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Abstract. Cardinality constraints express bounds on the number of
data patterns that occur in application domains. They improve the con-
sistency dimension of data quality by enforcing these bounds within
database systems. Much research has examined the semantics of integrity
constraints over incomplete relations in which null markers can occur.
Unfortunately, relying on some fixed interpretation of null markers leads
frequently to doubtful results. We introduce the class of embedded car-
dinality constraints which hold on incomplete relations independently of
how null marker occurrences are interpreted. Two major technical con-
tributions are made as well. Firstly, we establish an axiomatic and an
algorithmic characterization of the implication problem associated with
embedded cardinality constraints. This enables humans and computers
to reason efficiently about such business rules. Secondly, we exemplify
the occurrence of embedded cardinality constraints in real-world bench-
mark data sets both qualitatively and quantitatively. That is, we show
how frequently they occur, and exemplify their semantics.
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1 Introduction

Background. Cardinality constraints enforce bounds on the number of data
patterns that occur in application domains. Cardinality constraints were intro-
duced in Chen’s seminal ER paper [3], and have attracted interest and tool sup-
port ever since. A cardinality constraint card(X) ≤ b stipulates for an attribute
set X and a positive integer b that a relation must not contain more than b
different tuples with matching values on all the attributes in X. For example,
a social worker may not handle more than five cases at any time. This expres-
siveness makes cardinality constraints invaluable in applications such as data
integration, modeling, and processing [16].

Motivation. Most applications require the efficient handling of missing infor-
mation. This is particularly true in the big data era where large quantities of
data (volume) are integrated from heterogenous sources (variety) with different
granularity of completeness (veracity). As such, a major challenge in accommo-
dating missing information in the semantics of classical integrity constraints is
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Table 1. Snippet of the NCVoter data set

id v id f name l name gender address city phone register date

t0 480 doris thompson f hwy 119 mebane 5783747 11/05/1940

t1 612 odessa teer f hwy 119 mebane ⊥ 5/09/1940

t2 622 dallie boswell f hwy 119 mebane ⊥ 5/09/1940

t3 972 john smith m hwy 119 mebane ⊥ 10/26/1940

t4 433 louise buckner f 231 s marshall st graham 2269183 5/04/1940

t5 577 ruth albright f 231 s marshall st graham 2266060 5/08/1940

the interpretation of null marker occurrences. Indeed, null markers are frequently
introduced to integrate data from heterogenous structures in a relation. Previ-
ous research has addressed the extension of integrity constraints to incomplete
data by uniformly applying one of many possible interpretations to all occur-
rences of null markers in a relation. As not all null marker occurrences can be
interpreted uniformly, in particular in integrated data sets, the results that are
derived from such research have only limited applicability. Here, we take a new
approach in which the semantics of a cardinality constraint is only dependent on
complete fragments that are embedded in a given incomplete relation. Since the
definition of our constraints is independent of the interpretation of null markers,
they provide a robust approach to describing the semantics of big data, which
is fundamental to how such data is processed. We call this new class embed-
ded cardinality constraints (eCCs). They consist of a set E of attributes and an
ordinary cardinality constraint card(X) ≤ b with X ⊆ E. The set E specifies
the scope rE of an input relation r on which card(X) ≤ b must hold. As such,
card(X) ≤ b is embedded in rE . In examples we commonly write E − X instead
of E to emphasize on which additional attributes tuples of the scope must be
complete. Embedded cardinality constraints provide users with the ability to
separate their requirements for the completeness and uniqueness dimensions of
data quality. Users specify the set E to declare their completeness requirements,
and the cardinality constraint card(X) ≤ b with X ⊆ E to declare their unique-
ness requirements. As with any constraint, the main target is to improve the
consistency of data by enforcing business rules within the database system.

Examples. As an illustration of embedded cardinality constraints we look at
the data snippet in Table 1, which is taken from the real-world data set ncvoter1.

