
Formal Executable Theory
of Multilevel Modeling

Mira Balaban1(B), Igal Khitron1, Michael Kifer2, and Azzam Maraee1

1 Computer Science Department,
Ben-Gurion University of the Negev, Beersheba, Israel

{mira,khitron,mari}@cs.bgu.ac.il
2 Computer Science Department,

Stony Brook University, Stony Brook, NY, USA
kifer@cs.stonybrook.edu

Abstract. Multi-Level Modeling (MLM) conceptualizes software mod-
els as layered architectures of sub-models that are inter-related by the
instance-of relation, which breaks monolithic class hierarchies midway
between subtyping and interfaces. This paper introduces a formal theory
of MLM, rooted in a set-theoretic semantics of class models. The MLM
theory is validated by a provably correct translation into the FOML exe-
cutable logic. We show how FOML accounts for inter-level constraints,
rules, and queries. In that sense, FOML is an organic executable exten-
sion for MLM that incorporates all MLM services. As much as the page
budget permits, the paper illustrates how multilevel models are repre-
sented and processed in FOML.

Keywords: Multi-level modeling · Herbrand semantics · Class facet
Object facet · Executable logic

1 Introduction

Multilevel system modeling (MLM) views the enterprise as a layered collection
of models that are inter-related by the instance-of (or membership) relation
among objects and classes. The grounds for this approach are both philosophical
and pragmatic. On philosophical grounds, researchers have been arguing that
faithful modeling of real world domains cannot be restricted by the standard
two-layer architecture of the OMG meta-modeling approach. They claim that
natural domains have multiple levels of classification, and an artificial restriction
to two layers yields models that are too weak [4,15]. On pragmatic grounds,
researchers have argued that a multilevel architecture of models simplifies the
management and evolution of complex software [23].

An important advantage of multilevel models is that in a monolithic class
hierarchy structure every change affects the entire hierarchy. The conventional
approach in software systems is to break monolithic hierarchies using interfaces

c© Springer International Publishing AG, part of Springer Nature 2018
J. Krogstie and H. A. Reijers (Eds.): CAiSE 2018, LNCS 10816, pp. 391–406, 2018.
https://doi.org/10.1007/978-3-319-91563-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_24&domain=pdf

392 M. Balaban et al.

os:os

0..* hardwSys

compHardw:hardwSys

mobile:comp

mobileOffice:appl

constraint L3_2@^2:
For offsprings s of SoftwareType and h of HardwareType,
 a. s and h have attribute 'year'
 b. instances si and hi that are linked by an offspring
 of hardwSoftw satisfy: si.year =< hi.year

1..*

deskCompatibility

deskOScompat:osCompat

officeCompat:applCompat

0..1

1..*

0..*

mobileOfficeAppl:compAppl

deskCompatibility:compatibility

0..*

deskOS

office:appl

sysSoft {subsets softw}

hardwSystem

0..*

rule L2_1@2:
If an offspring c of ComputerType has an OS that is
compatible with an offspring apl of CompApplType,
then apl can be used in c

constraint L2_1@^2:
There exists an offspring of ComputerType that
is linked to two offsprings of OSType

constraint L3_1@3:
An offspring s of HardwareType that is linked
to an offspring of ApplicationType must be linked to an offspring of a
SystemType.

deskOS:compOS

MobileType:ComputerType
year: String

computer:parent

deskOS

deskOffice

deskCompatibility

peripheral:part

comp:hardw

compOs:hardwSystem

part

L0:Computer-brand

KOffice:OfficeType
year=2013

WinOffice:OfficeType
year=2013

Windows10:DeskOSType
year=2015
openSource= false

Linux:DeskOSType
year=2013
openSource=true

Precision:Dell
year=2016

compAppl:hardwSoftw

deskOffice:compAppl

deskHardw:compHardw

desk:comp

0..1

1..* 0..1

1..3

DeskOSType:OSType
openSource: Boolean
year: String

OfficeType:CompApplType
year: String

Dell
maker = 'dell'

Lenovo
maker = 'lenovo'

L2:Computer-schema

«abstract»
DesktopType:ComputerType

year: String
maker@0: String

hardwSoftw

peripheralComputer:partParent

osCompat

applCompat

appl:softw

os:sysSoftw

compatibility

0..*

0..*

0..*

0..*
0..*

1..*

0..*

softwhardw0..*

parent

partParent

0..*

{disjoint}

0..*

0..*

PeripheralType:HardwareType

SystemType ApplicationType

L3:Computational-product-schema

ComputerType:HardwareType
maker@1: String

CompApplType:ApplicationType

OSType:SystemType
openSource: Boolean

SoftwareType
HardwareType

tested(date): String

L1:Desktop-schema

Fig. 1. A multilevel model of computer products

and delegation. In contrast, in MLM, class hierarchies are broken by the instance-
of relation — midway between subtyping and interfaces. Thus, multiple modeling
layers provide modular representation with controlled limited inheritance.

Figure 1 describes a multilevel model of a computational product. The model
is split into disjoint layers L0, L1, L2, L3, where L0, Computer-brand, describes
desktops brands with their hardware and software components; level L1 is
ComputerKind-schema, the domain of computer kinds, their hardware and soft-
ware; level L2 is Computer-schema, and level L3 describes the Computational-
Product-schema for hardware and software components. Level L0 is an object
model that serves as a partial instance for the class model at level L1. (L0 is
shaded to indicate that it is not a class model and is unlike L1–L3 in this respect.)
In a sense to be detailed in Sect. 2, L1 itself also serves as a partial instance for
the class model at level L2. Similarly, L2 serves as an instance for the class model
at level L3.

