
Process Discovery from Low-Level
Event Logs

Bettina Fazzinga2, Sergio Flesca1, Filippo Furfaro1, and Luigi Pontieri2(B)

1 DIMES, University of Calabria, Rende, Italy
{flesca,furfaro}@dimes.unical.it

2 ICAR-CNR, Rende, Italy
{fazzinga,pontieri}@icar.cnr.it

Abstract. The discovery of a control-flow model for a process is here
faced in a challenging scenario where each trace in the given log LE

encodes a sequence of low-level events without referring to the process’
activities. To this end, we define a framework for inducing a process
model that describes the process’ behavior in terms of both activities and
events, in order to effectively support the analysts (who typically would
find more convenient to reason at the abstraction level of the activities
than at that of low-level events). The proposed framework is based on
modeling the generation of LE with a suitable Hidden Markov Model
(HMM), from which statistics on precedence relationships between the
hidden activities that triggered the events reported in LE are retrieved.
These statistics are passed to the well-known Heuristics Miner algo-
rithm, in order to produce a model of the process at the abstraction level
of activities. The process model is eventually augmented with probabilis-
tic information on the mapping between activities and events, encoded
in the discovered HMM. The framework is formalized and experimen-
tally validated in the case that activities are “atomic” (i.e., an activity
instance triggers a unique event), and several variants and extensions
(including the case of “composite” activities) are discussed.

Keywords: Process discovery · Log abstraction · Bayesian reasoning

1 Introduction

Thanks to the diffusion of automated process management and tracing plat-
forms, many process logs (i.e., collections of execution traces) are now available.
Log data can be used to analyze and improve a process, by possibly using process
mining techniques [2], and in particular process discovery (PD) techniques. PD
aims at inducing a model that compactly describes the behavior of the process
in terms of ad-hoc formalisms (such as Workflow Nets, Heuristics Nets, etc.),
where temporal dependencies between the actions performed during the process
enactments are represented. In order to make the model usable, the activities
described in it should correspond to some high-level view of the steps of the

c© Springer International Publishing AG, part of Springer Nature 2018
J. Krogstie and H. A. Reijers (Eds.): CAiSE 2018, LNCS 10816, pp. 257–273, 2018.
https://doi.org/10.1007/978-3-319-91563-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_16&domain=pdf

258 B. Fazzinga et al.

Fig. 1. (a) The activity flow of the service-activation process; (b) The mapping between
high-level activities (upper-case symbols) and low-level events (lower-case symbols).

process, with which analysts are familiar. However, all PD techniques require
each event reported in the log to coincide with (or be univocally mapped to)
these high-level activities. Unfortunately, often this assumption does not hold
in practice. As a matter of fact, in the logs of many real systems, the recorded
events just represent low-level operations, with no clear reference to the busi-
ness activities that were carried out through these operations, as shown in the
following example.

Example 1. Consider the case of a phone company, where a service activation
process is carried out. The process performs the flow of activities depicted in
Fig. 1(a), and each activity requires the execution of a low-level operation. The
mapping between activities and operations is many to many, as depicted in
Fig. 1(b): different executions of the same activity can result in different low-level
operations, and, vice versa, the same operation can be the result of performing
different activities. For instance, activity G can be accomplished by performing
either c or p. Analogously, the event of performing p can be generated by the
execution of either activity G or N .

Each enactment of the process is monitored by a tracing system, which will
store a log trace consisting of a sequence of low-level events, capturing each the
execution of a low-level operation. Thus, a process instance consisting in the
execution of sequence R S GV N may be recorded in the log as the traces g q
p q s q, or g q c q p q, depending which low-level event is triggered by each
activity. �

It is worth noticing that a situation like the one sketched in the example
above is not rare when analyzing the logs of knowledge-intensive processes and of
legacy applications based on messaging and/or document management systems
(e.g., SCM/PDM systems), as well as the events triggered by human activity
detection systems (as in the Lifelogging analysis scenario of [22]). More gen-
erally, the relevance of a scenario where the tracing system provides low-level
event logs rather than high-level activity logs is witnessed by several recent
research works aiming at defining process mining tools for these kinds of logs.
In particular, some “event abstraction” techniques [5,6,12,13,17,22] have been
proposed for translating low-level traces into sequences of high-level activities,
so that “traditional” process mining tools [2] working with activity logs can be

Process Discovery from Low-Level Event Logs 259

eventually exploited on the translated logs. Unfortunately, most of these tech-
niques require some knowledge of several aspects of the process behavior (e.g.,
procedural/declarative process models [5,12,17], event-oriented disambiguation
rules [6], activity-annotated example traces [22]), that is not available in typical
process discovery settings. Moreover, as these techniques often cannot automati-
cally dissolve every possible ambiguity in the event-activity mapping, an expert’s
intervention is required to eventually bring the original log at the abstraction
level of the activities.

