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Abstract. The recent proliferation of artificial intelligence research is reaching
a point where machines are able to learn and adapt to dynamically make decisions
independently or in collaboration with human team members. With such techno‐
logical advancements on the horizon, there will come a mandate to develop tech‐
niques to deploy effective human-agent teams. One key challenge to the devel‐
opment of effective teaming has been enabling a shared, dynamic understanding
of mission space, and a basic knowledge about the states and intents other team‐
mates. Bidirectional communication is an approach that fosters communication
between human and intelligent agents to improve mutual understanding and
enable effective task coordination. This session focuses on current research and
scientific gaps in three areas necessary to advance the field of bidirectional
communication between human and intelligent agent team members. First, intel‐
ligent agents must be capable of understanding the state and intent of the human
team member. Second, human team members must be capable of understanding
the capabilities and intent of the intelligent agent. Finally, in order for the entire
system to work, systems must effectively integrate information from and coordi‐
nate behaviors across all team members. The combination of these three areas
will enable future human-agent teams to develop a shared understanding of the
environment as well as a mutual understanding of each other, thereby enabling
truly collaborative human-agent teams.
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1 Introduction

Integration of advancing intelligent technologies on the battlefield will change the very
nature of the tasks Warfighters need to perform. This, in turn, will require the evolution
of different skill sets and capabilities, which will thus impact the precise needs for those
Warfighters. A research and development approach is needed that conceives of not only
the potential capabilities of these future intelligent technologies, but the potential for
completely novel interactions among heterogeneous teams of Warfighters and intelligent
agents, and reconceives approaches and requirements for training.
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Within these teams, the human is integral to decision-making, including adapting
requirements to dynamic events, and completion of the overall mission. As such, there
is a need to have the human-agent team perform as well as human-only teams but with
the potential to provide additional support for advanced mission directives. The benefits
of integrating intelligent agents into a human team include the potential for greater team
resilience with robust, adaptive performance; faster, dynamic human-agent teaming
(HAT) reconfiguration to match capabilities to mission requirements; faster, more
informed team decision making; and reduced numbers and risk to human team members.

Developing advanced intelligent technologies that are capable of functioning as a
natural teammate is a critical challenge for the research community. Research into
successful human teams has shown that performance outcomes are not simply a sum or
an average of the performance of the individuals. Instead, emergent properties are the
result of the interaction of the components of the team, which cannot be reduced to or
described wholly in terms of the individual elements of the system considered in isola‐
tion. Team performance often breaks down because of problems with emergent team
states and process such as insufficient communications, misunderstanding of team goals,
undefined team responsibilities or lack of shared mental models, and conflict [1, 2].

Moving from human-only teams, to mixed-agent teams composed of humans, intel‐
ligent software agents, embodied agents (e.g., robots), and networked sensors adds
complexity that may not be completely comprehended today; this especially in uncertain
informational environments with limited or unreliable communications. To develop
effective mixed agent teams, humans and agents must be allowed to work in disparate
dimensions (time, space, world views, representations, mental models, etc.), but also
capable of seamlessly synchronizing for collective action. For example, intelligent
agents will process information, reason, and make decisions at scales beyond that of
humans in both time and scope, and yet we will want to include humans in the decision-
making loop for many if not most battlefield decisions on account of their superior
abilities to adapt and develop abstract understandings in the face of novelty and uncer‐
tainty. This brings to light the open research question of how to capitalize on the indi‐
vidual advantages of both humans and agents, and simultaneously enhance the perform‐
ance of the collective group.

While this is largely an open question, part of the solution to these issues is to devel‐
oping methodologies to enable bidirectional communication between the human and
intelligent agents. Successful human teams often can communicate effectively, have
team members who possess knowledge of each other’s skills and capabilities that allow
them to anticipate each other’s actions, and can interpret and assess the environmental
constraints on the task at hand. Building a robust capability for resilient bidirectional
communication is believed to be an important approach to developing these same prop‐
erties in human-agent teams by facilitating increased mutual understanding between
human and intelligent agents. In this session, we discuss three broad challenge areas that
must be addressed to enable the development highly functioning human-agent teams.