Each layer Li except the first and the last plays a dual role: as an instance of
the class model at level i+1 — the object facet role, and as a class model at level
i — the class facet role. In our example, L0 has only the role of an object facet
for level 1 (as an instance for L1), L3 has only the class facet role (for level 3). In
general, adjacent layers in the multilevel architecture are related by the standard
instance-of relationship between a class model and its instance object models,
while within each class model layer, classes are organized via subclass and general
association relationships. Hence, some classes and associations in layer i play

Formal Executable Theory of Multilevel Modeling 393

the role of objects and links for the class model in layer i + 1. This is denoted
using the standard notation o : C. Such classes are called clabjects [4,23], i.e.,
classes that are also objects, and such associations are called assoclinks, i.e.,
associations that are also links. For example, in level L1, the clabjects are
DesktopType, OfficeType, CompOSType and MobileType, and the assoclinks
are deskOffice, deskOS, mobileOfficeAppl and deskCompatibility. The
clabjects and assoclinks of ComputerKind-schema in level L1 form a partial legal
instance of the class model Computer-schema in level L2. Properties (association-
ends) of assoclinks are renamed when moving up a layer, denoted with the object
instantiation notation: leveliprop : leveli+1prop, as in desk : comp in level L1.

The tradition of multilevel modeling enables assignment of a potency numer-
ical attribute to elements of the model [24,28]. The intuition is that the potency
of an element specifies the maximum number of allowed consecutive instantia-
tions, which can be smaller than the level of the element. Potency 0 for a class
(or association) means that it is not instantiated by a clabject (assoclink) in the
immediate lower level. An attribute with potency 0 is not inherited by instance
clabjects of the class of the attribute. The default potency of an element is its
level, and is not noted explicitly in the diagram. In Fig. 1, potency is denoted
with the “@n” sign. Attribute maker of class ComputerType in level L2 has
potency 1 and, indeed, its instantiation ends in level L1. Gray background for
an attributes indicates that they are inherited (cf. openSource in L1).

The schemas in a multilevel model can be constrained and extended by inter-
layer constraints and inference rules (so called “deep” constraints and rules).
These constraints often involve the notion of an offspring. An offspring of class C
is any class or object that is connected to C by a chain of instance-of and subclass
relationships. Figure 1 includes one deep rule and three deep constraints; they
are specified at some levels and affect several layers below them. Computational-
product-schema includes the constraint L3 1 of potency 3. This means that it
affects the schemas at levels L2, L1, and L0. It states that for an offspring h of
HardwareType, if h is linked to an offspring of ApplicationType, then it must
also be linked to some offspring of SystemType. Indeed, the MobileType clabject
at L1 does not satisfy this constraint, and ComputerKind-schema is a partial
instance of Computer-schema, that can be complemented into a legal instance
that satisfies this constraint.

Single-potency [28] of degree n is a different kind of constraint, denoted with
“@ˆn” sign: it is specified at some level i but constrains the level i−n. Typically
this is done for convenience, as specifying a constraint at a higher level can
be more succinct. For instance, in Fig. 1, the constraint L3 2@ 2̂ is specified
at level L3, but applies to L1-classes DesktopType, MobileType, OfficeType, and
DeskOSType — the offsprings of the L3-classes HardwareType and SoftwareType
that are connected to these L3-classes by chains of instance-of relationships of
length 2. One could have specified the constraint L2 2@ 2̂ directly at level L1,
but then it would have to be repeated for each of the above four offsprings.

Inference rules provide a powerful representation mechanism that can derive
intensional information that is not explicit. Rule L2 1 has potency 2 and states

394 M. Balaban et al.

that if a computer object c is an offspring of ComputerType, and has an operating
system, which is compatible with an application a, then a is an application of
c. With this rule, we can derive an L0-level link of the L1-level association
deskOffice that links the L0-objects KOffice and Precision.

The overall architecture of a multilevel model organizes schemas in a layered
architecture called an ontological dimension. Within each schema, the subclass
relation is used, while the instance-of relation is used between adjacent schemas.
A multilevel model can include several overlapping ontological dimensions. Due
to space limitation, our formalization deals only with a single ontological dimen-
sion. Traditionally, MLM refers to the linguistic modeling dimension as a syn-
tactic definition of models. This aspect is covered in Sect. 2.

The main contribution of this paper is a novel formal executable theory for
MLM based on a model-theoretic semantics of class models [8,9]. Class models
form multilevel models with the help of Herbrand instances, in which the syn-
tactic symbols comprise the semantic domain. Our formal theory relies on direct
semantics for multilevel models and accounts for complex model interactions.

The second contribution is a provably correct translation of the aforesaid
MLM theory into the executable logic language FOML [7], which is based on an
underlying theory of unrestricted chains of instance-of and subtyping relation-
ships, combined with path expressions.1 FOML enables direct, seamless encoding
of the MLM theory, and is inspired by the industrial multilevel Ink project [1].

The third contribution has to do with the correctness of multilevel models
and their intra-level and inter-level interactions. We define consistency and finite-
satisfiability as natural extensions of their class model analogies, and show that
intra-layer correctness can be checked for each schema independently. Moreover,
FOML is capable of validating deep inter-level MLM dependencies.

Paper organization: Sect. 2 introduces a formal abstract syntax and model-
theoretic semantics for multilevel models. Section 3 deals with correctness anal-
ysis Sect. 4 describes the encoding in FOML, reasoning and proving correctness,
Sect. 5 discusses related work and Sect. 6 concludes the paper.

2 Multilevel Models–A Set-Theoretic Formalization

A multilevel model is a finite collection of ontological dimensions, each being a
sequence of schemas. A schema consists of a Herbrand instance and a class model.
The schemas in a dimension are defined over a global, sorted, infinite vocabulary
V = 〈O, C,P,A, 〉 of object (O), class (C), property (P), and association (A)
symbols. (Due to page limitation, we omit attributes, qualifiers, datatypes, and
some constraints.) The sets O and C may overlap, and all other sets are disjoint.
We define schemas, and combine them into an overall theory of multilevel models.