We address the PD problem in this complex setting, and introduce a frame-
work that, starting from a low-level event log LE , produces a two-level process
model W 2, where the process behavior is described at both the abstraction levels
of activities and events. The proposed framework can work in the presence of a
limited domain knowledge, where only the alphabets of the types of activities
and events are required to be specified, along with the indication of a candidate
mapping between activity types and event types (some preliminary knowledge
on activity dependencies can be also exploited by the framework, even if it is not
mandatory). In particular, our approach is structured according to the following
steps (depicted in detail in Fig. 3):

1: learn a stochastic model capable of reproducing the generation of
the input log LE: this yields a Hidden Markov Model (HMM), where the
observations encode the low-level events, and the underlying hidden states the
activities. The HMM’s structure is built on the basis of what is known about
the activity/event mapping and the activity dependencies, while its parameters
are learned using LE ’s traces as training sequences;

2: extract statistics from the stochastic model: statistics on precedence
relationships between the hidden activities that triggered the events reported
in LE are obtained by looking into the HMM resulting from step 1;

3: produce a process model in terms of activities: the statistics retrieved
at step 2 are given as input to a minor modification of the well-known Heuristics
Miner algorithm (whose standard implementation would extract these statis-
tics from an activity-aware log), that produces a model of the process at the
abstraction level of activities;

4: augment the process model with the events: the control-flow model
produced at step 3 is enriched by associating each activity with

Fig. 2. A 2-level model

a probability distribution (pdf) over the low-
level events that the activity execution can trig-
ger (see Fig. 2). This pdf is built using the emis-
sion probabilities of the learned HMM.

The framework can straightforwardly embed
other PD techniques, in place of Heuristics
Miner, and is both formalized and tested in the
case that the activity/event mapping is many-
to-many, but the activities are “simple” (i.e.
the execution of an activity triggers exactly
one event)—as also assumed in [7,21]. In a

260 B. Fazzinga et al.

setting (like that of log abstraction works [5,6,12,17]) featuring “compos-
ite” activities, one might preprocess the log with event clustering methods,
as suggested in [7]. Anyway, for the sake of generality, Sect. 6 discusses how our
framework can be extended to handle directly logs of processes with composite
activities.

Plan of the Paper. The next section introduces preliminary notions and
notations, and recalls the fundamentals of Hidden Markov Models and Heuris-
tics Miner. Section 3 introduces our framework (Sects. 3.1–3.4 regard steps 1–4
above). Section 4 reports the experimental evaluation we performed, Sect. 5 dis-
cusses some related work and Sect. 6 discusses some limitations and possible
extensions of our framework.

2 Preliminaries

Logs, Traces, Processes, Activities and Events. A log is a set of traces.
Each trace Φ describes a process instance at the abstraction level of basic low-
level events, each generated by the execution of a high-level activity. That is,
a process instance w is the execution of a sequence A1, . . . , Am of activities; in
turn, the execution of each activity Ai generates an event Ej ; hence, the trace
Φw describing w is a sequence of events E1, . . . , Em. Activities will be denoted
with upper-case letters, possibly adorned with subscripts, and events specifically
with letter E, possibly adorned with subscripts.

We assume that we are given a low-level event log LE , whose traces can have
different lengths (we denote as T the maximum length of a trace in LE). We also
assume that the alphabets A of activities and E of events are given, along with a
candidate mapping μ : A → 2E associating each activity A with a superset E ′ of
the set of events that can be the result of an execution of A. As it will be clear
later, μ is used as a starting point and will be refined using a learning procedure
exploiting LE , thus resulting in a probabilistic mapping between activities and
events (see Sect. 6 - point e), where possible ways to preliminarily obtain a
mapping μ are discussed.

Observe that we allow different activities to result in the same event, and
different events to be the result of the execution of the same activity (this corre-
sponds to a rather general scenarios, where shared functionalities are allowed).

Hidden Markov Models (HMMs) and the Baum-Welch (BW) Algo-
rithm. A Hidden Markov Model (HMM) is a statistical Markov model in which
the system being modeled is a Markov process with unobserved (i.e. hidden)
states, meaning that only the observations are visible. Specifically, an HMM is
a tuple 〈Q, π,O, α, β〉, where: Q = q1, ..., qN is a set of states, π = π1, ..., πN is
an initial probability distribution over the states (where each πi represents the
probability that qi is the initial state of the Markov chain), α is an N ×N transi-
tion matrix, where each αij represents the probability of moving from state qi to
state qj , O = o1, ..., oK is a set of possible observations, and β is a K×N matrix,
where each βij (also called emission probability) expresses the probability that
the state qj generates the observation oi.

Process Discovery from Low-Level Event Logs 261

A classical problem concerning HMMs is their training, that is the learning of
the parameters of an HMM given a sequence of observations ω. The standard
algorithm for HMM training is the Baum-Welch algorithm (BW), a special case
of the Expectation-Maximization (EM) algorithm. BW iteratively refines the
transition and emission probabilities of the HMM, with the aim of maximizing
the likelihood that the sequence of observations ω is generated. Specifically, it
starts with initializing the α and β matrices, and then, at each iteration, it
performs the expectation and the maximization step. The expectation step uses
α and β to compute, for each time point, (i) an N × N matrix ξt, s.t. each cell
ξt(i, j) contains the probability of being in state qi at time t and in qj at t + 1,
and (ii) a vector γt of size N , s.t. each γt(i) is the probability of being in qi
at t. Then, the maximization step starts from ξt and γt and recomputes α, β,
and π, whose new values are given as input of the next iteration. At the end of
the iterations (whose number is an input parameter), the algorithm outputs α
and β.

The main reason for adopting BW is that it is the de facto standard learning
algorithm for HMMs, at least when the HMM is not “very large” (BW’s com-
plexity is O(N · |ω| · Qmax), where Qmax is the maximum state outdegree). In
our scenario, the number of HMM states quadratically depends on the number
of activities, that is typically not large, so that the feasibility is not jeopardized.
Anyway, BW is easy to parallelize, and efficient sampling-based variants exist
that can deal with settings yielding a very large number of states (as it may
happen with the extension to composite activities – see Sect. 6). More details on
BW and its variants can be found in [19].

