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Abstract. Traceability Links Recovery (TLR) has been a topic of inter-
est for many years. However, TLR in Process Models has not received
enough attention yet. Through this work, we study TLR between Nat-
ural Language Requirements and Process Models through three differ-
ent approaches: a Models specific baseline, and two techniques based
on Latent Semantic Indexing, used successfully over code. We adapted
said code techniques to work for Process Models, and propose them as
novel techniques for TLR in Models. The three approaches were evalu-
ated by applying them to an academia set of Process Models, and to a
set of Process Models from a real-world industrial case study. Results
show that our techniques retrieve better results that the baseline Models
technique in both case studies. We also studied why this is the case, and
identified Process Models particularities that could potentially lead to
improvement opportunities.

Keywords: Traceability Link Recovery · Requirements engineering
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1 Introduction

Traceability Link Recovery (TLR) has been a subject of investigation for many
years within the software engineering community [1,2]. Research has shown that
affordable Traceability can be critical to the success of a project [3], and leads
to increased maintainability and reliability of software systems by making it
possible to verify and trace non-reliable parts [4]. Specifically, more complete
Traceability decreases the expected defect rate in developed software [5].

In recent years, TLR has been attracting more attention, becoming a subject
of both fundamental and applied research [6]. However, most of the works focus
on code [7], and the application of Traceability Links Recovery techniques to
Process Models is a topic that has not received enough attention yet.
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Through this work, we study TLR between Natural Language Requirements
and Process Models through three different approaches. Given a query Require-
ment and a Process Model, the three techniques use different means to extract
a Model Fragment from the Model, being said Model Fragment relevant to the
implementation of the query Requirement. The first technique is a Linguistic
technique based on Parts-of-Speech (POS) Tagging and Traceability rules [8].
The technique was designed specifically for TLR in Models, and is used as a
baseline against which the proposed techniques are compared. The other two
techniques (named ‘Aggregation’ and ‘Mutation Search’) are based on Latent
Semantic Indexing and Singular Value Decomposition, a well-spread Information
Retrieval technique that has been applied previously to TLR in code, obtaining
good results in the process [7]. None of the two LSI-based techniques have been
applied to extract TLR between Requirements and Process Models previously.
Therefore, we adapted them to work for Process Models and propose them as
novel techniques in the field.

The three approaches were evaluated through the Camunda BPMN for
Research case study (https://github.com/camunda/bpmn-for-research), as well
as through a real-world industrial case study, provided by our industrial part-
ner, CAF (Construcciones y Auxiliar de Ferrocarriles, http://www.caf.es/en), a
worldwide provider of railway solutions.

Results show that the Mutation Search technique achieves the best results
for all the measured performance indicators in both case studies, providing a
mean precision value of 63%, a mean recall value of 77%, a combined F-measure
of 68%, and an MCC value of 0.60 for the Camunda BPMN for Research case
study, and a mean precision value of 79%, a mean recall value of 72%, a combined
F-measure of 74%, and an MCC value of 0.69 for the CAF case study. In contrast,
the Linguistic baseline and the Aggregation technique present worse results in
these same measurements in both case studies.

The overall findings of our paper suggest that adapting techniques that have
provided good results in code is beneficial for TLR between Requirements and
Process Models, since their results outperform those of a technique created
specifically with Models in mind. Moreover, studied why this is the case, and
identified Process Models particularities that could potentially lead to improve-
ment opportunities.

The rest of the paper is structured as follows: Sect. 2 describes our Approach,
that is, our proposed techniques and how to apply them to TLR between Require-
ments and Process Model fragments. Section 3 details the baseline technique and
the designed Evaluation. Section 4 presents the obtained results. Section 5 dis-
cusses the outcomes of the paper. Section 6 presents the Threats to Validity of
our work. Section 7 reviews the works related to this one. Finally, Sect. 8 con-
cludes the paper.

2 Approach

Through the following paragraphs, we give an introduction on Latent Semantic
Indexing, the technique upon which we base the two novel techniques proposed

https://github.com/camunda/bpmn-for-research
http://www.caf.es/en


Exploring New Directions in Traceability Link Recovery in Models 361

for TLR between Requirements and Process Models. Afterwards, we describe
said techniques, providing insight on their steps, application, and outcomes.