1 Other languages, e.g., Telos [26] and RDF [22], also support these relationships.

Formal Executable Theory of Multilevel Modeling 395

2.1 Class Models: Abstract Syntax and Set-Theoretic Semantics

Abstract Syntax:2 A class model over a global sorted vocabulary V =
〈O, C,P,A〉 is a tuple CM = 〈CCM ,PCM ,ACM ,Mappings, Constraints〉,
where CCM ⊆ C, PCM ⊆ P,ACM ⊆ A are finite sets of class, property and
association symbols, respectively, and Mappings and Constraints are defined
below.
Mappings:

– inverse : PCM → PCM is a bijection that assigns to every property p its
unique inverse, denoted p−1, such that inverse(p) �= p, and (p−1)−1 = p.

– props : ACM → 2PCM is an injection where props(a) = {p, p−1} and every
property from PCM appears in exactly one props(a). If p ∈ PCM, assoc(p)
denotes the association such that p ∈ props(assoc(p)). In the Computational-
Product schema (level L3, Fig. 1), props(hardwSoftw) = {hardw, softw},
softw = hardw−1, and assoc(softw) = assoc(hardw) = hardwSoftw.

– source : PCM → CCM and target : PCM → CCM are mappings such
that target(p) = source(p−1). They define the source and target classes
of a property. For a ∈ ACM, if props(a) = {p1, p2} and target(pi) =
Ci, then classes(a) = {C1, C2}. In the aforesaid Computational-Product
schema, target(softw) = source(hardw) = SoftwareType, source(softw) =
target(hardw) = HardwareType, and classes(hardwSoftw) =
{HardwareType, SoftwareType}.

Constraints: Class model constraints include property multiplicities, association-
classes, aggregation/composition, class hierarchy, generalization-set, property
subsetting, redefinition, union, association-hierarchy, association-class hierarchy
and xor. We discuss only the following three:

– Multiplicity mappings: min : PCM → N ∪{0} and max : PCM → N ∪{∗}
assign minimum and maximum multiplicities to property symbols so that
min(p) ≤ max(p) (∗ denotes positive infinity).

– Class hierarchy: is an acyclic binary relation on class symbols in CCM : C2 ≺
C1, means that C2 is a subclass of C1. The relation ≺+ is a transitive closure
of ≺ and C2 �∗ C1 means C2 = C1 or C2 ≺+ C1. In the Desktop schema in
Fig. 1, Dell is a subclass of DesktopType, i.e., Dell ≺ DesktopType.

– Property subsetting (subproperties): is an acyclic binary relation ≺ on
property symbols:3 p1 ≺ p2 says that p1 subsets (is a subproperty of) p2. It is
also required that (i) source(p1) ≺∗ source(p2), (ii) target(p1) ≺∗ target(p2),
and (iii) max(p1) ≤ max(p2). In the Computational-Product schema of Fig. 1,
sysSoft ≺ softw means that a SystemType which is a sysSoft of a Hardware-
Type element, is also a softw of this element.

Compact Symbolic Notation for Associations: It is often convenient to
have a compact notation that shows an association along with its properties,

2 A full formalization of the UML class model, appears in [9].
3 ≺ is overloaded for subproperties and subclasses.

396 M. Balaban et al.

classes and multiplicities. We write a(C1

p1 p2

m1..M1 m2..M2
C2)—or a(C1

p1 p2
C2),

if multiplicities are irrelevant—to denote an association a such that props(a) =
{p1, p2}, target(pi) = Ci, min(pi) = mi and max(pi) = Mi. For instance,
the compact notation for association hardwSoftw in the Computational-Product
schema of Fig. 1, is hardwSoftw(HardwareType

hardw softw

0.. ∗ 0..∗ SoftwareType).

Semantics: The standard set-theoretic semantics of class models associates such
models with instances I, which consist of a semantic domain and a denotation
mapping “· I” that assigns meaning to syntactic elements. Given a class model
CM = 〈CCM ,PCM ,ACM ,Mappings, Constraints〉: (1) each class symbol c ∈
CCM is mapped to a set cI of objects in the domain, called the extension of c;
(2) each association symbol a ∈ ACM is mapped to a relationship aI , called the
extension of a, between the extensions of the classes of a, i.e., classes(a); (3) each
property symbol p ∈ PCM is mapped to a multivalued function pI : source(p)I →
target(p)I , as follows: If assoc(p) = a then for each e ∈ source(p)I , pI(e) = {e′ |
(e, e′) ∈ aI}, i.e., pI is the projection of aI on source(p)I .

An object of a class model CM with respect to an instance I is an ele-
ment in the domain of I that belongs to the extension of some class. The set
of objects of CM with respect to I, denoted objsI(CM), is the union of all
extensions in I of classes of CM , i.e., ∪c∈CCM

cI . A link of CM with respect
to an instance I is an element of the extension of some association a. A link
includes a pair of objects o1, o2 in the domain of I, an identifier of the associ-
ation to which it belongs, and the property roles of the above two objects. We
denote links as a(o1

p1 p2

o2), i.e., as labeled edges between nodes o1, o2, where
props(a) = {p1, p2}, and o1 ∈pI1(o2), o2 ∈pI2 (o1). For an association symbol

a ∈ ACM , linksI(a)
def
= {a(o1

p1 p2

o2) | (o1, o2) ∈aI , o1 ∈pI1(o2), o2 ∈pI2(o1)}.
The set linksI(CM) of all links in CM with respect to I is the union of all links
in I of all associations of CM , ∪a∈ACM

linksI(a).