Process Discovery Algorithms: Heuristics Miner. Among the many
techniques for inducing a control-flow model from an activity log L (see,
e.g., [1,2,4,23]), we here consider the simple and popular Heuristics Miner [24]
algorithm, which has been widely used in real-life process mining projects, owing
to its fastness and robustness to noise. The relevance of Heuristics Miner is also
witnessed by recent efforts to extend it to deal with large logs [10,11] and online
discovery settings [8]. However, as discussed in Sect. 6, the framework is orthogo-
nal to the PD technique invoked at one of its steps. In particular, the possibility
of using techniques guaranteeing the correctness of the returned model, that is
not guaranteed by Heuristics Miner, is worth mentioning.
Heuristics Miner relies on the measures |A > B| and |A >> B|, indicating

how many times the sub-sequences AB and ABA occur in the log, respectively.
Furthermore, it considers also how many times each activity A appears at the
beginning/end of a trace, mainly to decide if A is a starting/final activity. On
the basis of these statistics, Heuristics Miner builds a process representation in
the form of a “Heuristics Net”.

In Sect. 6, it is discussed how further statistics that can be optionally used by
Heuristics Miner can be inferred in our framework.

262 B. Fazzinga et al.

3 A Framework for Process Discovery

In brief, the problem to be addressed is that of inferring a model of the process
behavior from a log LE describing, at the abstraction level of low-level events,
the actions performed during the process enactments. As an output, we intend
to provide a model W 2 describing the control-flow at both the abstraction levels
of events and activities, so that typical analysts (who are generally more familiar
with high-level activities, rather than with low-level events) are allowed to reason
through W 2 on the behavioral aspects of the process from different standpoints.

The starting point is the well-established algorithm Heuristics Miner. As
recalled in Sect. 2, Heuristics Miner is a popular technique for inferring a pro-
cess model from a log, in the case that the log and the desired model are at the
same level of abstraction (i.e., both refer to high-level process activities). Our
proposal is a framework that uses the algorithmic core of Heuristics Miner as
an intermediate step, as shown in Fig. 3. Basically, the process for inferring a
model works as follows.

Fig. 3. The phases of our approach for inferring a model from a low-level event log

The input consists of a low-level event log LE along with some domain knowl-
edge, covering: (a) the alphabets A, E , and (b) the candidate activity/event
mapping μ, and (c) a set D of dependencies between activities, such as “A
always/never precedes/is preceded by B”. Points (b) and (c) can be specified
even “loosely”: μ is not required to be tight (as discussed in Sect. 2), and D can
be incomplete (in fact, in our experiments, D = ∅). This aspect will be further
addressed in Sect. 6 (point a), after having made clearer the details of the frame-
work. The knowledge encoded by (a), (b), (c) is used to define the structure of

Process Discovery from Low-Level Event Logs 263

an HMM, that is in turn given as input, along with the log LE , to the BW
algorithm. This way, an HMM reproducing the generation of the sequences of
events in LE is obtained. The structure of the HMM given to BW is specifically
designed so that it can encode different forms of dependencies between activi-
ties: this enables the result of BW to be used to extract the statistics on the
precedence relations between the activities that are needed by Heuristics Miner
to infer a model.

Then, Heuristics Miner is run on these statistics, and a high-level model W of
the process is obtained. In other words, we circumvent the unavailability of an
activity-aware log, from which the “standard” Heuristics Miner would extract
statistics on the mutual dependencies exhibited by the activities, with two steps:
(1) we learn an HMM modeling the sequences of events recorded in LE as the
observed counterparts of the sequences of hidden activities executed during the
process enactments; (2) we extract the needed activity-level statistics from this
HMM, and use them to feed Heuristics Miner.

Now, the model W returned by Heuristics Miner describes the control-flow
at the abstraction level of the activities. Thus, as a final step, we augment W
with a description of the behavior exhibited at the abstraction level of events.
In particular, the augmented model W 2 returned by the framework is obtained
by suitably embedding into W the probabilistic mapping between activities and
events encoded in the learned HMM.

Let us now discuss some major aspects of our process discovery approach in
detail.

3.1 Structure of the HMM

The semantics of HMMs suggests a natural way of modeling the generation of a
low-level event log, as the result of executing sequences of high-level activities.
In fact, the scenario is the following: (1) what is observed (i.e., the log) is a set of
traces, each consisting of a sequence of events; (2) what generate the events are
the activities, that provide a high-level description of each step of the process,
but are not explicitly represented in the log. These arguments back the use of
an HMM’s structure where the observations are the events in E , and the hidden
states are the activities in A (see Fig. 4(a)).