2.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) [9] is an automatic mathematical/statistical
technique that analyzes relationships between queries and documents (bodies of
text). LSI has been successfully used to retrieve Traceability Links between dif-
ferent kinds of software artifacts in different contexts, specially among Require-
ments and code [7]. This is due to the fact that code often encodes domain
knowledge in the form of domain terms, which are also encoded in the Require-
ments, hence causing LSI to detect similitude between both.

So far, the technique has not been transported to Process Models. We propose
two techniques that use LSI for TLR between Requirements and Process Models.
In particular, both techniques use LSI to produce a Model Fragment from the
Process Model that serves as a candidate for realizing the Requirement. The
following sections give more details on the process.

2.2 Aggregation

The first of the two proposed techniques receives a query Requirement and a
Process Model as input, and generates a ranking of Model Elements through
LSI. From the ranking, a Model Fragment is generated. To that extent, the
Process Model is firstly split into Model Elements, represented through the text
they contain, which is extracted and used as input for LSI. The top part of
Fig. 1 shows this process, having the example input Process Model on the left,
and the resulting Model Elements on the right, including: (1) lanes ‘Inhibition’,
‘Human’, and ‘PLC’ (ME1, ME2, ME3); (2) the start and end events (ME4,
ME10, ME14); (3) the exclusive gateway ‘Are the doors open?’ (ME8); (4) the
‘Push the doors button’ and ‘Open the doors’ tasks (ME6, ME12); and (5) the
sequence flows of the diagram (ME5, ME7, ME9, ME11, ME13).

The text of the Requirement and the Model Elements is then treated through
Natural Language Processing techniques. To that extent, general phrase styling
techniques, Parts-Of-Speech Tagging [10], and Lemmatizing [11] are applied.

Finally, the Requirement and the Model Elements are fed into LSI, which
ranks the Model Elements according to their similitude to the Requirement.
The bottom left part of Fig. 1 shows an example term-by-document co-occurrence
matrix, with values associated to our running example. In the following para-
graph, an overview of the elements of the matrix is provided.

Each row in the matrix (term) stands for each of the words that appear in
the processed text of the Requirement and the Model Elements. In Fig. 1, it
is possible to notice a subset of said words such as ‘Door’ or ‘Button’ as the
terms of each row. Each column in the matrix (document) stands for each of the
Model Elements extracted from the input Process Model. In Fig. 1, it is possible
to notice identifiers in the columns such as ‘ME3’ or ‘ME12’, which stand for
the documents of those particular Model Elements (namely, the processed text
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Fig. 1. Aggregation technique example

of ‘ME3’ and ‘ME12’). The final column (query), stands for the processed input
Requirement. Each cell in the matrix contains the frequency of each term in each
document. For instance, in Fig. 1, the term ‘Door’ appears once in the ‘ME12’
document and once in the query.

Vector representations of the documents and the query are obtained by nor-
malizing and decomposing the term-by-document co-occurrence matrix using a
matrix factorization technique called Singular Value Decomposition (SVD) [9].
SVD is a form of factor analysis, or more properly the mathematical general-
ization of which factor analysis is a special case. In SVD, a rectangular matrix
is decomposed into the product of three other matrices. One component matrix
describes the original row entities as vectors of derived orthogonal factor values,
another describes the original column entities in the same way, and the third is a
diagonal matrix containing scaling values such that when the three components
are matrix-multiplied, the original matrix is reconstructed.

In Fig. 1, a three-dimensional graph of the SVD is provided, on which it is
possible to notice the vectorial representations of some of the columns. For leg-
ibility reasons, only a small set of the columns is represented. To measure the
similarity degree between vectors, the cosine between the query vector and the
documents vectors is calculated. Cosine values closer to one denote a high degree
of similarity, and cosine values closer to minus one denote a low degree of similar-
ity. Similarity increases as vectors point in the same general direction (as more
terms are shared between documents). Through this measurement, the Model
Elements are ordered according to their similarity degree to the Requirement.

The relevancy ranking (which can be seen in Fig. 1) is produced according to
the calculated similarity values. In this example, LSI retrieves ‘ME12’, ‘ME6’,
and ‘ME8’ in the first, second, and third position of the relevancy ranking due to
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their query-documents cosines being ‘0.9343’, ‘0.8524’ and ‘0.7112’, implying high
similarity between the Model Elements and the Requirement. On the opposite,
the ‘ME4’ Model Element is returned in a latter position of the ranking due to
its query-document cosine being ‘−0.8736’, implying a low similarity degree.