Legal and Herbrand Instances: An instance I of a class model is legal,
denoted I |= CM , if its denotation mapping satisfies the class model constraints:

– Multiplicity: min(p) ≤ |pI(e)| ≤ max(p) for each e ∈ source(p)I .
– Class-hierarchy: If C1 ≺ C2 then C1

I ⊆ C2
I .

– Property subsetting: If p1 ≺ p2 and e ∈ source(p1)I then p1
I(e) ⊆ p2

I(e).

A partial instance is one whose denotation mapping can be extended to yield
a legal instance. A Herbrand instance4 of a class model CM over a global
vocabulary V = 〈O, C,P,A〉 is an instance of CM over the domain O. Her-
brand instances are often written using set notation, that explicitly lists the
object members (from O) of classes and the object pairs for associations:
〈({oi1, . . . , o

i
ni

} = Ci)Ci∈CCM , ({(oi1, u
i
1), . . . , (o

i
ni

, ui
ni

)} = ai)ai∈ACM 〉. This writ-
ing saves explicit specification of property mappings and of empty extensions.

4 By analogy with Herbrand interpretations in classical logic.

Formal Executable Theory of Multilevel Modeling 397

Example 1. As explained in the introduction, levels L0–L2 in Fig. 1 play the
role of instances for the class models at levels L1–L3. The notion of Herbrand
instances formally captures this very idea. Specifically, L0 corresponds to the fol-
lowing Herbrand instance H1 for the class model at level L1: H1 = { {Windows10,

Linux} = DeskOSType, {WinOffice,KOffice} = OfficeType, {Precision} = Dell,

{(Precision,WinOfffice)} = deskOffice, {(Windows10,Precision), (Linux,Precision)} =

deskOS, {(Windows10,WinOfffice), (Linux,KOfffice)} = deskCompatibility }.
H1 is a partial (legal) instance since KOffice is an instance of OfficeType but has
no deskOffice link.

By analogy, we can construct a legal Herbrand instance H2 for the class model
at level L2. Unlike H1, it is a complete legal instance of this class model. How-
ever, when constructing a legal instance H3 for the class model at level L3 out
of the L2 level class model, we again get only a partial instance, as shown next:
H3 = { {ComputerType, PeripheralType} = HardwareType, {CompApplType} =

ApplicationType, {OSType} = SystemType, {CompApplType, OSType} = SoftwareType,

{(ComputerType,CompApplType)} = hardwSoftw, {(ComputerType, OSType)} =

hardwSystem}.
H3 is a partial Herbrand instance for level L3 because the subsetting constraint
sysSoft ≺ softw in level L3 implies that the extension hardwSoftwH3 must
include the extension of hardwSystemH3 but, by the above, it does not. �

Semantic Relationships: An instance I of a class model CM is empty if all
class extensions are empty and it is infinite if some class extension is infinite. A
class model constraint constr is entailed by a class model CM , denoted CM |=
constr, if it holds in every legal instance of CM . A class model CM2 is entailed
by class model CM1, denoted CM1 |= CM2, if every legal instance of CM1 is
a legal instance of CM2. Class models are equivalent, denoted CM1 ≡ CM2, if
they have the same set of legal instances.

The following claim says that, for reasoning purposes, it is sufficient to con-
sider legal Herbrand instances only.

Claim. For a class model CM and a class model constraint constr, constr holds
in every legal Herbrand instance of CM , denoted CM |=H constr, if and only
if it is entailed by CM , i.e., CM |= constr.

2.2 Multilevel Models: Abstract Syntax and Model-Theory

First we introduce the notion of mediation, which connects a class model CM
to an immediately higher class model CM ′.

Definition 1. Given a pair of class models over the same vocabulary: CM =
〈CCM ,PCM ,ACM , Mappings, Constraints〉, and CM ′ = 〈CCM ′ ,PCM ′ ,ACM ′ ,
Mappings′, Constraints′〉. Let H ′ be partial Herbrand instance of CM ′. Then,
H ′ is a Herbrand mediator of type (CM,CM ′) if the objects and links of H ′ are
classes and associations of CM , respectively. Formally:

398 M. Balaban et al.

1. objsH′(CM ′) ⊆ CCM ;
2. There is a 1:1 mapping link2assoc from linksH′(CM ′) to ACM , that satisfies:

link2assoc(a′(o1
p′1 p′2

o2)) = a, where a ∈ ACM and classes(a) = {o1, o2}.
The mapping link2assoc extends to properties as follows: link2assoc(p′

i) = pi,
assuming props(a) = {p1, p2} and target(pi) = oi. That is, link2assoc maps
links in H ′ to associations of CM , turning end-objects into end-classes and
renaming association and properties.

The partiality of the Herbrand mediator implies that not all elements in a higher
level must be instantiated in a lower level. The potency assignment, introduced
below, is an explicit mechanism for controlling inter-level instantiation.

Abstract Syntax: A multilevel model over a global sorted vocabulary V =
〈O, C,P,A〉 is a finite set {Θi}1≤k≤m, of ontological modeling dimensions. Each
modeling dimension is a finite sequence of schemas S1, ..., Sn, where each Si is a
pair 〈Hi, CMi〉. The CMi components are class models over V; for 1 < i ≤ n, the
Hi components are Herbrand mediators of type (CMi−1, CMi); H1 is a partial
legal Herbrand instance of CM1. The sets of classes in Sis are pairwise disjoint.

Returning to Fig. 1, Example 1 shows the legal partial instances H1, H2, H3

for the class models L1, L2, L3 and illustrates how these instances were con-
structed out of the lower-level models L0, L1, and L2. The ontological modeling
dimension depicted in the figure if formally represented as a sequence of these
schemas: 〈H1, L1〉, 〈H2, L2〉, 〈H3, L3〉.

Semantics: A legal instance of a multilevel ontological dimension (Si =
〈Hi, CMi〉)1≤i≤n is a sequence of Herbrand instances (H ′

i)1≤i≤n, such that each
each H ′

i is a legal Herbrand instance of CMi and, for all i ≥ 1, H ′
i includes Hi.