An interesting question concerns the number of voters that can live at the
same location (address and city). The snippet, and in fact ncvoter as a whole,
satisfies the embedded cardinality constraint (∅, card({address, city}) ≤ 4), since
there are at most four different voters that live at the same location and for which
address and city have no missing information. However, for marketing campaigns
we may only be interested in how many voters can live at the same location that
we can reach by telephone, so we are interested in the smallest bound b such that
1 https://hpi.de/fileadmin/user upload/fachgebiete/naumann/projekte/

repeatability/DataProfiling/FD Datasets/ncvoter 1001r 19c.csv.

https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/repeatability/DataProfiling/FD_Datasets/ncvoter_1001r_19c.csv
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/repeatability/DataProfiling/FD_Datasets/ncvoter_1001r_19c.csv
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({phone}, card({address, city}) ≤ b) holds. For the actual ncvoter data set, and
therefore for the snippet, this bound is 2, as witnessed by {t4, t5}. Actually, the
same tuple block is a showcase that ({phone}, card({address, city, gender}) ≤ 2)
holds. That is, there are up to two voters of the same gender who live at the
same location and have a phone number. In contrast, the ordinary cardinality
constraint (∅, card({address, city, gender}) ≤ 3) says that up to three voters of
the same gender live at the same location, for which {t0, t1, t2} is a witness.

Contributions. Our contributions can be summarized as follows:

Modeling: We introduce embedded cardinality constraints which hold indepen-
dently of the interpretation of null marker occurrences in incomplete relations.
They subsume previously studied classes of cardinality constraints.

Reasoning: We show that reasoning about embedded cardinality constraints can
be done efficiently. Indeed, we characterise the associated implication problem
by a finite ground axiomatization and by a linear-time algorithm. Consequently,
the gain in expressivity over other classes of constraints does not sacrifice good
computational properties. We illustrate how efficient reasoning helps minimise
the costs for processing updates, speeds up query evaluation, and prunes the
search space when computing the constraints that hold on an incomplete relation.

Case Studies: We illustrate the occurrence of embedded cardinality constraints
in actual data sets, previously used as benchmarks for data profiling algorithms.
Qualitatively, we present showcases for what embedded cardinality constraints
can express in the real world and also provide insight into the lattice structures
that these constraints exhibit. Quantitatively, we have implemented a simple
heuristics to discover embedded cardinality constraints from an incomplete rela-
tion. The heuristics is sound but not complete, so it does not find all embedded
cardinality constraints that hold, but those it does find do hold and are minimal.
Details of the heuristics are out of scope, but its main purpose is to illustrate
that embedded cardinality constraints occur frequently, and that the separation
of completeness requirements from uniqueness requirements generates substan-
tial additional patterns that are exhibited by data sets.

Organization. We discuss related work in Sect. 2. Embedded cardinality con-
straints are introduced in Sect. 3. Some real-world examples and their underlying
structure are presented in Sect. 4. Computational problems and their applica-
tions are characterized in Sects. 5 and 6. A quantitative analysis of embedded
cardinality constraints is presented in Sect. 7. We conclude and mention future
work in Sect. 8.

2 Related Work

We demonstrate in this section how embedded cardinality constraints are differ-
ent from previous work.

Cardinality constraints are an influential contribution of data modeling [16].
They were already present in Chen’s seminal paper [3], and are now part of
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all major languages for data modeling, including UML, EER, ORM, XSD, and
OWL. Cardinality constraints have been extensively studied [2,4,6–13,15]. Since
the primary goal of cardinality constraints is to improve consistency, they need
to be enforced on actual data sets. Real-world data often exhibits incompleteness
in the form of null marker occurrences. This has necessitated the study of (cardi-
nality) constraints over incomplete relations. According to our best knowledge,
we only know of the approach that ignores tuples with any null marker occur-
rence on any column over which an integer bound is specified [8]. This approach,
however, is covered by embedded cardinality constraints (E, card(X) ≤ b) as
the special case where E = X. Hence, embedded cardinality constraints handle
completeness requirements by specifying E, and they handle uniqueness require-
ments by stipulating card(X) ≤ b where X ⊆ E. The previous approach, that
is when E = X, can only handle both requirements at the same time. Another
special case occurs when X = ∅: here, b stipulates how many tuples in the given
relation have no null marker occurrences on any of the columns in E. Further-
more, embedded cardinality constraints also subsume the recently introduced
class of contextual keys [17] as the special case where b = 1. Embedded car-
dinality constraints are therefore considerably more expressive than previously
studied classes of cardinality constraints. We also exemplify in this article to
which degree they occur more frequently in the real-world data than contextual
keys. Despite the gain in expressivity, we show that axiomatic and algorithmic
reasoning about embedded cardinality constraints is not much more involved
than that for contextual keys. More precisely, we can establish a finite ground
axiomatization and a linear time algorithm to decide the implication problem
for embedded cardinality constraints. These subsume those established recently
for contextual keys as the special case where b = 1 for each given embedded car-
dinality constraint. Recently, cardinality constraints have also been investigated
for uncertain data models, including possibilistic models [5] and probabilistic
models [14]. These are orthogonal directions of research about cardinality con-
straints, but possibilistic and probabilistic embedded cardinality constraints can
be investigated in future work.

