial Lapse+ FindBugs Jlint FindSecBugs

CWE Class #Flaws Recall Disc.Rate Precision Recall Disc.Rate Precision Recall Disc.Rate Precision Recall Disc.Rate Precision Recall Disc.Rate Precision Recall Disc.Rate Precision
Authentication and Access Control 701 0,43 0,43 100,00 2939 2297 4578 000 0,00 0,00 014 014 100,00 0.00 0,00 0,00 57,20 5435 92,61
Code Quality 500 040 0,40 66,67 5,20 4,00 1677 000 000 0,00 6,80 680 9144 060 0,60 10000 680 6,80 91,41
Control Flow Management 599 0,00 0,00 0,00 0,50 0,50 3,49 0,00 0,00 0,00 568 5,68 100,00 0.00 0,00 0,00 5.68 5,68 100,00
Encryption and Randomness 622 1640 7,88 65,8 193 096 7,55 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 22,83 2,73 52,01
Error Handling 142 2535 11,97 6345 0,00 0,00 0,00 0,00 0,00 0,00 11,97 11,97 100,00 0,00 0,00 0,00 0,00 0,00 0,00
File Handling 946 0,00 0,00 0,00 0,00 0,00 0,00 58,35 2,54 1891 359 359 9714 0,00 0,00 0,00 359 3,50 97,14
Information Leaks 188 0,00 000 0,00 957 9,57 2647 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Initialization and Shutdown 3175 051 035 7391 003 0,03 5,00 0,00 0,00 0,00 057 057 9474 0,00 0,00 0,00 057 057 100,00
Injection 10602 9,68 0,88 47,99 1607 791 37,27 18,85 0,79 4805 116 116 96,09 0,00 0,00 0,00 38,00 3491 90,19
Malicious Logic 108 000 000 0,00 123 074 9,26 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 117 417 100,00
Miscellaneous 58 0,00 0,00 0,00 9,00 9,09 4000 0,00 0,00 0,00 809 8,09 100,00 1932 1932 100,00 000 0,00 0,00
Number Handling 7626 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Pointer and Reference Handling 523 20,27 4,78 55,78 10,52 4,97 2030 000 0,00 0,00 2428 803 5880 2008 1606 8015 19,50 19,50 100,00

which are not the actual weaknesses. This was alarming and indicates that man-
ual code review in addition to automatic analysis by tool should be performed
for number handling weaknesses (e.g. division by zero).

File Handling: Lapse+ produced the best detection rate of 58.35%. However,
only 2.54% (discrimination rate) is correctly identified without flagging warning
simultaneously in the “bad code” construct. Apart from Lapse+, only FindBugs

and FindSecBugs could detect weaknesses in this category with a detection rate
of 3.59%.

Miscellaneous: JLint recorded the best performance under miscellaneous (e.g.
CWE-482: Comparing instead of Assigning) category with a recall and discrim-
ination rate of 19.32%. Commercial tool and FindBugs have detection rates of
9.09% and 8.09% respectively. SonarQube, Lapse+ and FindSecBugs did not
detect any weakness in this category.

Code Quality: The tools’ performance is surprisingly low in this category. The
highest recall of 6.8% were recorded by FindSecBugs and FindBugs.

Control Flow Management: FindBugs, FindSecBugs, and Commercial tool
detected some issues in this category. However, FindSecBugs and FindBugs
detection rate is 11.36 times better than the commercial tool.

Encryption and Randomness: FindSecBugs has the highest detection rate
of 22.83% but with very low discrimination rate of 2.73%. SonarQube detected
16.40% issues, while Commercial tool detected 1.93% issues. The remaining 3
tools did not find any issue in this category.

Error Handling: Only SonarQube and FindBugs detected weaknesses in this
category. SonarQube has a detection rate of 25.35% and FindBugs has 11.97%
detection rate.

Information Leaks: Only the Commercial tool detected weaknesses in this
category with a detection rate of 9.57%

96 T. D. Oyetoyan et al.

Initialization and Shutdown: The performances of the tools are very poor in
this category. Four tools (SonarQube, Commercial, FindBugs, and FindSecBugs)
detected some weaknesses with the highest detection rate of 0.57%.

Injection: JLint did not find any issue in this category. FindSecBugs has the
highest detection rate of 38%, followed by Lapse+ at 18.85% but with poor
discrimination rate of 0.79% and Commercial tool with 16.07%.