That is, H ′
i extends the partial Herbrand instance Hi into a full legal instance

of CMi.

Potency Assignment: The tradition of multilevel modeling enables assignment
of a potency numerical attribute to elements of the model [24,28]. The intuition
is that the potency of an element specifies the maximum number of allowed
consecutive instantiations, which can be smaller than the level of the element5.
We define the potency of elements in two steps:

(i) Let Ci,Ai be the sets of classes and associations at level i. For each i, the
partial function user defined potency: Ci ∪ Ai → N assigns a natural number
≤ i to some classes and associations, subject to consistency requirements below.

(ii) user defined potency is extended to a total potency function, which is
obtained by propagating the values of user defined potency and using the level
values as the default. Due to page limitation, we define potency for classes only.

1. For each class C ′ in a class model CMi such that user defined potency(C ′)
has a value, set potency(C ′) = user defined potency(C ′).

5 Other known forms of potency are constraints on off-springs instead of instantiations.

Formal Executable Theory of Multilevel Modeling 399

2. For a class C ′ in CMi for which potency(C ′) = k where k > 0 and a class C

in CMi−1 (i.e., C ∈ C ′Hi), set potency(C) = k − 1.
3. For every class C in a class model CMi, i > 0, for which potency(C) is

undefined, set potency(C) = level(C).

A potency function is inconsistent if it assigns more than one value to some
class, or if a 0-potency class has direct instances. Formally:

– Direct instantiation of a 0-potency class: Let C ′ be a class in a class model
CMi (level i) with potency(C ′) = 0. The potency function is inconsistent if
C ′ has a direct instance (in level i − 1), i.e., if there is a class C in CMi−1 in
level i − 1 (C ∈ C ′Hi) with no intermediate class C ′′ (in level i) between C
and C ′ (i.e., C ′′ ≺ C ′ ∈ CMi and C ∈ C ′Hi).

– Contradiction: potency(C) has more than one value for some clabject C.
This may happen if user defined potency is over-specified, for example in
the presence of multiple inheritance.

3 Analysis of Multilevel Models

Correctness of a multilevel model depends on intra-level correctness, which refers
to the correctness of each class model and its object facet, and on inter-level cor-
rectness, which is determined by deep constraints and their interaction with the
class models they constrain. The two main correctness problems in class models
are consistency [10] and finite satisfiability [8]. Consistency deals with necessarily
empty classes and finite satisfiability with necessarily infinite classes. Detection of
consistency and finite satisfiability in full class models are EXPTIME-complete
problems. Correctness for multilevel models is defined by extending the class
model analogy.

Consistency and Finite Satisfiability of Schemas:

Definition 2. A schema Si in a multilevel ontological dimension (Si =
〈Hi, CMi〉)1≤i≤n is consistent (or satisfiable) if for every class C of CMi there
is a legal Herbrand instance H ′

i of CMi that extends (includes) Hi, in which the
extension of C is not empty, i.e., CH′ �= ∅.6 A schema Si is finitely satisfiable
if for every class C of CMi there is a legal finite Herbrand instance H ′

i of CMi

that extends (by inclusion) Hi, in which the extension of C is not empty.

Proposition 1. For a schema Si = 〈Hi, CMi〉 in a multilevel ontological dimen-
sion: Si is consistent (respectively, finitely satisfiable) if and only if there is a
legal (respectively, finite) Herbrand instance H ′

i of CMi that extends Hi, in which
the extension of all classes of CMi are not empty.

6 Weaker definitions are possible, following [2].

400 M. Balaban et al.

The proof is based on the closure under disjoint union of legal instances [8].
Hence, can be checked first at the class component, followed by checking the
Herbrand instance component for being extendable.

Consistency and Finite Satisfiability of a Multilevel Ontological
Dimension: Correctness in a multilevel dimension can be affected by inter-layer
constraints. For example, in level L1 of Fig. 1, the association cycle deskOffice,
deskCompatibility, deskOS includes redundant cardinalities, i.e., cardinalities
that cannot be realized in any finite legal instance of the class model. In partic-
ular, for the os property, only cardinality 1 can be used in finite legal instances,
while cardinalities 2 and 3 force instances to be infinite [25]. Therefore, con-
straint L2 1, which affects level L0 and requires existence of an offspring of
ComputerType that is linked to two offsprings of OSType, cannot hold in any
finite legal instance, thereby violating finite satisfiability.

We identify three possible correctness aspects in a multilevel dimension Θ =
(Si = 〈Hi, CMi〉)1≤i≤n:

1. Weak local correctness: Θ is consistent (respectively, finitely satisfiable) if
for every class C in a schema Si, there is a legal (respectively, finite) instance
of Θ in which the extension of C is not empty.

2. Strong local correctness: Θ is consistent (respectively, finitely satisfiable)
if for every schema Si, there is a legal (respectively, finite) instance of Θ in
which the extension of all classes of Si are not empty.

3. Global correctness: Θ is consistent (respectively, finitely satisfiable) if there
is a legal (respectively, finite) instance of Θ such that for every schema Si the
extension of all classes of Si are not empty.

By Proposition 1, weak local correctness implies strong local correctness, so we
will deal just with local correctness. However, local correctness does not imply
global correctness since, as noted above, inter-level constraints may interact.

Validation and analysis of a multilevel model involves checking global and
local correctness as well as instance completion, testing, and query answering.
Global validation requires correctness checking techniques that operate in a mul-
tilevel domain. The FOML implementation described in Sect. 4, checks local and
global validation, performs testing, and enables query answering.