3 Embedded Cardinality Constraints

We fix concepts from relational databases and introduce the central notion of
embedded cardinality constraints.

A relation schema is a finite set R of attributes A. Each attribute A is asso-
ciated with a domain dom(A) of values. Based on the demand in traditional and
modern applications, data models need to accommodate missing information. In
order to represent the standard approach adapted by relational database tech-
nology, we assume that the domain dom(A) of every attribute A contains the
distinguished symbol ⊥, representing the null marker. We stress that the null
marker is not a domain value, and is only included in the domain of attributes for
convenience and ease of discussion. A tuple t over R is a function that assigns to
each attribute A of R an element t(A) from the domain dom(A). For an attribute
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set X, a tuple t is said to be X-total whenever t(A) �=⊥ for all A ∈ X. A relation
over R is a finite set of tuples over R. An expression card(X) ≤ b with some
subset X ⊆ R and a positive integer b ∈ N is called a cardinality constraint over
R. A cardinality constraint card(X) ≤ b over R is said to hold in a relation r of
R, denoted by r |= card(X) ≤ b, if and only if there are not b+1 different tuples
t1, · · · , tb+1 ∈ r such that for all 1 ≤ i < j ≤ b + 1, ti �= tj and for all A ∈ X,
ti(A) = tj(A) �= ⊥.

Note that this simple model is already expressive enough to address at least
three dimensions of big data: volume is represented by the numbers of columns
and rows in a relation, veracity is represented by null marker occurrences in
relations, and variety is represented by the ability to integrate information from
different sources and of different structure by putting domain values into columns
where they are known for and null marker occurrences where they are not.

A critical issue in extending integrity constraints to data models with incom-
plete information is the way in which null marker occurrences are handled. One
popular approach is to assign a particular semantics to the occurrences, such
as ‘value exists but is currently unknown’ or ‘value does not exist’ or ‘no infor-
mation’. In practice, that is in SQL, there is no room to associate different
interpretations with different occurrences: Only one universal interpretation is
assigned to every occurrence. With this limitation it is difficult to obtain mean-
ingful results when the data is used. This is particularly true for applications
that employ integrated data where some occurrences of null markers are bound
to have different interpretation. Nevertheless, a plethora of research has been
conducted in this area, resulting in different notions of constraints. In contrast,
this article follows a complementary approach in which constraints are evaluated
independently of any null marker occurrences. That is, the satisfaction of the
cardinality constraints is only dependent on the complete fragments in incom-
plete relations. This has the strong advantage that the results obtained from any
use of the constraints are robust under varying interpretations of null marker
occurrences. With this motivation in mind, we will now introduce the central
notion of embedded cardinality constraints.

Definition 1. An embedded cardinality constraint ( eCC) over relation schema
R is an expression (E, card(X) ≤ b) where X ⊆ E ⊆ R and b ∈ N. We call E the
extension and card(X) ≤ b the cardinality constraint associated with the eCC.
For a relation r over R, the extension E defines the scope rE of the eCC as
rE = {t ∈ r | t is E − total}. The eCC (E, card(X) ≤ b) over R is satisfied by,
or said to hold in, the relation r over R if and only if the scope rE satisfies the
cardinality constraint card(X) ≤ b associated with the eCC.