From the ranking, of all the Model Elements, those that have a similar-
ity measure greater than x must be taken into account. The heuristic that we
adopted, and that is used in other works, is x = 0.7 [12,13]. This value corre-
sponds to a 45◦ angle between the corresponding vectors. Nevertheless, the selec-
tion of this threshold is an issue still under study, and its proper parametrization
has not been tackled in Process Models yet.

Following this principle, the Model Elements with a similarity measure equal
or superior to x = 0.7 are taken to conform a Model Fragment, candidate for
realizing the Requirement. Through the example provided in Fig. 1, ‘ME12’,
‘ME6’ and ‘ME8’ are the Model Elements that conform the Model Fragment for
the Requirement, due to their cosine values being superior to the 0.7 threshold.
The Model Elements below the threshold, except for ‘ME4’, are not shown in the
ranking for space and understandability reasons. The Model Fragment generated
in this manner is the final output of the Aggregation technique.

2.3 Mutation Search

The second of the two proposed techniques receives a query Requirement and a
Process Model as input, generates a population of Model Fragments, and ranks
said Model Fragments through LSI. From the ranking, the first Model Fragment
is taken as the proposed solution. In order to generate the Model Fragments
population, Algorithm 1 is followed. In the algorithm, an empty population and
a seed Fragment (chosen randomly from the input Process Model) are created.
Then, until the algorithm mets a stop condition (for instance, a certain number
of iterations), the Fragment is mutated and each new mutation is added to the
population, avoiding the addition of repeated Fragments.

In the algorithm, a mutation in a Fragment can be caused by: (1) adding
one new event, gateway, or task that is connected to an already present event,
gateway, or task (the flow that causes the connection is also added to the Frag-
ment), (2) removing an Element with only one connection (and the flow that
causes said connection), or (3) adding or removing a lane from the Fragment.
The performed mutation is chosen randomly on each iteration.

The top part of Fig. 2 shows this process, having the example input Process
Model on the left, and some example Model Fragments on the right, generated
through the usage of the algorithm. The generated Model Fragments are repre-
sented through the text contained in all their elements. The text of both the input
Requirement and the generated Model Fragments is then processed through gen-
eral phrase styling techniques, Parts-Of-Speech Tagging, and Lemmatizing.

Finally, the Requirement and the Model Fragments are fed into LSI, which
ranks the Model Fragments according to their similitude to the Requirement.
The bottom left part of Fig. 2 shows an example term-by-document co-occurrence
matrix, with values associated to our running example. The technique works
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Algorithm 1. Mutation Search Algorithm
1: P ← [] � Initialize the population
2: F ← randomFragment(inputModel) � Create an initial seed Fragment
3: while !(StopCondition) do � While the stop condition is not met
4: F ← mutateFragment(F ) � Mutate the Fragment
5: if !(F ∈ P ) then � If the new Fragment is not in the population
6: P ← P + F � Add the new mutation to the population
7: end if
8: end while
9: return P � Return the population

exactly as it does in the Aggregation technique, except that each column in
the matrix (document) stands for each of the Model Fragments (MF1 to MFn)
generated through the algorithm instead of standing for a single Model Element.

Vector representations of the documents and the query are obtained by nor-
malizing and decomposing the term-by-document co-occurrence matrix using
SVD, and the vectorial similarity degrees are calculated through the cosines.
The relevancy ranking on Fig. 2 is produced according to the calculated simi-
larity degrees. In this example, LSI retrieves ‘MF9’ in the first position of the
relevancy ranking due to its query-documents cosine being ‘0.9791’. On the oppo-
site, the ‘MF6’ Model Fragment is returned in the last position of the ranking
due to its query-document cosine being ‘−0.9384’.

From the ranking, the first Model Fragment is considered as the candidate
solution for the Requirement, and consequently taken as the final output of the
Mutation Search technique.

Ke
yw

or
ds

QueryDocuments ScoresSingular Value Decomposi on

Q

MFn

MF6

MF1 MF2 … MF9 … MFn Query

Inhibi on 1 0 … 0 … 0 0

Door 0 1 … 1 … 2 1

Bu on 0 1 … 0 … 1 0

Open 0 0 … 1 … 1 1

… … … … … … … …

Model Element Ranking

MF9 = 0.97

MFn = 0.52

…

MF6 = - 0.93

REQUIREMENT
The system will open the doors

MODEL

In
hi

bi
on Hu

m
an

Do
or

 
M

od
ul

e

Push doors 
bu on

Yes

Are the doors open?