Malicious Logic: Only Commercial tool and FindSecBugs detected weaknesses
under this category. The highest detection rate is 4.17% by FindSecBugs while
commercial tool only detected 1.23% of the weaknesses.

Pointer and Reference Handling: Lapse+ did not detect any weakness in
this category. FindBugs, SonarQube, FindSecBugs, and JLint have relatively
similar detection rate of about 20%. However, only FindSecBugs showed the
best discrimination power of 19.5%. Commercial tool detection rate is 50% lower
than the rest of the tools.

3.4 Interview

We have interviewed 6 out of the 8 developers in the selected team. The interview
was divided into 5 sections. The first part covered the professional background
such as job title, years of programming experience, and whether they had security
related experiences. The second part covered personal opinion on their expecta-
tions and challenges with implementing SAST tools. It also included questions
about their current practices. The third covered their development approaches.
For instance software development methodology, release cycles, and refactoring
practices. The fourth part concerned questions about development environments
and the last part covered team’s quality assurance and security practices.

3.5 Practices and Demography

The team is composed of developers that specialize in separate functionalities,
such as business support, system integration, hosting, setup and infrastructure.
They use a combination of Scrum and Kanban and perform sprint review every
two weeks.

The goals of the review are to: keep track of project objectives, define the
scope of the next sprint, define a set of tasks that should be included in the
next iteration, and perform time estimation for those tasks. From privacy and
information security point of view, the developers mentioned that they store
sensitive personal data; such as personal messages and voice conversations and
these assets are the most critical part of their software. Any security weakness
that leads to an unauthorized disclosure or modification of the customers’ highly
sensitive information can be damaging to the customers and their business.

Quality assurance is performed in multiple phases starting from the design
phase of the software development life-cycle (SDLC), when the team discusses

Myths and Facts About Static Application Security Testing Tools 97

potential issues. The team codes mainly in Java and uses common coding stan-
dards for Java and additional standards proposed at Telenor Digital. They per-
form code review, unit and acceptance testing. Lastly they perform continuous
refactoring of their code.

Despite all these practices, there is no specific focus on security testing of
the products. Potential security threats are discussed during the design phase
of the SDLC and bad practices are avoided while coding. The team is, however,
aware of some design issues they have to fix, such as securing confidential and
sensitive logs and as a result, they desire to have automatic security analysis
on a regular basis. The developers are free to choose the development software
platform they are most comfortable with. Therefore, they develop on all the three
major OS platforms: OS X, Windows and Linux. They use various integrated
development environments (IDEs), such as IntelliJ, NetBeans, Emacs, Eclipse,
and Sublime. Their software is mostly written in Java, but they also develop
parts of it in JavaScript, shell script and Python. Jenkins* is used as a build
server for continuous integration.

3.6 Experience with Static Analysis Tools and Security

The team is composed of developers with 4 to 37 years of development experience
(see Table4). The developers mentioned that they have used a static analysis
tool called sonar before. However, this tool was used for checking code quality
such as styling, standards, and large methods. One developer said: “. .. We use
something called Sonar, ..., It’s good for finding complexity in software, like
referential loops ..., Bad style, non-conformance to coding standard, methods
that are large or complex, ...”. The developers stated not to have used the tool
to find specific security weaknesses. Although they are somehow familiar with
vulnerabilities, nearly all indicated little experience with using static analysis
tools specifically for security audits.

Table 4. Professional background and experiences

Title Programming experience | Familiarity with security
(years) vulnerabilities (scale: 1-5)

Software engineer 4 2

Senior software engineer | 18 3

Senior software engineer | 37 3

Senior software engineer | 20 3-4

Senior software engineer | 20 3

Software engineer 6 4

4 Jenkins is a self-contained, open source automation server, which can be used to
automate all sorts of tasks such as building, testing, and deploying software.

98 T. D. Oyetoyan et al.

3.7 Perceptions of the Developers About SAST Tools

Setting Up the Tool and Getting it to Work. The developers fear the effort
to setup a third party SAST tool and get it to work seamlessly in their devel-
opment and build environments. One of the developers who has experience with
previous tool said: “ .. Making the things actually work, that usually is the worst
thing. The hassle-factor is not to be underestimated. . . ”. Both Emanuelsson and
Nilsson [11] and Hofer [17] report on installation as a seemingly important metric
when choosing a static analysis tool.