We sometimes simply write (E−X, card(X) ≤ b) instead of (E, card(X) ≤ b)
in order to save space or emphasize the (non-)existence of additional attributes in
the extension. The introduction has already presented several real-world exam-
ples of embedded cardinality constraints. The following section provides further
insight into the expressivity of this new class of constraints.
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4 Real-World Examples with Embedded Lattice View

We illustrate the business rules that embedded cardinality constraints can
express, and illustrate the inherent structure that these constraints exhibit. The
latter can be exploited as a navigational aid that assists users in understanding,
representing and browsing cardinality profiles of their data. As an interesting
special case, we present completeness cubes as a navigational aid that users can
employ as a model of how many tuples are complete on a given set of attributes.
We use the public data set bridges as a running example.

The Pittsburgh bridge data set, bridges, is a popular reference data set on
the UCI machine learning repository2. It provides some basic information about
108 different bridges in Pittsburgh. Table 2 shows 14 tuples from the full data
set where some columns were removed to focus on the attributes that matter for
the embedded cardinality constraints we would like to discuss.

For example, we may want to know the maximum number of bridges that lead
over the same river, were built for the same purpose, and are of the same type.
Indeed, 14 is the answer, which is the smallest upper bound b with which the
eCC (∅, card({river, purpose, type}) ≤ b) is satisfied by bridges. We may wonder
for how many of those the length and the number of lanes are both known. The
relevant eCC would be ({length, lanes}, card({river, purpose, type}) ≤ 8).

For ordinary cardinality constraints the integer bounds are non-increasing
with an increasing number of attributes, as illustrated on the left of Fig. 1. For
eCCs, additional attributes in the extension E generate an embedded lattice

Table 2. Snippet of the bridges data set

id river loccation erected purpose length lanes rel-l type

E17 M 4 1863 RR 1000 2 ⊥ SIMPLE-T

E21 M 16 1874 RR ⊥ 2 ⊥ SIMPLE-T

E25 M 10 1882 RR ⊥ 2 ⊥ SIMPLE-T

E26 M 12 1883 RR 1150 2 S SIMPLE-T

E31 M 8 1887 RR 1161 2 S SIMPLE-T

E37 M 18 1891 RR 1350 2 S SIMPLE-T

E45 M 14 1897 RR 2264 ⊥ F SIMPLE-T

E47 M 15 1898 RR 2000 2 S SIMPLE-T

E94 M 13 1901 RR ⊥ 2 F SIMPLE-T

E95 M 16 1903 RR 1300 2 S SIMPLE-T

E51 M 6 1903 RR 1417 2 F SIMPLE-T

E50 M 21 1903 RR 1154 ⊥ F SIMPLE-T

E89 M 4 1904 RR 1200 2 S-F SIMPLE-T

E92 M 10 1914 RR 2210 ⊥ F SIMPLE-T

2 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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Fig. 1. Embedded lattice of extensions for each ordinary cardinality constraint

structure, for each fixed set X of attributes. Indeed, if E increases, the cor-
responding bounds cannot increase. This is illustrated on the right of Fig. 1.
Table 2 contains those tuples that generate all the integer bounds marked red in
the right of Fig. 1.

An interesting special case of these lattices are given by eCCs of the type
(E, card(∅) ≤ b). These stipulate upper bounds on the numbers of tuples that
are E-total. Figure 2 shows these bounds for the data set bridges, based on all
combinations of the four attributes length, lanes, span, and rel-l. For example,
there are 90 tuples that are total on span and rel-l.

Fig. 2. Lattice of cardinality constraints for completeness dimensions
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5 Axiomatic Characterization of the Implication Problem

We establish a finite ground axiomatization for the implication problem of
embedded cardinality constraints. This will enable us to effectively enumerate
all implied eCCs, that is, to determine the semantic closure Σ∗ = {σ | Σ |= σ} of
any given eCC set Σ. A finite axiomatization facilitates human understanding of
the interaction of the given constraints, and ensures all opportunities for the use
of these constraints in applications can be exploited. We comment on a couple
of direct application areas for the axiomatization.

In using an axiomatization we determine the semantic closure by applying

inference rules of the form
premise

conclusion
. Since no conditions are stipulated for

the application of these inference rules, the resulting axiomatization is called
a ground axiomatization. For a set R of inference rules let Σ �R ϕ denote the
inference of ϕ from Σ by R. That is, there is some sequence σ1, . . . , σn such that
σn = ϕ and every σi is an element of Σ or is the conclusion that results from
an application of an inference rule in R to some premises in {σ1, . . . , σi−1}. Let
Σ+

R = {ϕ | Σ �R ϕ} be the syntactic closure of Σ under inferences by R. R is
sound (complete) if for every set Σ over every R we have Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R).