Agents Understanding Humans. Intelligent agents must be provided with informa‐
tion necessary to develop an understanding of their human team members. This requires
leveraging wearable (and non-wearable) technologies to develop human assessment
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tools capable of generating high-resolution, real-time, predictions of an individual’s
internal and external behavioral and performance dynamics across a variety of environ‐
ments. The specific types of predictions necessary will depend on how that information
is to be used, the current task, and the current environment. Two uses of the information
are considered in the sections that follow.

Humans Understanding Agents. Humans must be capable of understanding the capa‐
bilities and intent of their intelligent agent teammates. This requires developing adaptive
interfaces for the intelligent agents that provide the human with the appropriate level of
detail regarding the intelligent agent decisions or behavior. These adaptive interfaces
will leverage human assessment tools described in the previous section to customize the
displays for the current state of a particular human. These displays must convey infor‐
mation about the intelligent agent behavior or decisions with consideration for issues
such as transparency, trust, and team situation awareness.

Joint Human-Agent Teamwork. Integration of intelligent agents and Warfighters
requires the capability to deliver appropriate information to both the human and intel‐
ligent agent at the appropriate time. This necessitates the need for developing integration
principles and approaches that dynamically accentuate the strengths of individual
humans and agents while mitigating relative weaknesses for improved performance.
This type of integration requires insight into the current and future states of each indi‐
vidual agent, which, for humans, should come from the human assessment tools
described in the Sect. 2.

2 Agents Understanding Humans

Human-agent team performance is not limited by computing power, but by the ability
for computer or embodied intelligent agents to understand humans. This is evidenced
by overwhelming majority of current systems that assume fixed, stereotyped human
input that is geared toward an “average” human. These systems assume that the quality
of human input, which is often presumed to be of low noise and high accuracy, will be
static over time and across individuals. We consider this to be a fundamentally flawed
assumption because of inter and intra-individual differences in humans and agents. To
account for human variability during HAT, continuous, real-time human assessment
technologies, which will combine human and environmental sensing technologies with
advanced analytics, will provide the foundational elements for future systems to generate
high-resolution, moment-to-moment, predictions of individual’s internal and external
behavioral and performance dynamics across training and operational environments.
Fundamentally, this capability will enable future systems to move from an approach of
mitigating the effects of human variability to one that embraces and predictively capi‐
talizes on that variability.

The US Department of Defense, Defense Science Board [3] report on autonomy
suggests that the future value of unmanned systems lies not in the direct replacement of
any one particular human operator, but rather in their contribution to overall human-
system collaboration (e.g., the capability to extend and complement human capability
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without degradation due to factors such as fatigue, stress, lack of attention, situation
awareness, amongst others). Further, calibrating inter-agent trust is considered essential
to this collaboration. Some identified critical gaps to developing trust in HAT include
the impact of human states (stress, fatigue, and attentional control), cognitive factors
(understanding of technology, ability to use or interact with technology and expectance),
and emotive factors (confidence, attitudes, satisfaction and comfort) on teaming with
respect to task-specific environmental factors including risk, uncertainty, task type,
context, and the physical environment [4]. While a number of current research efforts
are underway to better understand and quantify these critical gaps, continued research
will advance our understanding of the human performance during real-time, real-world
operations, as well as advance adaptive autonomy technologies leading to more
advanced, collaborative teaming.

Near and mid-term research will focus on leveraging sensing technologies to enable
high fidelity, omnipresent prediction of behaviors and intentions that can account for
continuous changes in an individual’s physical, cognitive, and social states (examples
from these three types of states include stress, workload, fatigue, task difficulty, trust,
and situation awareness). The goal is to enable the exploitation of the array of sensors
and information streams to predict human performance dynamics with sufficient reso‐
lution and robustness to adapt systems in manners to directly enhance performance.