X

Open the 
doors

No

EXAMPLE MODEL FRAGMENTS

In
hi

bi
on

Push doors bu on

Push doors bu on

Are the doors open?

X

Yes
Are the doors open?

X

Open the doors

No

Do
or

 
M

od
ul

e

Open the doors

MF6

MF1

MFn

MF2

MF9

MF9

Fig. 2. Mutation search technique example



Exploring New Directions in Traceability Link Recovery in Models 365

3 Evaluation

Through the following paragraphs, we introduce the experimental setup and the
case studies used to evaluate the baseline and our two proposed approaches,
present the oracles used in the evaluation, and detail the design and implemen-
tation of said evaluation.

3.1 Experimental Setup

The goal of our work is to perform TLR between Requirements and Process Mod-
els through the two proposed techniques, and to compare the results obtained
by said techniques against those of a Models specific baseline. Figure 3 shows
an overview of the process that was followed to evaluate the Linguistic baseline
and our two proposed techniques. The top part shows the inputs, which are
extracted from the documentation provided in the case studies: Requirements,
Process Models, and approved Traceability between Requirements and Process
Models. Each case study comprises a set of Requirements, a Process Model, and
an Approved Requirements to Model Fragments Traceability document, which
conforms the oracle of our evaluation.

For each case study, the Linguistic baseline and the Aggregation technique
take the mentioned inputs, and generate a single Model Fragment for each
Requirement. The generated Model Fragments are compared with the oracle
Model Fragment. The Mutation Search technique generates a ranking of Model
Fragments per Requirement instead. Since the rankings are ordered from best to
worst Traceability, the first Model Fragment in each ranking is picked for com-
parison against its corresponding oracle. Once the comparisons are performed, a
confusion matrix is calculated for the baseline and for each technique separately.

A confusion matrix is a table that is often used to describe the performance of
a classification Model (in this case the Linguistic baseline and both of our tech-
niques) on a set of test data (the solutions) for which the true values are known
(from the oracle). In our case, each solution outputted by the three techniques is
a Model Fragment composed of a subset of the Model Elements that are part of
the Process Model. Since the granularity is at the level of Model Elements, the
presence or absence of each Model Element is considered as a classification. The
confusion matrix distinguishes between the predicted values and the real values,
classifying them into four categories: (1) True Positive (TP), values that are
predicted as true (in the solution), and are true in the real scenario (the oracle);
(2) False Positive (FP), values that are predicted as true (in the solution), but
are false in the real scenario (the oracle); (3) True Negative (TN), values that
are predicted as false (in the solution), and are false in the real scenario (the
oracle); and (4) False Negative (FN), values that are predicted as false (in the
solution), but are true in the real scenario (the oracle).

Then, some performance measurements are derived from the values in the
confusion matrix. In particular, a report including four performance measure-
ments (Recall, Precision, F-measure, and Matthews Correlation Coefficient) is
created for the case studies, for each of the three techniques.
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Recall measures the number of elements of the solution that are correctly
retrieved by the proposed solution. Precision measures the number of elements
from the solution that are correct according to the ground truth. F-measure
corresponds to the harmonic mean of Precision and Recall [14].

However, none of these previous measures correctly handle negative examples
(TN). The MCC is a correlation coefficient between the observed and predicted
binary classifications that takes into account all the observed values (TP, TN,
FP, FN), and is defined as follows:

MCC =
TP · TN − FP · FN

√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Recall values can range between 0% (which means that no single model ele-
ment from the realization of the requirement obtained from the oracle is present
in the model fragment of the solution) to 100% (which means that all the model
elements from the oracle are present in the solution). Precision values can range
between 0% (which means that no single model element from the solution is the
oracle) to 100% (which means that all the model elements from the solution are
present in the oracle). A value of 100% precision and 100% recall implies that
both the solution and the requirement realization from the oracle are the same.
MCC values can range between −1 (which means that there is no correlation
between the prediction and the solution) to 1 (which means that the prediction
is perfect). Moreover, a MCC value of 0 corresponds to a random prediction.
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3.2 Linguistic Rule-Based Baseline

Spanoudakis et al. [8] present a linguistic rule-based approach to support the
automatic generation of Traceability Links between Natural Language Require-
ments and Models. Specifically, the Traceability Links are generated following
two stages: (1) a Parts-of-Speech (POS) tagging technique [15] is applied on the
Requirements that are defined using Natural Language, and (2) the Traceability
Links between the Requirements and the Models are generated through a set of
Requirement-to-object-Model (RTOM) rules.