The (finite) set R is a (finite) axiomatization if R is both sound and complete.
Table 3 shows the axiomatization C for eCCs that we will prove to be sound
and complete. Here, R denotes an arbitrarily given underlying relation schema,
E,E′,X,X ′ ⊆ R, and b, b′ are positive integers.

Theorem 1. The set C = {B, E ,S, T } is sound and complete for the implication
problem of embedded cardinality constraints.

We note that the rules

card(R) ≤ 1
card(X) ≤ b

card(XX ′) ≤ b

card(X) ≤ b

card(X) ≤ b′

are sound and complete for the implication of ordinary cardinality constraints
[7,8], and are embedded in our inference rules T , S, and B.

Table 3. The finite ground axiomatization C = {B, E , S, T } of eCCs

(R, card(R) ≤ 1)
(E, card(X) ≤ b)

(EE′, card(X) ≤ b)
(trivially embedded keys, T ) (super extension, E)

(E, card(X) ≤ b)
(E, card(XX ′) ≤ b)

(E, card(X) ≤ b)
(E, card(X) ≤ b+ b′)

(super set, S) (weaker bound, B)
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Proofs of Soundness and Completeness. Let Σ ∪ {ϕ} denote a set of eCCs over
a given relation schema R.

Soundness. We need to show that every eCC ϕ that can be inferred from a
given eCC set Σ by C is also implied by Σ. Let r denote a relation of the given
relation schema R. It suffices to show the following for every inference rule in C:
If the premise of the rule is satisfied by r, then the conclusion of the rule is also
satisfied by r.

For the soundness of T we observe that the scope rR contains all tuples of r
that are complete on all attributes of R. Since rR is a set, rR is also a set and,
consequently, there cannot be two different tuples that have matching values on
all the attributes of R. Hence, rR satisfies card(R) ≤ 1.

For the soundness of E we assume that r |= (E, card(X) ≤ b). By definition,
rE |= card(X) ≤ b. Consequently, there cannot be b+1 different tuples in rE that
all have matching values on all the attributes in X. For every subset E′ ⊆ R,
rEE′

is a subset of rE . Consequently, there cannot be b + 1 different tuples in
rEE′

that all have matching values on all the attributes in X. It follows that
rEE′

satisfies card(X) ≤ b. By definition, r satisfies (EE′, card(X) ≤ b).
For the soundness of S we assume that r satisfies (E, card(X) ≤ b). By

definition, rE satisfies card(X) ≤ b. Consequently, there cannot be b+1 different
tuples in rE that all have matching values on all the attributes in X. For every
subset X ′ ⊆ R, X is a subset of XX ′. Consequently, there cannot be b + 1
different tuples in rE that all have matching values on all the attributes in XX ′.
Indeed, otherwise there would have to be b + 1 different tuples in rE that all
have matching values on all the attributes in X. It follows that rE satisfies
card(XX ′) ≤ b. By definition, r satisfies (E, card(XX ′) ≤ b).

For the soundness of B we assume that r satisfies (E, card(X) ≤ b). By
definition, rE satisfies card(X) ≤ b. Consequently, there cannot be b+1 different
tuples in rE that all have matching values on all the attributes in X. For every
non-negative integer b′, b is at most b+b′. Consequently, there cannot be (bb′)+1
different tuples in rE that all have matching values on all the attributes in X.
Indeed, otherwise there would already be b + 1 different tuples in rE that all
have matching values on all the attributes in X. It follows that rE satisfies
card(X) ≤ b + b′. By definition, r satisfies (E, card(X) ≤ b + b′).

Completeness. We need to show that every ϕ that is implied by Σ can also be
inferred from Σ by the use of inference rules in C only. We show the contrapo-
sition, that is, we assume that ϕ cannot be inferred from Σ by C and construct
a relation over R that satisfies Σ but violates ϕ. Let ϕ = (E, card(X) ≤ b) such
that Σ �C ϕ does not hold. We define a relation r over R that consists of b + 1
different tuples as follows: For R − E = {A0, . . . , An−1} and j = 0, . . . , b, tuple

tj(A) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, if A ∈ X
j, if A ∈ E − X
j, if A = Aj

⊥, if A ∈ R − (E ∪ {Aj})

. The relation r may look as follows:
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E − X X R − E
0 · · · 0 0 · · · 0 0 ⊥ ⊥ ⊥ · · · ⊥ ⊥
1 · · · 1 0 · · · 0 ⊥ 1 ⊥ ⊥ · · · ⊥ ⊥

...
...