The current state of the field has demonstrated unparalleled advancements in sensor
and analysis technologies that provide new insights into different facets of human
psychology, physiology, behavior, and performance. For example, advances in neuro‐
scientific tools have revealed novel discoveries on how differences in brain function
influence precise human behaviors [5, 6]. Advances in social and environmental sensing
tools and have provided unprecedented insights into patterns of gross human social
behaviors [7], while advances in biochemical or fluid sensing (i.e., blood, sweat, and
tears) are providing unique insights into the continuous dynamics of internal human
states and traits. More generally, advances in wearable devices have enabled the tracking
of a wide range of factors including activity, sleep patterns, and various physiological
parameters (see [8] for an overview).

Even with this broad explosion in sensing technologies, there is a lack of under‐
standing regarding the factors that influence variability in human performance, as well
as an inability to develop predictive algorithms that account for this variability. This has
prevented a similar explosion in human assessment technologies capable of providing
robust predictions regarding health and performance. As we develop a better under‐
standing of human variability, a combination of sensing, analytic, and enabling tech‐
nologies must be leveraged to assess and predict human states, behaviors, intentions,
and performance. This capability will provide the foundation for a broad range of indi‐
vidualized, adaptive technologies across a variety of domains. Understanding the human
team member in such detail can then be used to influence autonomy design. A sampling
of critical technologies include:

• Critical Sensing Technologies, including wearable and non-wearable sensors,
provide novel insights into the human and their local environment that could be
communicated to an intelligent agent. These types of sensors provide data regarding
intended behaviors, unintended behaviors, physiology, brain activity, subjective
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experiences, and social interactions; as well as task constraints and a wide range of
environmental and societal factors. These sensing technologies arise from fields
including quantified self; brain-computer interface; human augmentation; bioa‐
coustic sensing; electrovibration; speech recognition and translation; gamification;
wearable user interfaces; mobile health monitoring; gesture control; activity streams;
and pervasive computing. The sensors fall in the following general categories of on-
body sensing (e.g., watches, shirts, cell phones, glasses), off-body sensing (e.g.,
cameras, computers, fixed-placement), and their combinations for use in network-
based sensing (e.g., network interactions, team and organizational performance,
societal events).

• Critical Analytic Technologies merge and interpret data from a wide variety of
human, task, and environmental sources to communicate higher-level goals and
understanding of the mission space and human team members. These arise from
fields including: brain-computer interface, affective computing, prescriptive
analytics, natural-language response, big data, complex-event processing, content
analytics, location intelligence, social network dynamics, and predictive analytics.

• Critical Enabling Technologies provide an integration framework for consolidating
these data into a tractable repository for analysis by augmenting current network and
computational technologies. Examples of these technologies will rely upon wireless
local area networking, wireless bridge technologies, frequency domain equalization
optimization, cloud computing, and smart antennae. These types of technologies
provide fundamental solutions for collecting, storing and analyzing sensed data in
real-time, thereby enabling predictions of human state and performance to be
conveyed to intelligent agents.

3 Humans Understanding Agents

Intelligent technologies, such as embodied agents, are not yet operating as teammates
in the field. They are by and large either teleoperated or supervised tools that possess
insufficient shared understanding to independently adapt to the benefit of the team [9].
However research efforts are underway to advance intelligence architectures for inde‐
pendent and collaborative decision-making capabilities that can account for uncertain
and dynamic environments [10, 11]. As agents become more sophisticated and inde‐
pendent, it is critical for their human counterparts to understand their behaviors, the
reasoning process behind those behaviors, and the expected outcomes to properly cali‐
brate their trust in the systems and make appropriate decisions [12, 13]. This is essential
to the team effort because people will question the accuracy and effectiveness of agents’
actions if they have difficulty understanding the state or status of the agent [14–16] and
the reasoning behind specific actions or behaviors [17–19]. As such, if user expectations
do not match agent actions (even if the actions of the agent are optimal and appropriate
decisions), then trust can degrade to the degree in which the user will misuse or disuse
the agent [20, 21].