However, a major requirement of the HMM in our context is that it must
allow the information needed by Heuristics Miner to be easily extracted, once
the parameters of the same HMM have been learned. Since Heuristics Miner
needs to know |A >> B| for each pair of activities A,B, the above-discussed
näıve model is unsuitable, as it does not represent sequences of three activities
(in fact, states represent single activities and arcs pairs of consecutive activities).
Hence, a more suitable model is that of associating each hidden state q with a pair
of activities ApreAcur (referred to as q.Apre and q.Acur), where Acur represents
the current activity, and Apre the activity performed immediately before Acur .
For representing the starting of a process (corresponding to an activity execution
preceded by no other activity), we use states q where q.Apre is the “null” activity

264 B. Fazzinga et al.

Fig. 4. A näıve HMM (a) and an HMM with memory of the previous state (b). Asso-
ciating an activity with a pdf over the resulting events in W 2 (c)

(denoted as “⊥”). Analogously, a state q where q.Acur = “⊥” indicates the end
of a process instance. In particular, emissions and transitions are set as follows:

i. every state q has one emission for each E ∈ μ(a.Acur). As a special case, we
assume that the “fake” activity ⊥ has the unique possible outcome μ(⊥) =
{E⊥}, where E⊥ is an event registered at the end of each trace to indicate
the termination of the corresponding process instance;

ii. transitions are put from a state q1 to a state q2 if and only if q1.A
cur =

q2.A
pre and if the possibility that q1.A

cur precedes q2.A
cur in a process

execution is not forbidden by the dependencies in D. Herein, the transition
from a state q with q.Acur = “⊥” to a q′ with q′.Apre = “⊥” corresponds
to moving from the end of a process instance to the start of another process
instance.

Before explaining how to train the HMM (thus, how to set the transitions’ and
emissions’ probabilities), and how to derive |A > B| and |A >> B| from it, let
us show an example, in Fig. 4(b), with two activities and three events, assuming
D = ∅ (as done in our tests). In this figure and in what follows, a state q with
q.Apre = A and q.Acur = B is denoted as q = AB, where the smaller font refers
to the previous activity.

3.2 Training the HMM

The HMM’s parameters are learned using LE as set of training sequences. In
particular, we use the BW algorithm, that is invoked on a starting configuration
of the HMM where:

(1) for each state, the outgoing transitions are equiprobable, as well as the emis-
sions;

(2) the pdf π indicating the initial states is uniform over the states q with
q.Apre = ⊥, and assigns 0 to all the other states.

Once the parameters of the HMM have been learned, the HMM will have
a subset of the states, of the transitions and of the emissions of the starting

Process Discovery from Low-Level Event Logs 265

configuration. For instance, if the BW algorithm has learned that an execution
of A, when preceded by B, is never followed by C, then the transition from
the state BA to AC is deleted. Analogously, if BW has learned that A is never
followed by B, then the state AB and all of its ingoing and outgoing transitions
are deleted, along with its emissions. Thus, the learning step refines the domain
knowledge used to define the HMM’s structure, as it can learn dependencies not
initially specified in D and make the initial candidate mapping μ probabilistic.
In fact, for each activity A, every E ∈ μ(A) will be associated with an emission
probability representing the likelihood that E is the outcome of A (a 0 emission
probability means removing E from the set of candidate events).

3.3 Extracting the Statistics Needed by Heuristics Miner
from the HMM

From the learned HMM, the statistics to be given as input to Heuristics Miner
are evaluated as follows. First of all, we assume that the BW algorithm returns,
along with the probabilities of the transitions and the emissions, also the vector
γ = γ1, . . . , γT , where each γi is a pdf assigning each state q the probability
of being the actual state of the process at time i, considering all the process
enactments encoded in LE .1 Then, for each pair of activities A, B, the number
of times that an execution of A is followed by an execution of B is estimated as
the sum of the probabilities that at the different steps the process is in the state
AB of the HMM, that is: |A > B| = Σi∈[1..T]γi(AB).

Analogously, the number of occurrences of ABA is estimated by summing
the probabilities that, at each step, the process has performed activity B after
having performed activity A, and then will perform A again. This means taking
probabilities at the various steps that the process is in state AB and then moves
to BA, that is: |A >> B| = Σi∈[1..T]γi(AB) · a(AB)(BA) where a(AB)(BA) is the
entry of the transition matrix associated with the transition between the states
AB and BA.

3.4 Invoking Heuristics Miner and Building a Two-Level Process
Model W 2

The values of |A > B| and |A >> B|, computed for each activity pair, are passed
as argument to Heuristics Miner, that uses them to build a process model.

The output of Heuristics Miner is a model W of the process at the abstraction
level of activities (in particular, in our experiments we leveraged an implemen-
tation of the algorithm available in ProM 6.7 that returns a Heuristics Net).

Starting from W , a two level process model W 2 is composed, that augments
W by associating each activity A occurring in W with a pdf over the events into
which the execution of A can result (see Fig. 3 for an example of shapes of W

1 As recalled in Sect. 2, γ is computed by the standard BW algorithm to perform the
maximization step. In our implementation, γ is not disposed when the algorithm
ends, as it is useful as a statistics on the states of the process.

266 B. Fazzinga et al.

and W 2). This pdf is suitably extracted from the emission probabilities in the
learned HMM. In particular, for each activity A in W , the emission probabilities
that are associated with A in W 2 are those of the states q in the HMM with
q.Acur = A and such that q.Apre is an activity that precedes A in W . For
instance, consider the case that A = {A,B,C,D} and that, according to W ,
activity D can be preceded by A or B, but not by C, and it cannot be the
initial activity. Then, the emission pdf associated with D will incorporate the
emission probabilities of states AD and BD, but not that of CD. This is depicted
in Fig. 4(c), where the pdf of D is “split” into pA(E) and pB(E), denoting the
probabilities that D triggers the event E when the execution of D is preceded
by A and B, respectively. The pdfs of A and B are not distinguished based on
the previous activity, meaning that the event produced by these activities does
not depend on the previous activity.