...
b · · · b 0 · · · 0 ⊥ · · · ⊥ b ⊥ · · · ⊥

The relation is well-defined, that is, contains b+1 different tuples for the following
reason. If R − E = ∅ and E − X = ∅, then ϕ = (R, card(R) ≤ b). However,
(R, card(R) ≤ 1) ∈ Σ+

C by application of T , and this would lead to ϕ ∈ Σ+
C by

application of B. Hence, R − E �= ∅ or E − X �= ∅, and |r| = b + 1.
The relation does not satisfy ϕ since rE = r and r contains b + 1 different

tuples with matching values on all the attributes in X.
It remains to show that r satisfies every σ = (E′, card(X ′) ≤ b′) ∈ Σ. Assume

that r violates σ. Then E′ ⊆ E (as otherwise |rE′ | ≤ 1 and r would satisfy
(E′, card(X ′) ≤ 1) and by soundness of B also σ), X ′ ⊆ X (as otherwise all
tuples would have different projections on X, so r would satisfy (E′, card(X ′) ≤
1) and by soundness of B also σ), and b′ ≤ b (as otherwise there couldn’t be
b′ + 1 tuples to violate σ). Consequently, we can apply E , S, and B to σ =
(E′, card(X ′) ≤ b′) ∈ Σ to obtain (E, card(X) ≤ b) ∈ Σ+

C , a contradiction.
Consequently, our assumption that r violates σ must have been wrong. Since σ
was chosen arbitrarily we have just shown that r satisfies all elements of Σ and
violates ϕ. We conclude that ϕ is not implied by Σ.

Applications. While axiomatizations facilitate human understanding of how to
reason, there are also a number of more tangible applications. This is not sur-
prising, as axiomatizations are usually taken as the first step towards developing
automated reasoning tools. Indeed, axiomatizations are commonly employed to
develop algorithms that can decide associated implication problems. This, in
turn, has numerous applications. The next section deals directly with the devel-
opment of algorithmic characterizations of the implication problem for eCCs.

Algorithms can decide instances of implication problems efficiently, but they
simply return either true or false. People often wonder how an algorithm derived
at a particular decision. Here, axiomatizations can provide additional insight.
If the answer yes, then a derivation of the candidate constraint from the given
constraint set must exist. More intriguingly, if the answer is no, our completeness
proof is guaranteed to provide users with an example relation that shows why the
candidate constraint is not implied by the given constraint set. The completeness
proof can be converted into a tool that constructs such an example relation
automatically, whenever the decision algorithm returns false.

As a second application we mention the discovery problem (aka dependency
mining or data profiling), in which an algorithm ought to return all those con-
straints from a given class that hold in a given relation [1]. Quite frequently,
the search and solution spaces are massive, which makes it necessary to derive
effective pruning strategies that decrease the search space and allow solutions to
the discovery problem to be returned efficiently. Here, sound inference rules can
directly be translated into pruning strategies. In fact, if an eCC (E, card(X) ≤ b)
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Algorithm 1. Inference
Require: R, Σ, (E, card(X)) with a set Σ of embedded cardinality constraints
Ensure: min{b : Σ |= (E, card(X) ≤ b)}
1: if E = R and X = R then
2: return 1;
3: else
4: b ← ∞;
5: for all (E′, card(X ′) ≤ b′) ∈ Σ do
6: if E′ ⊆ E and X ′ ⊆ X and b′ < b then
7: b ← b′;
8: return b;

has been validated to hold on the input relation, then every check of any eCC
(E′, card(X ′) ≤ b′) where E ⊆ E′, X ⊆ X ′, and b ≤ b′ hold is redundant and
should be omitted. Having a complete axiomatization ensures that all pruning
strategies are known.

6 Algorithmic Characterization

In this section we develop algorithmic tools that decide the implication problem
for embedded cardinality constraints in linear time in the input. As outlined
before, this complements our axiomatization established in the last section.