These limitations with how humans understand agents can be substantial impedi‐
ments to overall system, task, and team performance. To overcome these limitations,
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future systems will leverage detailed assessments of the human, as described in Sect. 2,
to dynamically adapt and tailor the interface to fit the informational needs dictated by
the precise teaming function or functions to be shared between the autonomous agent
and human. These adaptive interfaces will ensure that the human is given the information
needed at the appropriate time and in the appropriate scale and frame of reference to
maximize overall performance.

Recent research efforts examine the integration of spatial and temporal context into
artificial intelligence (AI) development. Semantic mapping is used to label objects in
the world in order to assign high-level information to decisions, such as those needed
for communicating decision related to path generation and mapping [22, 23]. Computer
vision [24, 25] and natural language [26] have been used to develop probabilistic models
that can provide an abstraction of the environment and better support intelligent agent-
to-human communication needs. Research into temporal context and AI has looked at
time perception in decision-making [27]. This work is important because it helps in the
development of shared situation awareness by enabling the capability of interpreting the
state or recognizing the current situation by observing the partial or entire state history
at any time.

This link between AI and the human’s understanding of the agent can directly influ‐
ence bidirectional communication needed for appropriate trust development through
what Lee and See [12] termed the 3 P’s: purpose, process, and performance. Purpose
deals with the degree to which the agent-driven automation is being used according to
the designer’s intent. Process deals with the question of whether the algorithm of the
automated system is appropriate for a given task. Performance deals with system relia‐
bility, predictability, and capability. Lee [28] proposed that to increase system trans‐
parency to the human team member, the system’s 3Ps, as well as the history of the 3Ps,
should be visible to the operator. However, the presentation should be in a simplified
form (e.g., integrated graphical displays) so the operator is not overwhelmed by the
additional information he/she needs to process [29–31]. From this basis, Chen et al. [18]
developed the Situation awareness-based Agent Transparency (SAT) model, which
identifies and organizes the information that an agent needs to share with the human
teammate to support their situation awareness, trust, and appropriate reliance upon the
agent. This effort demonstrates the potential for developing interfaces that dynamically
adapt to the state and needs of the team members (possibly quantified by wearable tech‐
nologies), the task at hand, and the situational context to provide necessary and sufficient
explanations to enhance team performance while simultaneously building and main‐
taining team cohesion.

As an extension to the transparency issue, trust in automation (TiA) has long been
considered central in influencing the way a human user interacts with an automation; if
TiA is too high there will be overuse, if TiA is too low there will be disuse [12]. TiA is
an important construct that undoubtedly affects human user interaction behaviors.
However the relationship between TiA and human behavior is complex and not currently
fully understood. Further, relevant to immediate real-world applications for improving
team performance, TiA measurement has most commonly leveraged subjective metrics
[32] occurring after an interaction, with only some more recent research efforts looking
at behavioral indicators and physiological markers of trust to map to potential real-time
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implications [13, 21, 33–35]. However, current research has suggested that transparent
communication of agent intent can support collaboration and in turn calibrate trust and
reliance on the system [36]. The specific criteria for this communication are still being
developed.

Further, from an engineering standpoint, it is not yet possible to define an objective
function based on TiA that would adequately define how control authority should shift
dynamically between operator and automation. By contrast, specific behaviors are
readily observed and measured in real time and do not have the confounding effect of
inferring psychological causality. Recent studies have shown that an operator’s decision
to toggle control between human and autonomy drivers may be predicted on the basis
of behavior, physiological, and environmental factors [37]. These predictions can inte‐
grated with dynamic estimates of performance to calibrate trust-based decisions [35].