4 Multilevel Modeling in FOML

FOML [18] is intended to support model-level activities, such as constraints
(extending UML diagrams), dynamic compositional modeling (intensional and
transformational), analysis and reasoning about models, model testing, and
meta-modeling. In [6] FOML was suggested for multilevel modeling based on its
uniform treatment of types and instances and of both abstract syntax and seman-
tics. Moreover, as an executable (i.e., operational) logic language, FOML can
express and reason about multiple crosscutting multilevel dimensions, including

Formal Executable Theory of Multilevel Modeling 401

instantiation constraints. In this paper, we extend this argument by claiming
that the FOML encoding is provably correct.

FOML is a semantic layer on top of a compact logic rule language of guarded
path expressions, called PathLP [7,19], an adaptation of a subset of F-logic [21].
Overall, PathLP provides reasoning services over unrestricted instance-of, sub-
type, and object-link relations, while FOML provides the modeling framework.

4.1 PathLP

The main syntactic constructs of PathLP are path expressions for objects and
types, membership and subtyping relations, facts, rules, queries, and constraints.
Path expressions have the general form of root.link[guard], where root,
link, and guard are terms that denote semantic entities, and the link applied
at root evaluates to a set that contains guard. For example, referring back to
Fig. 1, the os values for the object Precision can be defined like this:

Precision.os[Linux,Windows10];

This expression states that Linux and Windows10 belong to the set of OS’s for
Dell’s computer model Precision. The target class and multiplicity of property
os is further constrained at level L1 by a type path expression:

DesktopType!os[DeskOSType]{1..3};

This says that class DesktopType has a property os that yields objects that must
belong to class DeskOSType and, for each DesktopType object, the property os
has at least one and at most three objects.

PathLP includes two semantically supported special relations :: for subtyp-
ing and : for membership. For example,

SystemType::SoftwareType; OSType:SystemType; DeskOSType:OSType;

are facts that declare SystemType as a subclass of SoftwareType, and OSType
and DeskOSType as members of the classes SystemType and OSType, respectively.
Subtyping is interpreted as a partial order, and PathLP supports the usual
properties of subtyping and membership.

Links in path expressions can take arguments. This is used to account for
methods. For instance, in Fig. 1, the HardwareType class has a method tested,
which takes a date-argument and returns a string.

ComputerType:HardwareType; ComputerType.tested(20170412)[failed];

Formally, the link tested(p), when applied to the ComputerType object with the
argument 20170412 (12th of April, 2017), yields a set that contains the symbol
failed. This value can be further constrained to be unique using a type path
expression at level L3:

HardwareType!tested(year)[String]{1..1};

402 M. Balaban et al.

PathLP uses the regular Logic Programming nomenclature of facts, rules,
queries, and constraints. Rules represent implications and are recognized via
the symbol :-, which separates the head (conclusion, on the left) from the body
(premise, on the right). For example, the rule L2 1 in Fig. 1 is represented by
two PathLP rules for the classes at levels L2 and L1, as follows:

?cT.appl[?cApplT] : − ?dkT.appl[?cApplT] : −
?cT : ComputerType, ?dkT : DesktopType,
?cT.os.applCompat[?cApplT]; ?dkT.os.officeCompat[?officeT];

(1)

These rules have variables, which are symbols prefixed with “?”. Later we
show how to represent these rules with a single recursive FOML rule, using the
multilevel offSpring operation, regardless of how many offspring classes are
involved.

Queries are recognized by the prefix ?-. They are used to retrieve information
that is derivable from the specification. For example, the following query retrieves
pairs ?OS, ?Office of members of classes DeskOSType and OfficeType that are
related via the property chain deskHardw.office:

?- ?OS:DeskOSType,?OS.deskHardw.office[?Office];

The answer to this query is: 〈Windows10, WinOffice〉, 〈Linux, WinOffice〉,
〈Windows10, KOffice〉, 〈Linux, KOffice〉. The last two answers come from rule
L2 1, which infers the deskOffice link between Precision and KOffice.

Constraints have the prefix “!-” — they specify forbidden states.
The following constraints enforce the disjointness of classes SystemType,
ApplicationType in level L3, and restrict the parentPart association to be
non-circular, i.e., a hardware type cannot be a direct or indirect part of itself.

!-?o:SystemType,?o:ApplicationType !-?hT:HardwareType,?hT.closure(part)[?hT];

4.2 FOML

FOML extends PathLP with basic class modeling facilities, similarly to the
OMG MOF. The metalevel categories of FOML are Class, Property, Associ-
ation, Attribute, Object, and Link. The FOML meta-modeling tools infer the
syntactic structure of the class model components, as shown in the model query-
ing examples below. These tools include a rich, extendable library of meta-level
operations. Here are some examples of intensional properties:
Property composition: objects ?o and ?v are related via compose(?p1,?mid,?p2)
if there is a path ?p1.?p2 from ?o to ?v going through ?mid:

?o.compose(?p1,?mid,?p2)[?v] :- ?o.?p1[?mid].?p2[?v];

Transitive closure: closure(?p) is a property that is the transitive closure of ?p:

?o.closure(?p)[?v] :- ?o.?p[?v];
?o.closure(?p)[?v] :- ?o.?p.closure(?p)[?v];

Formal Executable Theory of Multilevel Modeling 403

Property circularity: ?p is circular if its closure is a self link for some object ?o:

?p.circular[true] :- ?o.closure(?p)[?o];

Using these meta-modeling facilities, FOML can inspect the syntactic structure
of class models and define derived relationships.

Find pairs of properties of the same association:
?- ?assoc. props[?prop1,?prop2];

Find properties that connect a class to itself:
?- ?Class!?prop[?Class];

Correctness Summary:

Claim (Correctness of FOML encoding for class models). Let CM be a UML
class model, H be a Herbrand instance of CM , and let CMFOML,HFOML be
their respective FOML encodings. Then, HFOML |= CMFOML iff H |= CM ,
i.e., HFOML is valid in CMFOML iff H is a legal Herbrand instance of CM . �

The proof is based on a correspondence between Herbrand models of the FOML
encoding to Herbrand instances of the class model.