Observe that it can happen in practice that a state q is present in the HMM,
but the models W and W 2 do not allow the possibility that q.Apre precedes
q.Acur . In fact, Heuristics Miner may infer that q.Apre ⇒ q.Acur does not hold
since the cardinality of |A > B|, although greater than 0, is “small”. In this case,
Heuristics Miner concludes that the occurrence of the subsequence AB in some
process enactment is symptomatic of noise and thus it must not be encoded in
the resulting process model.

4 Experiments

The Datasets. The empirical validation was conducted over noisy datasets
generated from the process models W1 = “parallel5”, W2 = “a12”, W3 = “herb-
stFig3p4”, W4 = “herbstFig6p18”, W5 = “herbstFig6p41”, selected from a pop-
ular set of benchmark logs used in many previous works (e.g., [18,23]), and
featuring different control-flow constructs (sequences, choices, parallelism, short
loops, and invisible tasks).

For each Wi, we generated 20 low-level event logs, each denoted as Ls
ij , with

s ∈ {1.2, 1.4, 1.6, 1.8, 2.0} and j = [1..4], where s is a parameter denoting the
average number of activities onto which an event can be mapped (i.e., the average
number of activities that possibly result in the same event). Thus, s measures
the amount of shared functionalities and, intuitively enough, gives a measure of
the uncertainty to be dealt with (in particular, s = 1 means that each event
corresponds to one activity exactly).

Specifically, each Ls
ij was generated as follows. First, we used the model Wi

(that contains references to high-level activities only) to generate a noise-free
activity log NFLA

i conforming to Wi. Then, a noisy activity log LA
i was obtained

by perturbing each trace in NFLA
i by randomly switching pairs of consecutive

activities, or replacing an activity occurrence with another activity, or deleting
an activity occurrence. Perturbations were applied with probability 2% for each
step in each trace. After obtaining the (noisy) activity log LA

i , we generated
20 mappings, denoted as μs

ij (with s ∈ {1.2, 1.4, 1.6, 1.8, 2.0} and j = [1..4]),
between the activities in Wi and a set of events with the same cardinality as |A|.

Process Discovery from Low-Level Event Logs 267

Specifically, for each value of s, we generated 4 different mappings μs
i1, . . . , μ

s
i4,

all ensuring that, on the average, each event is mapped to s activities. Observe
that, since |E| = |A|, s measures also the average number of events that are
the possible outcomes of the same activity. Starting from μs

ij , we obtained a
probabilistic mapping μ̃s

ij , by interpreting the events in μs
ij as the possible out-

comes of a random variable following a Zeta distribution (in particular, the
events in μ̃s

ij(A) were associated with a progressive rank k, and their probabil-
ities were set proportional to 1/k). Finally, from the activity log LA

i , for each
s ∈ {1.2, 1.4, 1.6, 1.8, 2.0} and j = [1..4], we obtained an event log Ls

ij as follows:
for each occurrence of an activity A in LA

i , an event E was sampled from μ̃s
ij(A),

and the occurrence of A was replaced with E. This way, we obtained 20 event
logs for each model Wi.

Measuring the Effectiveness. To validate our framework, we performed the
following tests, for each log Ls

ij . First, we ran our prototype on Ls
ij and obtained

a two-level model W 2(Ls
ij). Then, the effectiveness was evaluated by measuring

how far W 2(Ls
ij) is from the actual model originating Ls

ij , that is the combination
of the activity model Wi and the mapping μ̃s

ij . This was accomplished using three
metrics: F , P, and Err.

F is a fitness metric returning a sort of “recall” score quantifying the capabil-
ity of W 2 to capture the behavior of the ground-truth model Wi manifested in
the (noise-free) activity log NFLA

i . The metric is evaluated by using the fitness
calculation method in [20]2, to compare the log NFLA

i and a Petri-net repre-
sentation of the activity level of W 2(Ls

ij), i.e., the model obtained from W 2(Ls
ij)

by disregarding events’ emissions.
P is instead and empirical metric of precision, computed in a symmetric way by

first generating an activity log L′ (of 5000 traces) from a Petri-net representation
of the activity level of W 2(Ls

ij), and then computing a fitness score (still using
the method of [20]) for the ground-truth model Wi (represented as a Petri net)
and L′.

Finally, Err provides an error measurement for the emission probabilities rep-
resented in W 2(Ls

ij), computed as the maximum difference between the proba-
bility associated with an emission in W 2(Ls

ij) and that in μ̃s
ij .

The Setting. The HMM to be learned was constructed according to what
said in Sect. 3.1, assuming D = ∅ (thus, benefiting from no knowledge of the
process behavior in terms of activity dependencies) and assuming the presence
of a domain expert providing as candidate mapping the actual sets of possible
outcomes of every activity (however, no information on the probability associated
with each event was assumed, thus the emission probabilities were set uniformly

2 This method mainly relies on a non-blocking replay (where tokens can be put artifi-
cially into any place of the net when the latter cannot reproduce a trace step), and
penalizes both unexpected events and improper completion (based on how many
tokens were created artificially and left unconsumed, respectively). It can be hence
applied to a not sound process model (as were those returned by Heuristics Miner
on some of the low-level logs produced with s > 1.6).

268 B. Fazzinga et al.

and had to be refined by BW). The benefits that could arise from using a non-
empty D are discussed in Sect. 6.