The RTOM rules are specified by investigating grammatical patterns in
Requirements. These rules are specified as sequences of terms, and define rela-
tions between Requirements and Model Elements. For instance, a rule may
attempt to match a verb-article-noun pattern that appears in a Requirement
with the text that appears in a Model Element. The rules are atomic: the match-
ing succeeds if the Model Element contains the same words in the same pattern.

In [8], the authors propose 26 rules, applied to a Requirement and a Model
in order to retrieve a set of Model Elements from the Model that are related
to the Requirement. These Model Elements compose the Model Fragment as a
result. We worked with a set of rules adapted to work over Process Models.

3.3 Case Study

In order to perform the evaluation of the three approaches, we rely on two
different case studies: (1) the Camunda BPMN for Research academic repository,
and (2) a set of Process Models provided by CAF, our industrial partner.

Camunda BPMN for Research: The Camunda BPMN for Research case
study consists of four Process Modeling exercises. Each exercise contains an
associated textual description and the solution Model for the provided descrip-
tion. In order to apply the three approaches to the Camunda case study, a
software engineer (with BPMN expertise, and who is not related to the writing
of this paper) derived a set of Natural Language Requirements from the problem
descriptions. On average, there are around 15 Requirements per problem, with
an approximate average of 25 words per requirement. The Models in the case
study contain an approximate average of 25 elements per Model.

CAF: For our evaluation, CAF provided us with Natural Language Require-
ments and Process Models of five railway solutions from Auckland, Bucharest,
Cincinnati, Houston, and Kaohsiung. The functionalities are specified through
about 100 Natural Language Requirements each, with an approximate average
of 50 words per Requirement. Regarding the Process Models, the distinct func-
tionalities are specified through an average 850 total model elements.

3.4 Oracle

In order to obtain the performance results of the three approaches, their out-
comes must be compared against the correct solutions of the two case studies.
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Camunda BPMN for Research: In the case of the Camunda BPMN for
Research case study, each exercise has an associated solution Model for the pro-
vided description. The same software engineer who derived the Natural Language
Requirements from the problem descriptions also generated a set of Model Frag-
ments from the solution Model, mapping each Fragment to a single Requirement.
Thus, we were provided with a set of Requirements, the Model Fragments that
implement them, and the TLR mapping between both artifacts.

CAF: Regarding our industrial partner, CAF provided us with their existing
documentation on Requirements to Process Models Traceability, where each
requirement is also mapped to a single Model Fragment.

In both cases, we use the existing Traceability as the oracle for evaluating
the outcomes of each of the three approaches. To do so, we compare the Model
Fragments generated for each Requirement by the three of them against the
oracle Model Fragment (ground truth Model Fragment) for said Requirements.

3.5 Implementation Details

We have used three libraries to implement the different approaches taken in
account through this work: (1) to load and process the Process Models in both
case studies, we used the Camunda BPMN Model API [16], (2) to develop the
Natural Language Processing operations in our approaches, we have used the
OpenNLP Toolkit for the Processing of Natural Language Text [17], and (3) to
perform the LSI and SVD carried out in the Aggregation and Mutation Search
techniques, the Efficient Java Matrix Library (EJML) was used [18]. For the
evaluation, we used a Lenovo E330 laptop, with a processor Intel(R) Core(TM)
i5-3210M@2.5 GHz with 16 GB RAM and Windows 10 64-bit.

4 Results

Table 1 outlines the results of the three studied approaches. Each row shows the
Precision, Recall, F-measure, and MCC values obtained through each technique.

The Mutation Search technique achieves the best results for all the perfor-
mance indicators in both case studies, providing a mean precision value of 63%,
a mean recall value of 77%, a combined F-measure of 68%, and an MCC value
of 0.60 for the Camunda BPMN for Research case study, and a mean precision
value of 79%, a mean recall value of 72%, a combined F-measure of 74%, and an
MCC value of 0.69 for the CAF case study.