Indeed, computing Σ∗ and checking whether ϕ ∈ Σ∗ is not an efficient app-
roach towards deciding the implication problem. The following theorem allows
us to decide the implication problem for embedded cardinality constraints with
a single scan of the input. Note that the proof employs the construction from
the completeness proof of our axiomatization.

Theorem 2. Let Σ ∪ {(E, card(X) ≤ b)} denote a set of eCCs over R. Then
Σ implies (E, card(X) ≤ b) iff (i) E = R and X = E or (ii) there is some
(E′, card(X ′) ≤ b′) ∈ Σ such that E′ ⊆ E, X ′ ⊆ X, and b′ ≤ b hold.

Proof. If (i) or (ii) hold, then (E, card(X) ≤ b) can be inferred from Σ by C.
Consequently, the soundness of C ensures that (E, card(X) ≤ b) is implied by Σ.

Vice versa, assume that neither (i) nor (ii) hold. Invalidity of (i) ensures that
R − E �= ∅ or E − X �= ∅ holds. This guarantees that the relation r from the
completeness proof has b + 1 different tuples. Invalidity of (ii) ensures that r
satisfies Σ. Since the relation also violates (E, card(X) ≤ b) by construction, it
follows that Σ does not imply (E, card(X) ≤ b).

Instead of translating Theorem 2 directly into a decision algorithm, we prefer
to establish a linear-time algorithm for the more general computational problem
that computes for a given set Σ of eCCs over a given relation schema R, and a
given attribute set pair (E,X) with X ⊆ E ⊆ R the minimum positive integer b
(or b = ∞ if no integer exists) such that (E, card(X) ≤ b) is still implied by Σ.
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Algorithm 1 computes this supremum b as follows: if E = X = R, then b = 1
is returned according to axiom T of our axiomatization C. Otherwise, all input
eCCs from Σ are scanned and the current supremum b is revised to b′ whenever
an eCC is found whose extension E′, attribute set X ′, and bound b′ satisfy
E′ ⊆ E, X ′ ⊆ X, and b′ < b. This is valid due to the remaining inference rules
in C. If no appropriate input eCC is found, then ∞ is returned. The total number
of attributes that occur in Σ and R are denoted by |Σ| and |R|, respectively.

Theorem 3. On input (R,Σ, (E, card(X))), Algorithm1 returns in O(|Σ|+|R|)
time the supremum b with which (E, card(X) ≤ b) is implied by Σ.

Proof. The correctness of Algorithm 1 follows directly from Theorem 2. For the
time complexity, we only require one scan over all input attributes in Σ plus the
input attributes in (E,X). The latter could be provided in the format (E−X,X)
ensuring that every attribute in R only occurs once.

Algorithm 1 can directly be used to decide the implication problem of eCCs.
Indeed, given an eCC set Σ ∪ {(E, card(X) ≤ b)} over relation schema R, such
a decision algorithm will return yes if and only if b ≥ b′ where b′ is returned by
Algorithm 1 on input (R,Σ, (E, card(X))).

Corollary 1. The implication problem of embedded cardinality constraints can
be decided in time linear in the input. �

Applications. Our algorithm has direct applications in saving update and query
costs. When updating a data set, we need to ensure that the resulting data set
satisfies all the eCCs that have been established as meaningful business rules of
the underlying application domain. Validating the satisfaction of any business
rule that is implied by the remaining rules is a waste of time. Being able to detect
implied rules enables us to minimal set of business rules in which none is implied
by the rest, thereby ensuring a minimal overhead in maintaining the consistency
of data sets under updates. For example, if we have already validated that a data
set satisfies σ = ({phone}, card(address, city) ≤ 2), then there is no need to vali-
date that it satisfies σ′ = ({phone, register date}, card(address, city, gender) ≤ 3).
When querying ncvoter one may ask to return the voter-id of all voters who live
at locations where no more than 3 voters of the same gender live for whom phone
numbers and registration dates are known. Being aware that ncvoter satisfies the
eCC σ and deciding that σ implies σ′, the original query can automatically be
optimized to the query that returns the voter-id of voters.