Invasiveness and Disruption to Regular Workflow. Alerts may distract
and interrupt the developer’s flow and can also be a time consuming activity.
The developers are clear about the fact that acting on the issues reported from
the tool would depend on whether it does not overburden them. They fear that
the tool may disrupt the flow of their work. One of the developers said: “ .. It
depends a lot on the tool and how easy it is to use and how it flows into your
reqular workflow,. . .”

False Positives or Trivial Issues. The developers were unanimous about
their concerns with false positives. They are concerned about the tool reporting
high number of trivial or unnecessary issues. For instance, one of the developers
said: “ .. At least from my experience with the Sonar tool is that it sometimes
complains about issues that are not really issues...”

Cognitive Effort to Understand Tool’s Messages. This is a concern to the
developers. They would want to use the tool with minimum amount of cognitive
effort. It should not be very difficult to understand the message or vocabulary
used by the tool. A developer said: “ .. What I fear is if they make it necessary
to engage mentally a lot in the tool, as to the messages it uses then I would be
reluctant to use it...”

Broad Range of Programming Languages. The developers point out the
challenge of supporting several programming languages. They develop using sev-
eral languages and foresee that it might be challenging to generate static analysis
warnings for each of the languages. A developer said: “.. We have several soft-
ware languages that we write in. Predominantly Java and Javascript. But also
some C++ as well. So to target each of those different languages would be an
issue ...”

Huge Technical Debts. One of the challenges expressed is having a huge tech-
nical debt after running an implemented static analysis tool. The team rushed
their products into the market the previous year and thus fears the possibility
that the tool would flag many issues for refactoring. A developer says: “ ..and
the problem is that when you set it up at this stage of the project we have a
huge design debt, because I guess things were implemented quickly, rushed before
summer last year...”

Myths and Facts About Static Application Security Testing Tools 99

4 Discussions and Implications

Based on the results from the interview and independent tools evaluation, we
discuss the implications of our findings.

One Tool Is Not Enough: We found that using one SAST tool is not enough
to cover the whole range of security weaknesses at the implementation phase.
This is synonymous with the findings by Austin and Williams [3] that compares
different techniques across implementation and verification stages. It becomes
obvious that developers have to tradeoff on some of their requirements. For
instance, full language support might not be covered by one single tool and a
single tool that covers many languages might suffer from low performances in
many of them. Future research should focus on how to harmonize results from
different tools for maximum performance.

Tools’ Capability Is Low: The capability of the tools is generally low with
regards to detecting security weaknesses in the Juliet Java code. The commercial
tool, although highly rated in the market is not an exception. This is very chal-
lenging for developers, as they need to focus on important security warnings and
disregard the noise. One helpful way we found is to filter the results by using the
CWE tag provided by some of the tools. For example, FindSecBugs, SonarQube
and the Commercial tool provide support for this feature.

Static Analysis Results Are Non-functional Requirements: Developers
have hidden bias when it comes to fixing issues reported by static analysis tools.
Statements such as: “ .. if you are just looking for functionality and spend a lot
of time on making your system secure or safe and doing things that you are not
getting paid for or the customers are not willing to pay for...” and “ .. And of
course in itself is not productive, nobody gives you a hug after fixzing SonarQube
reports,...” demonstrate the challenges and need for making security as part
of the development process and in a seamless manner. It shows a need for a
top down approach where product owners (POs) are able to prioritize security
and include it in the developers’ workflow. Since static analysis reports are non-
functional requirements and not features, they never become user story in many
cases in agile settings. However, it is possible to adopt the approach in Rindell
et al. [22] by moving relevant tool’s report into the product backlog.

Do Not Underestimate Integration Effort: Developers are wary of tools
that take lots of effort to integrate. This is understandable, as it has cost impli-
cation both at the present and in the future. For instance, it would require
increased effort to upgrade such tool if something breaks in it. An approach
taken by Telenor Digital is to dedicate a resource person as responsible for tools’
implementations, configurations, and maintenance. This is beneficial as it pre-
vents the “hassle-factor” and allows the agile team to focus squarely on business
delivery.

100 T. D. Oyetoyan et al.

Developers Are Positive to Have a SAST Tool: On the other hand, the
developers agree that implementing a SAST tool would improve the security
of their product. Some are very enthusiastic to learn new things and to get
immediate feedback when mistakes are made and learn more about language
and platform internals. These would be possible if the tools are able to point out
real issues, if it is possible to mark part of the code that should not be scanned,
if it is automated and easy to use, if it is not cognitively demanding to interact
with the tool, and if the tools report in a way that developers understand.