In contrast, both the Linguistic technique and the Aggregation technique
present worse results in all the measurements: the Linguistic technique attains a
mean precision value of 40%, a mean recall value of 35%, a combined F-measure
of 33%, and an MCC value of 0.25 for the Camunda BPMN for Research case
study, and a mean precision value of 35%, a mean recall value of 35%, a combined
F-measure of 33%, and an MCC value of 0.25 for the CAF case study; and the
Aggregation technique attains a mean precision value of 56%, a mean recall
value of 72%, a combined F-measure of 61%, and an MCC value of 0.52 for the
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Table 1. Mean values and standard deviations for Precision, Recall and F-measure for
the three approaches

Precision Recall F-measure MCC

Linguistic - Camunda 40% ± 25% 35% ± 22% 33% ± 13% 0.25 ± 0.19

Linguistic - CAF 35% ± 28% 35% ± 10% 30% ± 7% 0.18 ± 0.13

Aggregation - Camunda 56% ± 18% 72% ± 22% 61% ± 17% 0.52 ± 0.24

Aggregation - CAF 69% ± 29% 66% ± 17% 64% ± 17% 0.58 ± 0.21

Mutation Search - Camunda 63% ± 21% 77% ± 22% 68% ± 19% 0.60 ± 0.24

Mutation Search - CAF 79% ± 19% 72% ± 19% 74% ± 16% 0.69 ± 0.20

Camunda BPMN for Research case study, and a mean precision value of 69%, a
mean recall value of 66%, a combined F-measure of 64%, and an MCC value of
0.58 for the CAF case study.

5 Discussion

The Linguistic technique depends strongly on the language of the Requirements
and Models: for a link to be produced between a Requirement a Model Element,
exact patterns of words must be atomically matched through the rules. If a single
word in a pattern found in a Requirement is different (or missing) in the Model,
the rule does not trigger and the link is not produced. On the other hand, in
the Aggregation and Mutation Search techniques the atomicity of text patterns
is abandoned in favor of the semantic similitude of individual terms. This issue
can be illustrated through an example. Consider the Requirement ‘The system
will open the doors’, and a Model where the term ‘system’ has been swapped for
the more technical term ‘PLC’. Due to the vocabulary mismatch, the Linguistic
technique would never find the pattern, and thus could never generate the links
between Requirement and Model. On the other hand, our techniques would flag
the occurrences of the terms ‘open’ and ‘doors’ in the corresponding Model
Elements or Fragments, leading to a potential finding of links.

Moreover, Model Elements with little or no text appear often in Process
Models, mainly in the form of flows and sometimes in the form of events. These
elements can never be retrieved by the Linguistic technique: since there are no
words, there is no pattern that can be matched. They are not retrieved by the
Aggregation technique either: they tend to be at the bottom of the ranking
produced by LSI since for these elements, all the term occurrences are equal to
zero and thus, no correlation can be found with the query Requirement. However,
in the Mutation Search technique, the algorithm does add these Elements to the
candidate Fragments. Moreover, the addition of these Elements does not penalize
the results technique, since the term occurrences are not altered in any way by
them. Therefore, the candidate Fragments are more correct and complete, which
leads the technique to better Precision and Recall results.
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Finally, we also identified certain Process Models particularities that, if lever-
aged, would improve our Traceability techniques. Some examples of these par-
ticularities are: (1) the usage of the term ‘if’ in a Requirement almost always
indicates the presence of an associated gateway in the Process Model, (2) the
usage of the terms ‘start’ or ‘end’ usually denote events of the same type, (3)
questions are often related with gateways in the Models, (4) verbs appear mostly
on tasks, or (5) a noun that is often repeated at the start of multiple require-
ments may be the subject that carries an action (and thus, may appear in the
Model as a lane). By studying the patterns of the Process Models language, it
could be possible to take in account these particularities in our techniques (by, for
instance, weighing the Model Elements accordingly or forcing their appearance),
leading them to enhanced Traceability results.

6 Threats to Validity

In this section, we use the classification of threats to validity of [19] to acknowl-
edge the limitations of our approach.

Construct validity: To minimize this risk, our evaluation is performed using
four measures: Precision, Recall, F-measure, and MCC. These measures are
widely accepted in the software engineering research community.

