
Fog Computing and Data as a Service:
A Goal-Based Modeling Approach

to Enable Effective Data Movements

Pierluigi Plebani, Mattia Salnitri(B), and Monica Vitali

Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133 Milano, Italy

{pierluigi.plebani,mattia.salnitri,monica.vitali}@polimi.it

Abstract. Data as a Service (DaaS) organizes the data manage-
ment life-cycle around the Service Oriented Computing principles. Data
providers are supposed to take care not only of performing the life-cycle
phases, but also of the data movements from where data are generated, to
where they are stored, and, finally, consumed. Data movements become
more frequent especially in Fog environments, i.e., where data are gen-
erated by devices at the edge of the network (e.g., sensors), processed on
the cloud, and consumed at the customer premises.

This paper proposes a goal-based modeling approach for enabling
effective data movements in Fog environments. The model considers the
requirements of several customers to move data at the right time and in
the right place, taking into account the heterogeneity of the resources
involved in the data management.

Keywords: Data movement · Fog Computing · Decision system
Goal-based model

1 Introduction

The adoption of Service Oriented Architectures [18] has changed the way in
which capabilities of an information system are offered and consumed. Although
a gap exists between the initial expectations of this research domain and the
actual adoption [6] (e.g., about automatic service composition), the Cloud Com-
puting paradigm – where everything is offered as a service – has demonstrated
that service orientation has a significant value for both consumers and providers.
Nevertheless, limited attention has been paid, so far, to the link between the
service oriented paradigm and data management. There are some approaches,
under the umbrella of the so-called Data Base as a Service (DBaaS, a.k.a., Cloud
Databases), concerning how to provide DBMS functionalities according to the
Cloud Computing paradigm [1]1. Actually, data management’s scope is wider

1 Available commercial solutions are Microsoft Azure SQL Database, Amazon RDS
and Oracle Cloud, to name the few.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Krogstie and H. A. Reijers (Eds.): CAiSE 2018, LNCS 10816, pp. 203–219, 2018.
https://doi.org/10.1007/978-3-319-91563-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_13&domain=pdf


204 P. Plebani et al.

and Data as a Service (DaaS) aims to take care of all the activities needed to
collect, process, store, and publish data, which must be accessible on-demand
and regardless of the location where they are stored or from where they are
requested. Although DaaS providers are mainly focused on taking care of the
activities composing the life-cycle, data movement management is also crucial.
For instance, in IoT scenarios, data are mainly generated at the edge of the
network (e.g., by sensors), but they are usually moved to the cloud, where a
theoretically unlimited amount of resources is available to efficiently store and
process the data and to make them available to the customers. Indeed, cloud
resources ensure high reliability and scalability, but the network capacity might
negatively influence the latency when data movements among resources on the
cloud and the edge occur. Thus, the advantage of the fast-processing at the cloud
might be wasted resulting in lower quality of service.

The goal of this paper is to support the data management offered through
a DaaS paradigm, by enabling effective data movements able to deliver data at
the right time, the right place, and with the right quality and format, to satisfy
the customer requirements, as conjectured in a preliminary work [8]. To achieve
this goal, the proposed solution is based on two main pillars. Firstly, DaaS
provisioning adopts the Fog Computing paradigm, which creates a continuum
between the resources living on the edge and on the cloud [19] to exploit the
advantages of both: data on the edge are closer to where they are generated
or consumed (thus, latency can be reduced), while data on the cloud can have
more capacity (thus, processing can be more efficient). Secondly, a goal model is
used to design a decision system that includes the customers’ requirements, the
data movement actions that the environment is able to execute, and the effects
of the enactment of a data movement on the satisfaction of the requirements.
According to these two pillars, the main contributions of this paper are:

– formalization of data movement actions enriched with data transformations
(e.g., aggregation, pseudonymization, encryption) for DaaS provisioning in
Fog Computing, considering heterogeneous resources both in the edge and
in the cloud belonging to different stakeholders (the data provider and its
customers);

– context-based selection of valid movement actions and transformation for each
cloud provider based on the definition of the storage resources provided by
both the provider and the customers;

– extension of a goal-based modeling language for the definition of customers’
non-functional requirements with new concepts such as data movement, data
transformations, and a representation of the effect of data movements on goals
satisfaction;

– application of a goal-based model at run-time for dynamically selecting a
proper movement action to fix the violation of goals.