As the future of human-agent interaction moves towards interdependent teaming
initiatives, developing efficient complex decision-making processes is an essential part
of the design and development of autonomous agents. The process by which agents make
decisions is still an open research question when operating in uncertain environments
with unknown data. Current research has demonstrated the importance and relevance to
why understanding agent decision-making processes is relevant to performance. It has
been shown that humans and intelligent-agents faced with the same circumstances will
not make the same decisions, even under the same set of apparent constraints, nor will
they necessarily have the same consequences resulting from those decisions. Perelman
and colleagues [38] found that when comparing human and algorithmic path planning,
there is more than one ‘human way’ of solving a planning problem which may or may
not match an algorithm. The potential mismatch of solutions, without explanation, could
result in significant degradation of team process. Human teammates may reduce their
interaction with or outright ignore intelligent agents regardless of how correct the solu‐
tions are which they provide.

4 Joint Human-Agent Teamwork

In order to develop effective mixed-agent teams, technologies for inferring motivations,
predicting behavior and reasoning about the environment must be incorporated into a
closed-loop system that can initiate individualized interventions to improve team
performance. In general, humans are able to adapt to the complexities and dynamics of
real-world operational environments to a degree unmatched by current forms of
autonomy. However, humans simply cannot process the full amount of information
available or understand the reasoning of complex, intelligent agents. Thus, we must
develop novel integration principles and approaches that leverage advanced sensing,
data processing, and dynamic inferential tools in a way that can enable us to accentuate
the strengths of individual humans and agents while mitigating relative weaknesses for
improved decision making.

It has long been understood that, though automation can execute predictable, well-
defined procedures with superior speed and reliability, humans are far superior at tasks
that require inductive reasoning and adaptation to novel or changing information [39–
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41]. As a result, system integrators have developed a wide range of approaches to
supplement intelligent agent autonomy with human inputs to increase resilient and
robust performance within complex, dynamic, and uncertain environments. Yet most
systems-level, human-centric design approaches have treated the human as most appro‐
priately positioned at the peak of the command hierarchy (c.f. [42–45]) rather than as a
fully collaborative teammate [46]. That is, while these approaches have not always
required the user to give continuous control or decision inputs and corrective feedback,
when the human input has been available, it has usually been integrated as the de facto
correct solution, which is not always true. Treating the human as the ultimate and final
authority is a premise based on either an explicit mandate [42] or on an assumption that
human influence would guarantee optimal behavior in situations where an automated
agent is uncertain or otherwise compromised.

An ethical debate has emerged as to whether or not a person should retain overarching
decision-making authority and perhaps more importantly, accountability [47]. Are there
times that an intelligent-agent should make the decision rather than the user? We do not
see the answer to this question as black-and-white. Variables such as context and limi‐
tations associated with the intelligent-agent’s ability to physically detect and make sense
of the environment, as well as to infer the intent of the human teammate, will critically
impact whether a response is appropriate or inappropriate. Human intervention may be
appropriate in one condition and inappropriate in another. We acknowledge the complex
and sometimes emotional aspects of this debate. This transfer process is difficult to
manage and requires balancing control allocation within the team structure while main‐
taining team commitments and supporting large-scale interactions with multiple agents.
Reengagement for a person can sometimes be difficult and may impact safety and
mission effectiveness due to a user’s situation awareness, workload, and abilities. We
join those who have argued that adherence to this premise has limited how well human
inputs have been integrated with autonomous systems [46, 48, 49].

There has been considerable research into mitigating the potential impact of human
variability and performance failures on HAI systems. Unfortunately, the majority of
these approaches have only succeeded in limited and controlled contexts, and have not
been widely adopted for real-world use. We argue that this is due, at least in part, to
adherence to the axiomatic premise that the human should be the ultimate and final
authority; with failure to fully account for the dynamic strengths and vulnerabilities of
the human team member being a critical design outcome of this belief.

Recent efforts have proposed the Privileged Sensing Framework (PSF), an evolved
approach that treats the human as a special class of sensor rather than as the absolute
command arbiter [50]. This approach is based on the concept of appropriately ‘privi‐
leging’ information during the process of integrating information from human and
autonomy team members by bestowing advantages, special rights, or immunities based
on the characteristics of each individual agent (on the basis of data from wearable and
non-wearable sensors), the task context, and/or the performance goals. Indeed, treating
the human as a privileged sensor deviates from the established central axiom of human-
centered automation [51]. However, we view this departure as an important evolutionary
step beyond substitution-based function allocation methods [52] and in alignment with
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notions of human-automation interactions that capture a more authentic essence of
natural teaming behavior [46, 53, 54].