Collaboration Between Researchers and Practitioners: Practitioners
sometimes view research-oriented studies to be costly and time consuming. As
a result, practitioners could be skeptical to collaborate. However, collaboration
between researchers and practitioners can be important and useful drivers to
meaningfully improve security in practice. From the perspective of the security
group at Telenor Digital, the study was valuable to provide insights both qualita-
tively and quantitatively and to also drive future decisions. The statement by the
head of the security team confirmed this: “ .. But I have in particular now noted
that it might not be sufficient with only one tool and that it might be more impor-
tant than we anticipated before this study to understand strengths and weaknesses
of the different available tools for static analysis. I also noticed that several open
source tools seem to have strengths worthwhile taking into account....”

Advice for Future Integrators: One major challenge with integrating secu-
rity activities in agile is the dichotomy between the security professionals and
developers [6]. Security activities are often perceived by developers to be time
consuming. While the traditional assurance practice dictates to maintain inde-
pendence between security professionals and developers in order to be objective
and neutral [25]. This is confirmed through the use of third-party consultants
by some of the teams at Telenor Digital to perform penetration testing for their
applications [9]. The security team at Telenor Digital has similar challenges with
bridging this gap. The approach used in this study was helpful to allow the secu-
rity team understands how the developers perceive security activities and what
are the important factors that could motivate to adopt them.

It is also important to warn that there is a cost for implementing inefficient
tools. If there is no benefit from the tool, developers would not use it and this
may also affect future possibility to adopt new tool. It is very important to
let developers become aware of the strengths and weaknesses of the tools early
so that they can have a realistic expectation. It is obvious that today’s SAST
tools still need lots of improvements to become better with catching implemen-
tation security bugs. However, it is very helpful when developers are part of the
decision making such that they know the capability of the tools. This collective
“ownership” culture of agile method [6,25] is the approach undertaken at Telenor
Digital to introduce and implement a new static application security testing tool
for their agile teams.

Myths and Facts About Static Application Security Testing Tools 101

5 Limitations

Size and Subjectivity: Interview subjects are few with different experiences
and perceptions about static analysis tools. We can therefore not generalize the
results.

Type of Benchmark: We have used artificial Java code for our evaluation, it
is thus possible that real-code and different languages produce different results.

Size of Tools: We have used a few number of tools including a very popular
commercial tool, however, other tools may present different results to what we
have reported.

Size/Type of Organization: The organization where this study is carried out
is medium-sized and as a result, stakeholders in smaller organizations or startups
may express different perceptions.

Literature Review: Our pre-study review was conducted informally and not
systematically.

6 Conclusion

We have investigated developers’ perceptions and efficiency of static analysis
tools for finding security bugs. We found several barriers exist for adoption by
teams such as tools’ low performance, technical debts when implemented late,
non-functional nature of security bugs, and the need for many tools. However,
teams are positive to use SAST tool to reduce security bugs. We recommend
onboarding development teams to learn about the capability of prospective tools
and to create synergy between them and the security team.

Acknowledgements. The work in this paper was carried out at Telenor Digital with
support by the SoS-Agile team. The SoS-Agile project is supported by the Research
Council of Norway through the project SoS-Agile: Science of Security in Agile Software
Development (247678/070).

References

1. Bugtraq mailing list. http://seclists.org/bugtraq/. Accessed 10 May 2017

2. Owasp. benchmark. https://www.owasp.org/index.php/Benchmark. Accessed 20
Oct 2016

3. Austin, A., Williams, L.: One technique is not enough: a comparison of vulnerabil-
ity discovery techniques. In: 2011 International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 97-106. IEEE (2011)

4. Baca, D., Carlsson, B., Petersen, K., Lundberg, L.: Improving software security
with static automated code analysis in an industry setting. Softw. Pract. Exp.
43(3), 259-279 (2013)

5. ben Othmane, L., Angin, P., Weffers, H., Bhargava, B.: Extending the agile devel-
opment process to develop acceptably secure software. IEEE Trans. Dependable
Secur. Comput. 11(6), 497-509 (2014)

http://seclists.org/bugtraq/
https://www.owasp.org/index.php/Benchmark

102

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

T. D. Oyetoyan et al.

Beznosov, K., Kruchten, P.: Towards agile security assurance. In: Proceedings of
the 2004 Workshop on New Security Paradigms, pp. 47-54. ACM (2004)
Charest, N.R.T., Wu, Y.: Comparison of static analysis tools for Java using the
Juliet test suite. In: 11th International Conference on Cyber Warfare and Security,
pp. 431-438 (2016)