Internal Validity: The number of requirements and Process Models presented
in this work may look small, but they represent a wide scope of different
scenarios in an accurate manner.

External Validity: Both Natural Language Descriptions and Business Process
Models are frequently leveraged to specify all kinds of different Business
Processes. The Camunda Process for Research case study provides different
examples from radically different domains. In addition, the real-world CAF
Process Models used in our research are a good representative of the railway,
automotive, aviation, and general industrial manufacturing domains. Our
approach does not rely on the particular conditions of any of those domains.
Nevertheless, our results should be replicated with other case studies before
assuring their generalization.

Reliability: To reduce this threat, the requirements and Process Models used
in our approach were taken from an open-source case study and from an
industrial case study. None of the authors of this work was involved in the
generation of said data.

7 Related Work

Related works focus on the impact and application of Linguistic techniques to
TLR problem resolution at several levels of abstraction. Works like [20,21] or [22],
among many others, use Linguistic approaches to tackle specific TLR problems
and tasks. In [23], the authors use Linguistic techniques to identify equivalence



Exploring New Directions in Traceability Link Recovery in Models 371

between Requirements, also defining and using a series of principles for evalu-
ating their performance when identifying equivalent Requirements. The authors
of [23] conclude that, in their field, the performance of Linguistic techniques
is determined by the properties of the given dataset over which they are per-
formed. They measure the properties as a factor to adjust the Linguistic tech-
niques accordingly, and then apply their principles to an industrial case study.
The work presented in [24] uses Linguistic techniques to study how changes in
Requirements impact other Requirements in the same specification. Through the
pages of their work, the authors analyze TLR between Requirements, and use
Linguistic techniques to determine how changes in requirements must propagate.

Our work differs from [20–22,25] since our approach is not based or focused
on Linguistic techniques as a means of TLR analysis, but we rather propose novel
techniques to perform TLR between Requirements and Process Models, using
a Linguistic technique only as a baseline against which our work is compared.
Moreover, we do not study how Linguistic techniques must be tweaked for specific
problems as [23] does. In addition, differing from [24], we do not tackle changes
in Requirements nor TLR between Requirements, but instead focus our work on
TLR between Requirements and Process Models.

Finally, other works target the application of LSI to TLR tasks. De Lucia
et al. [26] present a tool based on LSI in the context of an artifact management
system. [27] takes in consideration the possible configurations of LSI when using
the technique for TLR between Requirements artifacts. In their work, the authors
state that the configurations of LSI depend on the datasets used, and they
look forward to automatically determining an appropriate configuration for LSI
for any given dataset. Through our work, we do not study the management of
artifacts nor different LSI configurations or how LSI configurations impact the
results of TLR, but we rather study TLR between Requirements and Process
Models.

8 Conclusions

Traceability Links Recovery (TLR) has been a topic of interest for many years,
but its study is an issue that has not received enough attention yet in the field
of Process Models. Through this paper, we have studied TLR between Natural
Language Requirements and Process Models through three different approaches:
a Linguistic approach based on rules, specific from Models (which acts as a
baseline for our work), and two techniques (Aggregation and Mutation Search)
that we proposed and which we based on Latent Semantic Indexing, a technique
that has been used successfully over code. The retrieved TLR results can be
utilized by software engineers as a starting point for the development of their
solutions.

The three approaches were evaluated by applying them to an academia set of
Process Models, and to a set of Process Models from a real-world industrial case
study with our industrial partner, CAF, a worldwide manufacturer of railway
solutions. Results show that our techniques retrieve better results that the base-
line Linguistic technique in both case studies. Through this work, we analyzed
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why this is the case, and identified some particularities of Process Modeling that
could be used in order to improve our techniques in future iterations of our work.
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5. Rempel, P., Mäder, P.: Preventing defects: the impact of requirements traceability
completeness on software quality. IEEE Trans. Softw. Eng. 43(8), 777–797 (2017)

6. Parizi, R.M., Lee, S.P., Dabbagh, M.: Achievements and challenges in state-of-
the-art software traceability between test and code artifacts. IEEE Trans. Reliab.
63(4), 913–926 (2014)

7. Rubin, J., Chechik, M.: A survey of feature location techniques. In: Domain Engi-
neering, pp. 29–58. Springer, Heidelberg (2013)
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