The rest of the paper is organized as follow. Section 2 motivates the proposed
approach by introducing a running example. Section 3 analyzes data movement
strategies in Fog environments, while Sect. 4 discusses how to use data movement
with the goal-based model. Section 5 demonstrates the scalability of the proposed



Fog Computing and Data as a Service 205

approach. Section 6 discusses how the proposed approach is related with the
current state of the art, and, finally, Sect. 7 summarizes the proposed approach
and identifies future work directions.

2 Motivating Example

Figure 1 shows an example of DaaS providing a data source about traffic infor-
mation. The data provider manages some sensors and cameras placed on the
highways of both Europe and United States to provide real-time information
about the traffic. In particular, traffic data from the West Coast go to a local
data storage where they are temporarily stored. The same occurs to data coming
from the highways in the East Coast, as well as from the highways in Europe.
Due to the high number of customers, the data provider relies on two cloud
sites, i.e., US site and EU site, where two Cloud Data Storage, that must be
maintained consistent, are fed by all the local storages, as customers must have
visibility of traffic worldwide.

Fig. 1. Traffic information DaaS

Even in this very simple scenario, it is clear how the data continuously move
from where data are generated (i.e., cameras and sensors), to the place where
data are analyzed, to the data storages where they are saved, to all the final
customers’ storage devices. To deal with this situation, data providers usually
implement solutions aiming to ensure the consistency and the timeliness of the
two cloud data storages. In this way, all users see the same data set and the data
are provided as soon as possible. Moreover, as the capacity of the local data



206 P. Plebani et al.

storages are limited, and in order to ensure a proper timeliness of data offered
to the customers, data are periodically moved from the edge to the cloud. This
type of solution is actually reasonable only if all users behave in the same way.
Actually, we can assume that the traffic information about EU are mainly used
by the European citizens, while the US citizens are more interested on the US
traffic data. Furthermore, customers can express different requirements in terms
of quality of service (QoS), including latency, timeliness, availability, and so
on. As a consequence, we want to support the data providers with a solution
that enables effective data movements among the data storages driven by the
objective of delivering the right data, at the right time, in the right format.

The proposed solution is based on two pillars: Fog Computing-based infras-
tructure and a goal-based decision model. The Fog Computing paradigm aims to
consider the edge and the cloud resources involved in the service provisioning as
a seamless environment. As a consequence, cloud resources do not include only
the data provider storages and the scalable applications used to make those data
available, but also, if any, the cloud resources used at the client side. Similarly,
the edge includes not only the resources that are close to where the data are
generated, but also the resources directly managed by the client to store and
process the data (e.g., mobile devices).

Referring to our example, we can assume that the following resources are
considered:

– data provider edge resources: local storages collecting data about traffic from
sensors, positioned in EU and US sites (both in west and east coast);

– data provider cloud resources: data storage located in the cloud containing
an aggregation of the information coming from the several edge resources,
positioned in EU and US sites;

– customer cloud resources: for customers in EU and US, these are storage
resources that belong to the clients but can be used by the data provider to
store traffic data useful for the customer application;

– customer edge resources: edge resources with limited storage capabilities that
can be used as in the previous case for storing useful information (moving or
duplicating data in these additional resources).

We can reasonably assume that storages on the cloud and the edge can have
different capabilities: they can store either a complete or a portion of the data
set relevant for the specific phase of the data life cycle. Referring to our example,
storages at the edge of the provider contain the most recent traffic information
about a specific set of highways, while the cloud data storages, due to their
capabilities, contain the complete set.

Moving to the second pillar, a goal-based modeling language is used to express
the non-functional requirements negotiated between a data customer and a data
provider for DaaS provisioning. We chose a goal-based modeling language as
this is an intuitive approach for the specification of requirements. The adopted
language is the Business Intelligent Model (BIM) [13], used to model trees where
each level represents a set of subgoals required to satisfy specific properties of



Fog Computing and Data as a Service 207

the data provisioning, and each goal is associated with one or more metrics used
to assess the goal satisfaction.