4.3 Multi-FOML: Multilevel Modeling in FOML

MLM requires mediation between adjacent schemas. In Multi-FOML this is done
by introducing Herbrand mediators between adjacent class models. A mediator
specifies a class model as a partial instance of its immediate higher class model,
including mapping of names. For example, the specification of level L1 in Fig. 1,
as an Herbrand instance of L2:

DesktopType.appl[OfficeType]; MobileType.appl[OfficeType];

DesktopType.os[DeskOSType]; OfficeType.osCompat[DeskOSType];

All other components of the Herbrand instance are inferred by FOML, using
the meta-modeling tools.

The MLM support of multi-FOML includes computation of levels, potency
and offsprings, attribute inheritance, inter-layer (deep) constraint and rule com-
putation, local schema validation, global validation, and the regular FOML sup-
port for on the fly querying, testing and model analysis. Due to space limitations
we just show a few.
Inter-layer Constraints and Rules. We show Multi-FOML representations
for rule L2 1@2 and constraint L3 1@3 from Fig. 1.

?c.?can_use[?apl] :- %% rule L2_1@2

ComputerType.offspring(?N)[?c], ?N=<2,

CompApplType.offspring(?N)[?apl], os.propspring(?N)[?comp_os],

applCompat.propspring(?N)[?compat], ?c.?comp_os.?compat[?apl];

404 M. Balaban et al.

This rule replaces the two rules in (1). In general, one higher-layer rule with
attached potency can replace many rules at lower layers, and this is the primary
reason for this kind of abstraction in multilevel modeling.

!- HardwareType.offspring(?N)[?hw], ?N=<3, %% constraint L3_1@3

ApplicationType.offspring(?N)[?sw],

softw.propspring(?N)[?swprop], ?hw.?swprop.[?sw],

not (SystemType.offspring(?N)[?sw2],

sysSoft.propspring(?N)[?sysprop]

?hw.?sysprop[?sw2]);

Here not is read as “not exists ?sysprop such that ...” The FOML code is the
negative form of the English description of constraint L3 1@3 in Fig. 1.

Claim (Correctness of multi-FOML encoding for MLM). Let Θ be a multilevel
dimension and ΘFOML be its FOML encoding. Then ΘFOML is valid iff Θ is
globally correct. �

The proof is based on a correspondence of the Herbrand-based theories.

5 Related Work

Most MLM tools support modeling activities, but do not provide analysis, val-
idation, or other reasoning services, and are not built on formal MLM the-
ory. Semantic approaches to multilevel modeling include the graph-based theory
of [28], and axiomatic approaches such as [12] (FOL) or [14] (OCL). The first
approach views multilevel models as graphs that simulate the typed-by and
conforms-to relations. The levels are implicitly defined by the structure of the
graph. Assignment of potency to elements, and graph flattening rules define the
semantics of inheritance. In the axiomatic approach, the full multilevel theory is
encoded with the help of large sets of axioms. Both approaches rely on indirect
translational semantics, and. it is unclear how well they integrate with existing
class model analysis tools.

Telos [26], a rich knowledge representation framework implemented in Con-
ceptBase [17], is based on first-order logic. It supports unrestricted instance-
of and subtyping chains, but its reasoning capabilities and expressive power
are incomparable to those of FOML (neither subsumes the other). RDF [22] is
yet another language that supports unrestricted instance-of and subtyping, but
its expressive power is too limited for our purposes. Nivel [3] is another logic-
programming based language designed for multilevel metamodeling. In compari-
son, FOML focuses on software modeling, has simpler path-expression based syn-
tax, and greater expressivity. The expressivity gap widens further when FOML is
extended with Transaction Logic [11] and HiLog [13], which enable logic reason-
ing about statecharts and support higher-order introspection. Neither of these
languages support the desiderata for multilevel modeling languages listed in [6].

Recently a number of works [16,27] have proposed to use F-logic [20] as a
language for MLM. Indeed, FOML is a derivative of F-logic, but without sacri-
ficing expressiveness, FOML is a much smaller language and its constructs are

Formal Executable Theory of Multilevel Modeling 405

designed specifically for modeling. The aforesaid works do not provide declara-
tive semantics for MLM, which is a main contributions of the present paper.

A comparison of FOML with Alloy and OCL appears in [5]. FOML appears
to subsume and extend the representational capabilities of both languages. As
an analysis tool, FOML provides services not supported by OCL and Alloy tools,
including querying, inference, meta-level reasoning, and MLM.

6 Conclusion and Future Work

We presented a formal theory of multilevel modeling, including analysis and cor-
rectness. The theory is validated by (1) encoding it in the executable FOML lan-
guage; (2) showing that it can account for all MLM features; (3) on proving the
correctness of the encoding. Specifically, we showed how FOML is used for formal
logic specification of class models, their instances, and constraints; querying and
reasoning about multilevel models; and correctness analysis. The expressivity of
FOML goes beyond UML’s class models and has the necessary wherewithals to
be a compact, yet expressive underlying framework for MLM. In future work,
we will study the pragmatics of multilevel modeling, including methodologies for
breaking monolithic class-hierarchies into multilevel structures.