Our results are easily reproducible, as our prototype uses a standard imple-
mentation of the BW algorithm, and the implementations of algorithm Heuristics
Miner and of the fitness algorithm [20] available in ProM 6.7 and in ProM 5.2,
respectively—precisely, when computing each fitness score we set a maximum
search depth of 1 over the invisible transitions (if any) of the net. Moreover, we
used the default parameter setting for Heuristics Miner, except for the param-
eters DependendencyDivisor and relativeToBest that were set equal to 20 (cor-
responding to about 0.4% the number of analyzed log traces) and 10%, instead
of 1 and 5%, respectively.

The results were obtained using only 2 iterations of the BW algorithm, as we
noticed that in most cases further iterations did not improve the quality of the
discovered process models substantially—in fact, allowing BW to perform more
steps can help improve the learned HMM, and refine the dependency statistics
for Heuristics Miner, but such refinements may be unnecessary to reckon the
structure of the process well enough.

Discussion of the Results. The results in Table 1 show that our framework
is rather effective in finding a model that is representative of the behavior of
the processes analyzed. In particular, the closeness of the two-level model to the
actual processes’ behavior is witnessed by the high values of F , P, and 1 − Err.
As expected, these measures are affected by s: the higher s (i.e., the average
number of activities that could generate the same event), the lower F , P, and
1−Err. In fact, intuitively enough, larger values of s correspond to dealing with
a higher level of uncertainty when mapping each log event to the actual activity
generating it, as the average number of candidate activities is s. Interestingly,
the lower efficacy of the framework at the highest value of s is more evident
for the models W3 and W4, that exhibit a more complex structure than W1,
W2, and W5 (containing choices and parallelism, but not mixed with loops). All
the results in Table 1 must be read considering that invoking Heuristics Miner
on the activity logs LA

1 , . . . , LA
5 (from which all the low-level event logs were

derived) returned the correct models W1, . . . ,W5. This means that the values
of F less than 1 are due to the uncertainty introduced by the many-to-many
mapping between activities and events.

Figure 5 shows the sensitivity of the run times vs. various parameters. For
every run, the time spent by Heuristics Miner was negligible compared with
that taken by the BW algorithm; thus we do not distinguish between the time
shares of these two components.

The diagram in Fig. 5(a) reports, for each X ∈ {1000, 2000, 3000, 4000, 5000},
the mean values of the run times over all the event logs Ls

i1(X) (for all s ∈
{1.2, 1.4, 1.6, 1.8, 2.0} and i ∈ [1..5]), where Ls

i1(X) consists of the first X traces
in Ls

i1. This diagram shows that the run time is linear with the number of traces,
which is in line with the fact that BW is linear in the number of observations.
The diagram in Fig. 5(b) reports the average run times over all the Ls

i1 logs
grouped by s, and shows that the computation time does not depend on s.

Process Discovery from Low-Level Event Logs 269

Table 1. Effectiveness of the framework (using 2 invocations of BW algorithm). For
each model Wi and each value of s, the averages of the results obtained over the logs
Ls

i1, . . . , L
s
i4 are shown.

W1(parallel5) W2(a12) W3(herbstFig3p4) W4(herbstFig6p18) W5(herbstFig6p41)

F P Err F P Err F P Err F P Err F P Err

s= 1.2 0.97 0.97 2% 0.90 0.92 2% 0.93 0.89 1% 0.96 0.97 2% 0.92 0.94 3%

s=1.4 0.98 0.96 5% 0.88 0.81 6% 0.94 0.92 4% 0.95 0.96 2% 0.96 0.81 5%

s=1.6 0.95 0.97 6% 0.89 0.77 8% 0.88 0.84 5% 0.90 0.83 3% 0.94 0.88 4%

s=1.8 0.92 0.88 8% 0.88 0.72 9% 0.84 0.77 8% 0.90 0.86 4% 0.92 0.86 6%

s=2.0 0.89 0.92 9% 0.88 0.75 9% 0.78 0.80 10% 0.83 0.72 8% 0.88 0.79 8%

Model |A| Avg. trace Runtimes
length (sec)

W1 10 10 8
W2 14 ≈ 8 30
W3 12 ≈ 28 42
W4 10 ≈ 20 16
W5 16 13 88

(c)

Fig. 5. Run times vs. number of traces (a), activities per events (b) and models (c)

This result is obvious for HM (that does not deal with the events). For BW ,
it follows from the fact that its computation complexity mainly depends on the
number of states and observation types, and not on their mutual correlations.
Finally, the table in Fig. 5(c) reports the average run times vs. the models used
to produce the logs, and characteristics of both the models and logs.

5 Related Work

The problem of discovering a control-flow model has been deeply addressed in
the last years, and a wide variety of solutions have been proposed (see [2,4,23] for
recent surveys). A method for inducing a dependency graph was first presented
in [3]. Similar graph-like models also underly subsequent methods [18,24], which
also introduced mechanisms for describing the semantics of join/split nodes.
In most of these methods, including algorithm Heuristics Miner [24], activity
dependencies are derived from pairwise ordering statistics over the activities,
extracted from the log, collectively referred to as “log abstractions”.

By contrast, in other works the discovery problem was conceptually stated
as a search over more expressive classes of process models, such as Petri nets
(as done in [25]), or block-structured workflow models (as done in [15]). This
search has been faced using various strategies, ranging from ad-hoc algorithms,
to approximated optimization methods. An approach that was shown quite effec-
tive (cf. [4]) is the Inductive Miner algorithm [15], which founds on iteratively

270 B. Fazzinga et al.

refining a grammar-like representation of the process, while recursively splitting
the events in the log.