For each customer, a tree is generated to express the QoS agreed with the
DaaS provider. An example of such tree is shown in Fig. 2 where there is one top
goal, High quality of Service, that represents the main objective to be achieved. This
goal is AND-decomposed into three sub-goals, meaning that all sub-goals must
be achieved in order to achieve the top-goal. Each sub-goal is OR-decomposed
into two sub-goals. The OR-decomposition specifies that at least one of the sub-
goals must be achieved, in order to consider the top-goal achieved. For example,
Reliable Service is OR-decomposed as Service available and Service scalable: in order
to offer a reliable service, the data provider must offer a service with a defined
level of availability or a defined level of scalability. A data provider can enrich
the model with as many goals as needed to describe the capability of the DaaS
service and refine the goals with the needed AND and OR decompositions. The
achievement of goals can be defined using metrics that specify properties to be
monitored and conditions that determine when goals are satisfied. For example,
in Fig. 2, the Fast data process goal is evaluated with the metric Response time

and it is considered achieved when its value is lower than 5 s. The overall figure
specifies that the data provider and customer agreed in the provisioning of a
service that must be reliable, be fast and will maintain data consistency (first AND-
decomposition of the top-goal).

The model is the starting point to monitor the customers satisfaction and
to detect possible violations of the agreed QoS. It is worth noticing that the
proposed approach can be easily extended to include other requirements (e.g.,
security, privacy, data quality) by adding an additional top goal connected with
AND-decompositions to all these non-functional requirements and their sub-
trees. Data movement enactment can be used to avoid violations of the tree, as
will be described in the next section.

Fig. 2. Example of a goal-based diagram for the specification of QoS requirements



208 P. Plebani et al.

3 Data Movement in Fog Computing

Moving data implies moving portions of the offered data set from a data storage
to another in a different location either in the edge or in the cloud. As there might
be differences in the way in which the data can be stored, data movement could
also require some data transformation. In this section, we classify data movement
actions (Sect. 3.1) and discuss their instantiation in a specific context (Sect. 3.2).
It is worth noticing that the proposed method is not limited to a specific storage
model, even if different models would affect the implementation of the movement
actions. The DITAS H2020 project2 which funded this research is dealing with this
issue by providing DaaS independence from the storage model and technology.

3.1 Movement Actions and Transformations

Although the generic term is data movement, the actions to be considered are:
the actual movement (M), which consists of deleting the data from the original
data storage and move them to a different one, and the duplication (D), where
data are copied from a data storage to another while keeping them in the original
one. These two classes of actions can be specified at a finer level of detail by
considering the location where data are moved. In a heterogeneous environment,
where data storages can be placed both in the edge and in the cloud, we have
the following scenarios:

– Move/duplicate from cloud to edge (MCE , DCE): data contained in a cloud
storage are moved or duplicated in a storage placed in the edge.

– Move/duplicate from edge to cloud (MEC , DEC): data contained in an edge
storage are moved or duplicated in a storage placed in cloud.

– Move/duplicate from cloud to cloud (MCC , DCC): data contained in a cloud
storage are moved or duplicated in another cloud storage.

– Move/duplicate from edge to edge (MEE , DEE): data contained in an edge
storage are moved or duplicated in another edge storage.

Additionally, all the possible classes of movement actions can be subject to
an additional data transformations T when data is moved or duplicated from a
storage to another. Transformations consist in the manipulation of the content
of a data storage and they are requested when the format required by the source
and destination data storages are different or when they must be altered for
security/privacy reasons. Examples of transformations include:

– aggregation: the content of a data storage is reduced using aggregation oper-
ations (e.g., average, maximum, minimum) summarizing several tuples;

– pseudonymization: data are manipulated to substitute identifying fields
within a data record with artificial identifiers;

– encryption: the data contained in a data storage are manipulated using
encryption algorithms to make them unreadable to unauthorized users.

2 https://www.ditas-project.eu.

https://www.ditas-project.eu


Fog Computing and Data as a Service 209

For a given movement action, we can have different sets of transformations,
which can be either optional or mandatory. Optional transformations can be exe-
cuted according to the user requirements, whereas mandatory transformations
need to be executed every time data are moved from the data storage. Both
movement actions and transformations are associated with metadata defining
cost and execution time. These metadata are required to select which action to
apply given a specific strategy (cost minimization or time minimization).