5 Session Details

Focusing efforts on developing bidirectional communication as a critical capability may
be an essential approach to human-agent teaming that seeks to develop common ground
and shared understanding between human and intelligent agent team members. In this
session, we discuss current research and gaps within three focus areas. First, intelligent
agents must be capable of understanding the state and intent of the human team member.
This area of research is largely focused on sensing the human and providing the intel‐
ligent agents with information related to estimated state and expected performance of
that human team member. Second, human team members must be capable of under‐
standing the intelligent agent. This area of research is focused on conveying information
about the intelligent agent back to the human team member in a manner most appropriate
to that human team member at a given point in time. This means, that many of these
approaches will involve adapting the information conveyed to the human based on the
information the agent has about that team members current state. Finally, in order for
the entire system to work, we must develop closed loop solutions to effectively integrate
information from and coordinate behaviors across human and intelligent agent team
members. This area of research focuses on developing integration principles and
approaches that accentuate the strengths of individual humans and agents while miti‐
gating relative weaknesses for improved team performance. Within this session, we have
three talks that cover a subset of these areas.

5.1 A Maximum Likelihood Method for Estimating Performance

Jonroy Canady and colleagues provide an example of estimating human decisions that
may be used to improve human agent teaming within the context of a joint human-agent
target identification paradigm [55]. In this work, they present a method for creating
unbiased and accurate estimates of human target-detection performance that could be
used to better integrate the human decisions with those of the autonomous agents. This
study provides an example of how information sensed from human responses can be
conveyed to an intelligent agent. Within the bidirectional communication framework,
an intelligent agent teammate would then leverage that information to adapt their
behavior in a manner that improves overall system performance.

5.2 Quantifying Human Decision-Making

Kristin Schaefer and colleagues address the importance of human spatial decision-
making as it applies to the development of appropriate human-agent team communica‐
tion [56]. In this work, they aim to quantifying human spatial decision-making because
if human behavior does not match the robots’ models or expectations, there can be a
degradation in trust that can impede team performance. Degradation in trust may only
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be mitigated through explicit communication which are needed to develop common
ground and a shared understanding. To reach this end, this study identifies divergence
in planning and action times and behaviors as well as detects differences in local versus
global decision-making processes needed to predict complex decisions within the
confines of increasing environmental complexity and amount of prior knowledge about
the task. It supports agents understanding humans in that findings from quantifying
human spatial decision-making can advance the technical capabilities of a robot to more
accurately perceive and interpret human team member behavior. The next step in the
research will support humans understanding agents as these findings are compared to
robot solutions. Where disparities exist between the resultant robot and human behav‐
iors, bidirectional communication can be used as a means to achieve an optimal solution
collaboratively.

5.3 The Role of Psychophysiological Measures Within Mixed-Initiative Teams

Kim Drnec and colleagues extend their previous work on characterizing behavioral,
physiological and task-based factors that influence trust-in-autonomy by examining the
efficacy of a real-time system that uses a combination of behavioral and psychophysio‐
logical data from a human driver to foster more appropriate use of autonomous driver
assist technologies [57]. This study provides an example of a system using bidirectional
communication between human and intelligent agent to improve overall performance.
The system uses information from wearable sensors about behavior, and physiology and
combines that with environmental and task based factors to predict human intent to
toggle control (Agent Understanding Warfighter). The system then uses that information
about the human driver to provide customized feedback to assist the driver in making
an appropriate decision regarding whether or not to toggle driving control (Warfighter
Understanding Agent). The overall system also shows a simple case of using bidirec‐
tional communication to share information between a human and intelligent agent to
maximize performance.
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