However, as empirically observed in [23], Heuristics Miner often manages
to produce effective and readable process models, compared to many later
approaches, and to reach a good trade-off between effectiveness (owing to
its capability to deal with both complex constructs and noise) and fast-
ness/scalability. In particular, the usage of compact log abstractions (quadratic
in the number of activities, and independent of the log size), that can be com-
puted in linear time (possibly in a parallelized way), makes it a natural candidate
to implement scalable process discovery approaches [10], and even to deal with
streaming logs [8]—by contrast, most current process discovery methods need
to keep the log in main memory [16]. To the best of our knowledge, this feature
is shared with only one advanced process discovery algorithm [16], where the
search procedure of Inductive Miner [15] is not performed by recursing on the
log, but rather on a matrix storing directly-follow measurements (the same as
Heuristics Miner).

All the methods above cannot be applied to our problem setting, as they
assume that each log event refers (or can be deterministically mapped) to a
process activity.

Other related approaches are those addressed at interpreting low-level event
logs [5,6,12,13,17,22], and eventually translating event traces into sequences
of high-level activities. In principle, such techniques could be used as a pre-
processing tool, to enable the application of activity-oriented process discov-
ery algorithms to the abstracted version of a low-level log. However, most of
these techniques need to be provided with explicit and rather deep knowl-
edge on the process’ behavior, such as: procedural/declarative process mod-
els (as in [5,12,17]), event-oriented disambiguation rules (like the attribute and
event context conditions in [6]), documents containing activity descriptions [5,6],
activity-annotated traces for training a sequence-labelling model (as in [22]).
Moreover, since this does not usually suffice to resolve all ambiguities, the inter-
vention of an expert [5,6] is needed to distill the “right” translation.

6 Conclusions: Discussion of Limitations and Extensions

Our framework for performing the process discovery task starting from a low-
level event log has been proved effective in returning accurate two-level process
models when tested over logs adhering to different real-life models taken from
repositories popular in the process mining community. In what follows, we discuss
some critical points, limitations and possible extensions of our approach.

(a) Domain knowledge: how much? Our experimental results suggest that
the framework can be effective even in the presence of a rather limited amount of
domain knowledge: models of good quality were obtained despite D was assumed
empty. Obviously, there are limits to what can be learned in the absence of
knowledge of the process behavior. For instance, activities O, S, V in Fig. 1
are indistinguishable from their low-level counterparts (i.e., the event q), thus

Process Discovery from Low-Level Event Logs 271

no mechanism is likely to effectively solve the ambiguity when interpreting an
occurrence of q in the log. However, in this example, the knowledge of the depen-
dency “V always precedes D or N” (that can be straightforwardly encoded in the
HMM’s structure) can dramatically reduce the uncertainty, so that an accurate
model becomes obtainable (in fact, taking into account this dependency, only the
last occurrence of q in a trace could be interpreted as the outcome of V). The pos-
sibility of exploiting knowledge from a domain expert (in the spirit of [14]) also
places the proposed framework as the core of an iterative scheme, where, after a
model is produced, the expert is called for validating it and possibly enriching D
with dependencies that s/he believes can help solve ambiguities. This progres-
sive refinement would also address possible limits of the high-level PD algorithm
embedded in the framework, that might yield models that are unsound or with
deadlocks, and thus need some revising (as may happen with Heuristics Miner,
that does not guarantee the correctness of the produced model).

(b) Dealing with composite activities. The extension to the case that activ-
ities are composite is straightforward if no interleaving is allowed between the
sequences of events of two activities (but interleaving sequences of activities
are still allowed). In this case, each state AB can be represented by three states
startAB, intermediateAB, and finalAB with the events in μ(B) as possible emis-
sions. The general case where the sequences of events of two activities A and B
can be interleaved can still be modelled, by putting into each state a bitstring
encoding the set of activities that are still “active”. The point is that this can
dramatically increase the size of the HMM, thus more scalable variants of the
BW algorithm (for instance, sampling-based ones) must be tried.

(c) Dealing with non-free choices. In order to allow Heuristics Miner to
discover non-free choices in the process behavior, we need to extract statistics of
the form |A >>> B|, representing how many times activity B followed activity A
in the log, at any distance. These statistics cannot be obtained directly from the
HMM, but can be inferred by (i) running the Viterbi algorithm over the trained
HMM and every trace of the log, in order to obtain the most probable sequence
of activities for each trace, and (ii) computing |A >>> B| by analyzing each of
the so obtained sequences of activities.

(d) Exploiting PD algorithms other than Heuristics Miner. Techniques
such as α [1] and α+ [9] can be straightforwardly used in place of Heuristics
Miner, as the information they need as input is obtainable from our trained
HMM and the values of γ. The same holds for the “single-pass” scalable version
of Inductive Miner [16]. As a matter of fact, we have conducted some prelimi-
nary experiments using Inductive Miner over the data sets generated from the
process models W1 and W2. Interestingly, we obtained models with higher fit-
ness but lower precision (compared to those obtained with Heuristics Miner).
However, this result must be read along with the fact that the models produced
by Inductive Miner were all sound (while some of those returned by Heuristics
Miner were not). Further experiments are needed to investigate the sensitivity of
this behavior to the parameters of Inductive Miner and to the process features.