Fig. 3. Data movement actions and transformations example in a fog environment

The BIM modeling language has been extended with the elements described
in this section, which create an additional layer. An example is shown in Fig. 3.
The extended modeling language allows to specify both data movement actions
and transformations. Movement actions are represented as rectangular boxes
containing the specification of the movement action (e.g., MEC specifies a move-
ment class from an edge to a cloud storage). Transformations are boxes connected
to the movement action to which they are associated. The association can be
optional (white arrow) or mandatory (black arrow). Both actions and transfor-
mations can be annotated with information about their cost and execution time,
represented as dashed rectangular boxes associated to the action or the trans-
formation. For example, in Fig. 3 the data movement action MEC has a cost of
7 s for each Tera Byte moved and of 1$ for each Giga Byte transferred, while its
Encryption data transformation add 1.3 s for each Giga Byte transformed.

While the execution time for a transformation can be obtained by testing the
algorithms used for this purpose, the execution time of a movement or duplica-
tion is affected by the network latency. For this reason, we assume to have some
information about the network capacity from which we can derive the needed
information. Since we are dealing here with movement classes, without specify-
ing the storage resources and locations involved, the value that we include in
the model represents the average behavior of that class of actions. Distinguish-
ing between classes of resources (edge vs cloud) enables us to better predict the
metadata associated to a class since, due to the heterogeneity of the resources,
edge and cloud storages will behave differently in terms of execution time and
cost. This distinction will become implicit when moving from movement classes
to movement instances as discussed in Sect. 3.2.



210 P. Plebani et al.

3.2 From Movement Classes to Movement Instances

The data movement classes described in Sect. 3.1 represent all the possible move-
ment actions applicable in a generic context. When instantiating the model in a
specific scenario, instances of these classes have to be defined according to the
storage resources available. As stated before, storage resources are made avail-
able for different customers by the DaaS. Additional data storages can be made
available by the customer, near to where the data will be analyzed.

Referring to the running example, at the edge we have three edge data storages:
i.e., US West coast Swc, US East coast Sec, and Europe Seu. Two geographical dis-
tributed cloud storages are also available in the US and Europe, SUS and SEU .

Finally, each customer can provide an edge storage resource SE
cust in which the

data provider can store a subset of the information contained in an edge or cloud
storage.

Distribution of data sets affects data management and in the specific case
data movement capabilities of a DaaS provider. Indeed, movement or duplica-
tion is possible between two data sets only if their schemas are compatible.
A movement action instance should be created for each possible combination of
data storages. However, a limitation on movement might derive from security and
privacy constraints or from policies defined by the provider. As an example, the
provider can decide which classes of movement are allowed and which transforma-
tion are mandatory for a specific class. As an example, constraints can be expressed
on data localization (e.g., it is not possible to move data from a cloud location in
Europe and another in US), or security and privacy constraints (e.g., to be moved
from the location inwhich they are produced, data have to be pseudonymized).The
model captures these constraints by removing unauthorized movement instances
and properly setting the transformations.

Knowing the available data sets, their location, their relations, and the con-
straints defined by the provider, it is possible to define which are the data move-
ment actions that can be applied between two data sets. The steps for instantiating
the data movement actions from the movement class Mxy, with x and y indicating
the type of resource (i.e., edge or cloud) are the following:

1. generate a movement instance for each possible combination of resources of type
x to resources of type y;

2. remove data movement instances based on the constraints defined by the
provider;

3. apply constraints on the transformation and change the required transforma-
tion from optional to mandatory (leaving optional the other transformations
associated to the action);

4. if additional information is given on resources, mutual location and capabilities,
recompute metadata; else inherit metadata from the movement class.

An example on how to get movement instances from the MEC movement class
(representing movement from edge to cloud) for our running example is shown
in Fig. 4 assuming the provider had specified a localization constraint (e.g., data
cannot be moved between Europe and US resources), and a pseudonymization



Fog Computing and Data as a Service 211

Fig. 4. Data movement actions instances

transformation constraint. In the example all possible combinations of movement
instances from edge to cloud are generated, discarding movement actions forbid-
den due to the localization constraint, and setting mandatory transformations
expressed by the provider. As shown, three movement instances are generated
from the movement class: from the edge in west and east coast to cloud in the
US (D(Swc → SUS) and D(Sec → SUS)), and from edge in Europe to cloud in
Europe (D(Seu → SEU )). All transformations remain optional with the exception
of pseudonymization which changes to mandatory. For the sake of simplicity, inher-
ited metadata are not represented in the figure. Similarly, instances will be gener-
ated for movement class DEC and for other allowed movement actions. As can be
seen, classes metadata are useful for providing time and cost prediction in unknown
contexts. Observations at execution time are used for refining the metadata of both
the instance (collecting data about time and cost of the instance execution) and the
class (computing the average behavior of all the instances of that class).