7 Quantitative Analysis of Our Real-World Data Sets

This section provides some quantitative insight into the occurrence of embed-
ded and ordinary constraints in five real-world data sets from the UCI machine
learning repository. These data sets are frequently used to test the performance
of data dependency discovery algorithms [1]. We have implemented a heuris-
tic to discover embedded cardinality constraints from incomplete relations. The
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heuristic is sound as the eCCs it finds are guaranteed to hold on the given data
set and also minimal. The heuristic is not complete, so it is not guaranteed to
find all eCCs that hold on the given data set. The point of the heuristic is to
show that eCCs occur frequently in real-world data, which we illustrate by the
sheer number of their occurrences and also by comparing that to the number
of occurrences of ordinary cardinality constraints (oCCs), that is eCCs with an
empty extension, embedded uniqueness constraints (eUCs), that is eCCs where
b = 1, and ordinary uniqueness constraints (oUCs), that is eCCs with an empty
extension and where b = 1.

Table 4. Characteristics of data sets and numbers of oCCs, pCCs, oUCs, pUCs

#r #c #⊥ #ir #ic #oCCs #pCCs #oUCs #pUCs

breast 691 11 16 16 1 557 259 1 1

bridges 108 13 77 38 9 301 1877 0 3

echo 132 13 132 71 12 135 1668 18 27

hepatitis 155 20 167 75 15 312 1262 344 102

ncvoter 1000 19 2863 1000 5 438 976 78 69

7.1 Occurrences of Ordinary and Embedded Constraints

Table 4 shows some characteristics of the five data sets3 we analyzed: the number
of rows (#r), columns (#c), null marker occurrences (#⊥), incomplete rows
(#ir), and incomplete columns (#ic).

Our heuristic revealed the number of oCCs (#oCCs), which are eCCs where
E = ∅, and the number of pure eCCs (#pCCs), which are eCCs where E �= ∅.
In previous work we had developed algorithms that determine the total number
of oUCs (#oUCs), which are eCCs where E = ∅ and b = 1, and the number of
pure eUCs (#pUCs), which are eCCs where E �= ∅ and b = 1. While #pCCs
and #oCCs are lower bounds based on our heuristic, #pUCs and #oUCs are
actual numbers of a sound and complete algorithm from previous work.

With the exception of breast our heuristic has found many more pure eCCs
than oCCs. Even though the numbers of (ordinary and pure) eCCs are just
lower bounds and that of (ordinary and pure) eUCs are exact, the analysis gives
an indication of how many more business rules can be expressed by eCCs in
comparison to eUCs.

7.2 Cardinality Histograms for All Data Sets

For additional insight we have analyzed the distribution of the integer bounds
(cardinalities) in the eCCs we were able to discover. The results are visualized
in Fig. 3. The distributions are skewed towards lower cardinalities, which is nat-
ural since projections with larger cardinalities are typically less frequent. The
3 https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html#c168191.

https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html#c168191
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Fig. 3. Distribution of cardinalities on data sets

distributions for pure eCCs are less skewed than the distributions for ordinary
eCCs, indicating that the independence of the completeness requirements (as
expressed by non-trivial extensions) generates substantial additional constraints
with diverse cardinalities.

8 Conclusion and Future Work

We have introduced the new class of embedded cardinality constraints. Their
most interesting feature is their independence of any interpretation of miss-
ing information, which makes their employment for applications robust in the
context of integrated big data sets. Despite the ability of embedded cardinal-
ity constraints to express previous classes of constraints as special cases, we
showed that embedded cardinality constraints enjoy a finite ground axiomatiza-
tion and their implication problem can be decided in linear time in the input.
This makes their application also effective, as all opportunities of employment



Embedded Cardinality Constraints 537

can be efficiently checked automatically. In addition, we have exemplified their
expressivity on real-world data sets, visualized the interaction they exhibit in
the form of embedded lattice structures, and provided quantitative evidence of
their frequent occurrence in practice.

There are many more interesting problems associated with embedded car-
dinality constraints, including their discovery problem and the computation of
Armstrong relations. Solutions to these two problems would provide computa-
tional support towards the acquisition of embedded cardinality constraints that
are meaningful in a given application domain. Other problems include the inter-
action with other constraints, such as functional dependencies, or the definition
of embedded cardinality constraints in models for Web or uncertain data.
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