Chess, B., McGraw, G.: Static analysis for security. IEEE Secur. Privacy 2(6),
76-79 (2004)

Soares Cruzes, D., Felderer, M., Oyetoyan, T.D., Gander, M., Pekaric, I.: How is
security testing done in agile teams? A cross-case analysis of four software teams.
In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp.
201-216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6_13
Diaz, G., Bermejo, J.R.: Static analysis of source code security: assessment of tools
against samate tests. Inf. Softw. Technol. 55(8), 14621476 (2013)

Emanuelsson, P., Nilsson, U.: A comparative study of industrial static analysis
tools. Electron. Notes Theor. Comput. Sci. 217, 5-21 (2008)

Fong, E., Okun, V.: Web application scanners: definitions and functions. In: 40th
Annual Hawaii International Conference on System Sciences, 2007, HICSS 2007,
pp. 280b—280b. IEEE (2007)

Center for Assured Software. CAS static analysis tool study - method-
ology. https://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool
%20Study%20Methodology.pdf. Accessed 20 Oct 2016

Center for Assured Software. Juliet test suite v1.2 for ¢/c++ user guide. https://
samate.nist.gov/SRD /resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.
pdf. Accessed 20 Oct 2016

Goseva-Popstojanova, K., Perhinschi, A.: On the capability of static code analysis
to detect security vulnerabilities. Inf. Softw. Technol. 68, 18-33 (2015)
Greenwood, D.J., Levin, M.: Introduction to Action Research: Social Research for
Social Change. SAGE Publications, Thousand Oaks (2006)

Hofer, T.: Evaluating static source code analysis tools. Technical report (2010)
Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don’t software devel-
opers use static analysis tools to find bugs? In: 2013 35th International Conference
on Software Engineering (ICSE), pp. 672-681. IEEE (2013)

Okun, V., Delaitre, A., Black, P.E.: NIST SAMATE: static analysis tool exposition
(sate) iv, March 2012. https://samate.nist.gov/SATE.html

Oyetoyan, T.D., Soares Cruzes, D., Jaatun, M.G.: An empirical study on the rela-
tionship between software security skills, usage and training needs in agile settings.
In: 2016 11th International Conference on Availability, Reliability and Security
(ARES), pp. 548-555. IEEE (2016)

Phillips, A., Sens, M., de Jonge, A., van Holsteijn, M.: The IT Managers Guide to
Continuous Delivery: Delivering Software in Days. BookBaby, Pennsauken (2014)
Rindell, K., Hyrynsalmi, S., Leppanen, V.: Case study of security development
in an agile environment: building identity management for a government agency.
In: 2016 11th International Conference on Availability, Reliability and Security
(ARES), pp. 556-563. IEEE (2016)

Smith, J., Johnson, B., Murphy-Hill, E., Chu, B., Lipford, H.R.: Questions devel-
opers ask while diagnosing potential security vulnerabilities with static analysis.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-
neering, pp. 248-259. ACM (2015)

Wagner, A., Sametinger, J.: Using the Juliet test suite to compare static security
scanners. In: 2014 11th International Conference on Security and Cryptography
(SECRYPT), pp. 1-9. IEEE (2014)

https://doi.org/10.1007/978-3-319-57633-6_13
https://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
https://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SATE.html

Myths and Facts About Static Application Security Testing Tools 103

25. Wayrynen, J., Bodén, M., Bostrém, G.: Security engineering and extreme pro-
gramming: an impossible marriage? In: Zannier, C., Erdogmus, H., Lindstrom, L.
(eds.) XP/Agile Universe 2004. LNCS, vol. 3134, pp. 117-128. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27777-4_12

26. Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J.P., Vouk, M.A.:
On the value of static analysis for fault detection in software. IEEE Trans. Softw.
Eng. 32(4), 240-253 (2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-27777-4_12
http://creativecommons.org/licenses/by/4.0/

	Myths and Facts About Static Application Security Testing Tools: An Action Research at Telenor Digital
	1 Introduction
	2 Background
	3 Case Study
	3.1 Evaluating Static Analysis Tools
	3.2 Performance Metrics
	3.3 Results of Tools' Evaluation
	3.4 Interview
	3.5 Practices and Demography
	3.6 Experience with Static Analysis Tools and Security
	3.7 Perceptions of the Developers About SAST Tools

	4 Discussions and Implications
	5 Limitations
	6 Conclusion
	References