272 B. Fazzinga et al.

PD techniques taking as input information different from the statistics taken
by Heuristics Miner can be also embedded in the framework: after learning the
HMM, the event traces can be converted into activity traces by means of the
Viterbi algorithm, and then the required information can be extracted from the
converted log.

(e) Obtaining the candidate mapping via semi-automatic approaches.
The initial candidate mapping μ, that is refined by the learning phase into a
probabilistic event/activity mapping, can be provided by a domain expert. Oth-
erwise, existing event-to-activity matching techniques, like those in [5,6], can
help distillate a small subset of all possible mappings between activities and
events (at the level of types), by leveraging background knowledge on the pro-
cess behavior and/or textual descriptions available for both the activities and
the events. By only considering the 〈activity, event〉 pairs returned by these
techniques as admissible mappings, it is possible to initialize more precisely the
emission probabilities of the HMM model, as emissions supported by no evi-
dence (but otherwise considered as candidate mappings) can be preliminarily
discarded.

References

1. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)

2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes, 1st edn. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19345-3

3. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from work-
flow logs. In: Schek, H.-J., Alonso, G., Saltor, F., Ramos, I. (eds.) EDBT 1998.
LNCS, vol. 1377, pp. 467–483. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0101003

4. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F.M., Marrella, A.,
Mecella, M., Soo, A.: Automated discovery of process models from event logs:
review and benchmark. arXiv preprint arXiv:1705.02288 (2017)

5. Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activities by
integrating behavioral aspects and label analysis. Softw. Syst. Model., 1–26 (2017)

6. Baier, T., Mendling, J., Weske, M.: Bridging abstraction layers in process mining.
Inf. Syst. 46, 123–139 (2014)

7. Baier, T., Rogge-Solti, A., Weske, M., Mendling, J.: Matching of events and activi-
ties - an approach based on constraint satisfaction. In: Frank, U., Loucopoulos, P.,
Pastor, Ó., Petrounias, I. (eds.) PoEM 2014. LNBIP, vol. 197, pp. 58–72. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45501-2 5

8. Burattin, A., Sperduti, A., van der Aalst, W.M.: Control-flow discovery from event
streams. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2420–
2427. IEEE (2014)

9. de Medeiros, A.K.A., van Dongen, B.F., van der Aalst, W.M.P., Weijters,
A.J.M.M.: Process mining: extending the α-algorithm to mine short loops. Tech-
nical report, University of Technology, Eindhoven (2004). bETA Working Paper
Series, WP 113

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/BFb0101003
https://doi.org/10.1007/BFb0101003
http://arxiv.org/abs/1705.02288
https://doi.org/10.1007/978-3-662-45501-2_5

Process Discovery from Low-Level Event Logs 273

10. Evermann, J.: Scalable process discovery using map-reduce. IEEE Trans. Serv.
Comput. 9(3), 469–481 (2016)

11. Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E., Pontieri, L.: A compression-based
framework for the efficient analysis of business process logs. In: Proceedings of
27th International Conference on Scientific and Statistical Database Management,
SSDBM 2015, pp. 6:1–6:12 (2015)

12. Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E., Pontieri, L.: Efficiently interpret-
ing traces of low level events in business process logs. Inf. Syst. 73, 1–24 (2018)

13. Fazzinga, B., Flesca, S., Furfaro, F., Pontieri, L.: Online and offline classification of
traces of event logs on the basis of security risks. J. Intell. Inf. Syst. 50(1), 195–230
(2018)

14. Greco, G., Guzzo, A., Lupia, F., Pontieri, L.: Process discovery under precedence
constraints. ACM Trans. Knowl. Discov. Data 9(4), 32:1–32:39 (2015)

15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

16. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
with guarantees. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q.
(eds.) CAISE 2015. LNBIP, vol. 214, pp. 85–101. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19237-6 6

17. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint,
P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa,
M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 8

18. Medeiros, A.K., Weijters, A.J., Aalst, W.M.: Genetic process mining: an experi-
mental evaluation. Data Min. Knowl. Disc. 14, 245–304 (2007)

19. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. In: Waibel, A., Lee, K.F. (eds.) Readings in Speech Recognition,
pp. 267–296. Morgan Kaufmann (1990)

20. Rozinat, A., van der Aalst, W.M.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

21. Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A.: The
ROAD from sensor data to process instances via interaction mining. In: Nurcan,
S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 257–273.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5 16

22. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Event abstraction
for process mining using supervised learning techniques. In: Bi, Y., Kapoor, S.,
Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 15, pp. 251–269. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-56994-9 18

23. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A multi-dimensional qual-
ity assessment of state-of-the-art process discovery algorithms using real-life event
logs. Inf. Syst. 37(7), 654–676 (2012)

24. Weijters, A., van Der Aalst, W.M., De Medeiros, A.A.: Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven, Technical report
WP 166, pp. 1–34 (2006)

25. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. Fundamenta Informaticae 94,
387–412 (2009)

https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.1007/978-3-319-45348-4_8
https://doi.org/10.1007/978-3-319-39696-5_16
https://doi.org/10.1007/978-3-319-56994-9_18

	Process Discovery from Low-Level Event Logs
	1 Introduction
	2 Preliminaries
	3 A Framework for Process Discovery
	3.1 Structure of the HMM
	3.2 Training the HMM
	3.3 Extracting the Statistics Needed by Heuristics Miner from the HMM
	3.4 Invoking Heuristics Miner and Building a Two-Level Process Model W2

	4 Experiments
	5 Related Work
	6 Conclusions: Discussion of Limitations and Extensions
	References