4 A Goal-Based Approach for Data Movement
Management

The goalmodel expresses data customer requirements that the provider has to keep
satisfied. When a requirement is violated, the model supports the selection of the
best data movement action in order to restore goal achievement. To enable this,
we need to enrich the goal model, expressing the agreement on QoS between the
provider and the customer, taking into account the role of data movements among
the data sources available.

4.1 A Goal-Based Modeling Language for Data Movement
Management

As the initial goal model only specifies what has been agreed between the provider
and the customer in terms of QoS, we propose to extend this model also taking
into account the effect of actions, i.e., data movement and transformations over
goals. To model the relations between data movement actions or transformations
and goals, we use contribution links. A contribution link specifies that the execu-
tion of the action (and transformation) has an impact on the achievement of the
goal. Contribution links can have a positive effect (the execution of an action or
transformation helps the achievement of a goal) or a negative effect (the execution



212 P. Plebani et al.

of an action or transformation hurts the achievement of the linked goal). Contri-
bution links can be defined by the data provider according to its specific platform
and data resources (i.e., the data provider knows that duplicating data between
two data sets has a negative effect on the consistency of the data).

Fig. 5. Example of a diagram for the selection of data movement actions (Color figure
online)

Figure 5 shows an example of the goal tree and the data movement actions
connected with contribution links, which constitute the proposed extension of the
BIM.For example,MEC action is connectedwithapositive contribution link toFast
data process, since its adoption will improve the metric Response time and, therefore,
it will help the achievement of the goal. Similarly, the same action impacts nega-
tively Fast data streaming, since themovement of a data set in the cloud, in this exam-
ple, will move the data set farther from the sensors that are creating data. For the
sake of simplicity, only movement classes are represented in the figure. Movement
instances will inherit contribution links from their classes, since the kind of effect
(positive or negative) is the same for all the instances. In this work, we represent
positive (green) or negative (red) effect with these links. In future work we are plan-
ning to assign aquantitative value to these links. In this case, each instancewill have
a different contribution value. To model this, the data provider and the data cus-
tomer may customize the contribution links according to expected behavior. Other
automatic approaches can be used for setting or refining the contribution links. As
an example, in [22], the authors have proposed a reinforcement learning approach
to update the knowledge of the effect of a set of actions over a set of goals using a
Multi-Armed Bandit inspired algorithm, thus refining the confidence of such link
every time the action is enacted.



Fog Computing and Data as a Service 213

4.2 Using the Goal-BasedModel

Given the requirements of a customer, our extension of BIM is used at design time
by the data provider, to produce a customized goal-based model, containing the
constraints on the requirements relevant for the data customer and the movement
actions filtered according to the available resources.

After that, at runtime, i.e. when the data customer uses the DaaS, the data
provider monitors the goals satisfaction through the associated metrics. When a
metric is out of thedefined thresholds, an automated controller, in charge ofmanag-
ing the DaaS resources, selects to execute the movement action that might improve
the current situation. To this aim, the controller analyzes the goal model negoti-
ated with the data customer and selects a set of data movement actions that affect
the violated goal.

The goal-based model supports the detection of goal violations. When a metric
goes beyond the thresholds defined in a goal model, the linked goal is considered
unsatisfied, and the model is analyzed to check, using backward analysis [7,11,21],
whether the top goals are satisfied. For example, in Fig. 5, imagine that the goals
Service available, Fast data streaming and Transaction consistency are achieved; in this
context the top-goal is achieved too.After awhile, theThroughputmetric goes below
10 GB/s and the goal Fast data streaming becomes unachieved. In this setting, the top
goal is not achieved anymore and a data movement action has to be enacted. For
further details about goal analyses in BIM please refer to [12].