References

1. Acherkan, E., Hen-Tov, A., Lorenz, D., Schachter, L.: The ink language meta-
metamodel for adaptive object-model frameworks. In: OOPSLA 2011 (2011)

2. Artale, A., Calvanese, D., Ibáñez-Garćıa, A.: Full satisfiability of UML class dia-
grams. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010.
LNCS, vol. 6412, pp. 317–331. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16373-9 23

3. Asikainen, T., Mannisto, T.: Nivel: a metamodelling language with a formal seman-
tics. Softw. Syst. Model. (SoSyM) 8(4), 521–549 (2009)

4. Atkinson, C., Kühne, T.: Rearchitecting the uml infrastructure. ACM TOMACS
12(4), 290–321 (2002)

5. Balaban, M., Bennett, P., Doan, K.H., Georg, G., Gogolla, M., Khitron, I., Kifer,
M.: A comparison of textual modeling languages: OCL, Alloy, FOML. In: 16th
International Workshop on OCL and Textual Modeling, Models (2016)

6. Balaban, M., Khitron, I., Kifer, M.: Multilevel modeling and reasoning with FOML.
In: IEEE CS International Conference on SwSTE 2016 (2016)

7. Balaban, M., Kifer, M.: Logic-based model-level software development with F-
OML. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol.
6981, pp. 517–532. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24485-8 38

8. Balaban, M., Maraee, A.: Finite satisfiability of UML class diagrams with con-
strained class hierarchy. ACM TOSEM 22(3), 24:1–24:42 (2013)

9. Balaban, M., Maraee, A.: UML Class Diagram: Abstract syntax and Semantics
(2017). https://goo.gl/UJzsjb

10. Berardi, D., Calvanese, D., Giacomo, D.: Reasoning on UML class diagrams. Artif.
Intell. 168, 70–118 (2005)

https://doi.org/10.1007/978-3-642-16373-9_23
https://doi.org/10.1007/978-3-642-16373-9_23
https://doi.org/10.1007/978-3-642-24485-8_38
https://doi.org/10.1007/978-3-642-24485-8_38
https://goo.gl/UJzsjb

406 M. Balaban et al.

11. Bonner, A.J., Kifer, M.: A logic for programming database transactions. In:
Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems.
SECS, vol. 436, pp. 117–166. Springer, Boston (1998). https://doi.org/10.1007/
978-1-4615-5643-5 5

12. Carvalho, V.A., Almeida, J.P.A.: Toward a well-founded theory for multi-level
conceptual modeling. Softw. Syst. Model. 17, 205–231 (2018)

13. Chen, W., Kifer, M., Warren, D.: HiLog: a foundation for higher-order logic pro-
gramming. J. Log. Program. 15(3), 187–230 (1993)

14. Gogolla, M., Sedlmeier, M., Hamann, L., Hilken, F.: On metamodel superstructures
employing UML generalization features. In: MULTI 2014 (2014)

15. Henderson-Sellers, B.: On the Mathematics of Modelling, Metamodelling, Ontolo-
gies and Modelling Languages. Springer, Berlin (2012). https://doi.org/10.1007/
978-3-642-29825-7

16. Igamberdiev, M., Grossmann, G., Selway, M., Stumptner, M.: An integrated multi-
level modeling approach for industrial-scale data interoperability. Softw. Syst.
Model. 17(1), 269–294 (2018)

17. Jarke, M., Gallersdörfer, R., Jeusfeld, M., Staudt, M., Eherer, S.: ConceptBase - a
deductive object base for meta data management. J. Intell. Inf. Syst. 4, 167–192
(1995)

18. Khitron, I., Balaban, M., Kifer, M.: The FOML Site (2017). https://goo.gl/
AgxmMc

19. Khitron, I., Kifer, M., Balaban, M.: PathLP: a path-oriented logic programming
language. The PathLP Web Site (2011). https://goo.gl/877S43

20. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42(4), 741–843 (1995)

21. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42, 741–843 (1995)

22. Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and
abstract syntax (2006)

23. de Lara, J., Guerra, E., Cuadrado, J.: When and how to use multilevel modelling.
ACM TOSEM 24(2), 12:1–12:46 (2014)

24. de Lara, J., Guerra, E., Cuadrado, J.S.: Model-driven engineering with domain-
specific meta-modelling languages. SoSyM 14(1), 429–459 (2013)

25. Maraee, A., Balaban, M.: Removing redundancies and deducing equivalences in
UML class diagrams. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran,
E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 235–251. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11653-2 15

26. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: representing knowl-
edge about information systems. ACM TOIS 8(4), 325–362 (1990)

27. Neumayr, B., Schuetz, C.G., Jeusfeld, M.A., Schrefl, M.: Dual deep modeling:
multi-level modeling with dual potencies and its formalization in F-Logic. Softw.
Syst. Model. 17(1), 1–36 (2016)

28. Rossini, A., de Lara, J., Guerra, E., Rutle, A., Lamo, Y.: A graph transformation-
based semantics for deep metamodelling. In: Schürr, A., Varró, D., Varró, G. (eds.)
AGTIVE 2011. LNCS, vol. 7233, pp. 19–34. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34176-2 4

https://doi.org/10.1007/978-1-4615-5643-5_5
https://doi.org/10.1007/978-1-4615-5643-5_5
https://doi.org/10.1007/978-3-642-29825-7
https://doi.org/10.1007/978-3-642-29825-7
https://goo.gl/AgxmMc
https://goo.gl/AgxmMc
https://goo.gl/877S43
https://doi.org/10.1007/978-3-319-11653-2_15
https://doi.org/10.1007/978-3-642-34176-2_4
https://doi.org/10.1007/978-3-642-34176-2_4

	Formal Executable Theory of Multilevel Modeling
	1 Introduction
	2 Multilevel Models–A Set-Theoretic Formalization
	2.1 Class Models: Abstract Syntax and Set-Theoretic Semantics
	2.2 Multilevel Models: Abstract Syntax and Model-Theory

	3 Analysis of Multilevel Models
	4 Multilevel Modeling in FOML
	4.1 PathLP
	4.2 FOML
	4.3 Multi-FOML: Multilevel Modeling in FOML

	5 Related Work
	6 Conclusion and Future Work
	References