The action selection is led by the knowledge of the contribution links of both
the actions and (if needed) the transformations with the goals. Before this analy-
sis is executed, contribution links on non-leaf nodes are moved to leaf nodes. For
example, in Fig. 5, the positive impact propagation of the action Move from edge to

Cloud to Reliable service, is propagated to all leaf nodes Service available and Service

scalable.
In order to select relevant movement actions, the controller considers all actions

and transformations that have a positive impact on the unachieved goal. If a data
movement action and one or more of its data transformations have conflicting con-
tribution links on the same goal, we assume the positive contribution link from the
transformation is always stronger (it overcomes) than the negative contribution
from the data movement action. In the complementary case, the negative transfor-
mation link from the transformation nullifies the positive contribution link from
the action. For instance, in Fig. 5 the data movement action Move from cloud to edge

has a negative impact on Fast data processwhile its transformation Aggregation has a
positive impact, therefore, the combination of the datamovement action and trans-
formation have a positive contribution to the goal. The rationale behind this deci-
sion lays on the idea that transformations are used to fix the weaknesses of the
data movement actions, therefore, even if transformations have negative effects,
such effects should never overcome the positive effects of the whole data movement
action.

Three possible outcomes are expected: (i) no movement action is selected,
meaning that the situation is so critical that none of the possible actions, that
can be executed by the data provider, can solve the violation; (ii) one movement



214 P. Plebani et al.

action is selected; (iii) multiple movement actions are selected. We do not investi-
gate further the first option since other research work [4,10] already faced similar
problems and can be adopted as solutions for this case. For the third option, the
controller considers the metadata associated to movement actions and transfor-
mations which express costs and time for enacting the action. Indeed, when several
alternative actions are available for fixing a violation, the action selection might be
led by the movement strategy selected by the customer. Two main strategies can
be expressed: (i) cost minimization strategy: the controller selects the action
that maximizes the goals satisfaction while minimizing the cost of enactment;
(ii) timeminimizationstrategy: the controller selects theaction thatmaximizes
the goals satisfaction while minimizing the time of enactment. The application of
such strategies creates a ranked list of data movement actions.

The decision on which data movement action to apply cannot been taken for a
single customer without considering other customers who concurrently access the
same data sources. Indeed, the applications sharing the same data sources inter-
fere with each other and a movement action might improve the QoS of one of them
while negatively affecting another one. As an example, using the traffic informa-
tion DaaS, let’s consider the situation in which to bring data about traffic in the
EU zone nearer to a customer, a movement action moves a subset of them from the
cloud storage to a customer’s edge storage. This action will improve the Fast service

goal of the customer without violating the Data consistent goal. However, another
concurrent application using the same data will be affected and its Reliable service

goal will be violated.
To avoid interferences, after the selection of a set of candidate actions, the con-

troller might check their effect on the goal trees of other customers. Each action
selected is analyzed against all goal trees related to the data source that is being
moved. If in at least one goal tree, the action negatively impacts a goal that has no
positive contribution links from other movement actions, and therefore no action
can be later adopted to restore the goal satisfaction, then the action is moved down
in the ranking.

According to where the decision for each customer tree is performed, it is possi-
ble to implement the framework in a centralized fashion (global decision and global
monitoring) or in a decentralized fashion (distributed monitoring and distributed
decision). The first solution is easier in terms of management but the controller is
a bottleneck since it has to manage all the customers. The second solution is more
scalable but introduce a higher complexity in the coordination of the movement
actions.

When thebestmovementaction is selected, the frameworkwill ignoreviolations
that will be signaled in the period immediately after the enactment, in order to
avoid oscillations of data sources between two or more locations. More complex
mechanisms can be adopted to avoid subtler oscillations of data sources, however
this is out of the scope of the paper and will be considered for a future work.



Fog Computing and Data as a Service 215

5 Scalability Evaluation

The efficiency of our solution mainly relies on the BIM engine. Thus, an efficient
decision making depends on the ability of the BIM engine to produce a result in an
acceptable amount of time. Being the complexity of the algorithms for the forward
and backward propagation of goal satisfaction implemented in the BIM engine
depends on the number of goals, we evaluated the response time of the BIM engine
considering a variation of goals from 1 goal to 31 goals3. The tests have been exe-
cuted on a virtual machine with 4 GB of RAM and 2 dedicated 3,3 GHz cores with
Linux Ubuntu 16.04 installed. Future work will concentrate on evaluating the effec-
tiveness of the proposed decision making system, as the infrastructure able to move
data among cloud and edge storages is under development.

Figure 6 shows results for the backward analysis: on the x-axis there is the num-
ber of goals while the y-axis shows the execution time in milliseconds. The dot-
ted line represents the linear regression, which indicates that the execution time
increases linearly with the number of nodes. The results, especially in the right side
of the chart, may appear distant from the linear regression, however, considering
the scale of the chart, the distance can be considered minimal. The maximum exe-
cution time with 31 goals is 10 ms, which indicates the software returns the results
almost immediately.

The scalability tests for the forward analysis return similar results in terms of
execution time. Inparticular, the linear regression indicates that the execution time
remains almost constant. The results are not included in the paper because of lack
of space.

Both tests indicate that the backward and forward algorithms are executed in
few milliseconds and, therefore, they can be integrated in the software for the deci-
sion of the best data movement action at runtime. In order to select the best action,
multiple goal trees are evaluated, however, each tree is considered separately, there-
fore, the analysis can be executed in parallel for each goal tree. Other operations
will be executed for the selection of a data movement action, such as the creation of
the ranking using the data movement strategies, or the update of the ranking based
on the impact of the actions in other goal trees. However, such operations are very
fast and they do not impact on the performance of the overall approach.

Since the measured values are very low, they may be influenced by external
factors, such as other CPU consuming operations. We solved this possible threat
by executing the test 10 times andby excluding theminimumandmaximumvalues.

The scalability test measures the execution time of the forward and backward
reasoning software engine, however, other factors should be considered, such as the
expressiveness of the modeling language and its usability. Although BIM has been
used and validated with many case studies [9,12] we, nevertheless, will perform
empirical experiments to evaluate our extension of BIM and the overall framework.

3 The maximum value corresponds to a binary goal tree with depth equals to 4, a size
that, from our experience, we believe is much bigger the goal model that will be used
for the purposes of this paper.



216 P. Plebani et al.

Fig. 6. Scalability tests results

6 Related Work

Initially introduced in the telecommunication domain by Cisco [5], Fog Comput-
ing has recently emerged as a hot topic also in the software domain, and espe-
cially fordata-intensive applications,with thegoal of creatinga continuumbetween
the resources living on the cloud and the ones living on the edge [19]. The adop-
tion of Fog computing enables an effective data provisioning [20] as data can be
moved among different environments in a seamless way. Data movement has been
widely studied from different perspectives in the literature to try to reduce the
problems arising from the management and use of large quantities of data from
different sources and represented in different formats [2,17]. With respect to these
approaches, this paper proposes a method for selecting which is the best one to be
enacted.

Data movement is also the focus of Content Delivery Networks (CDN) with the
aim of geographically distributing a service to ensure high availability and perfor-
mance.CDNshavebeen evolving since their first implementation [15] andnewsolu-
tions also considers deployment on edge facilities4. The main limitation of CDNs
is that resources used for caching data are predefined and owned and managed by
the provider. Moreover, the caching algorithm is only addressing performance and
availability optimization of all the users. In the proposed approach, resources are
dynamic and can be also controlled by the customers. Also, the data movement
policies are driven by the requirements of each specific user and not by a general
purpose.

Goal models are used in requirement engineering to specify the objectives of
users andapplications tobedesigned. In this paper,wehavedecided touseBIM [13]
as a reference model. However, other approaches are available. In particular, the
Goal-oriented Requirement Language (GRL) [3] is a rich modeling language that
covers most of the concepts of BIM. However, GRL is a very rich language and may

4 https://aws.amazon.com/cloudfront/.

https://aws.amazon.com/cloudfront/


Fog Computing and Data as a Service 217

prevent a correct usage of the method since many concepts of GRL are not used
by our method and may confuse users. We, therefore, decided to extend BIM since
it contains the minimal set of concepts needed. Yet, GRL may be considered for a
future work.

The tree-like structures of goal models can be used to take decisions on which
subset of goals to achieve. A great variety of analyses techniques have been pro-
posed for analyzing goal models for this purpose [14,16]. The satisfaction analyses
propagate the satisfaction or denial of goals forward and backward in the goal tree
structure. The forward propagation [16] can be used to check alternatives while
the backward propagation [7,11,21] can be used to understand what are the con-
sequences of a satisfied or denied goal. Such approaches however, were defined for
other domains and, therefore, they do not include concepts needed for this paper.

7 Concluding Remarks

This paper proposes a solution to support data provisioning based on a DaaS
paradigm in aFogComputing environmentby enabling an effective datamovement
among the data storages belonging not only to data providers but also to data con-
sumers. Data movement is driven by a goal-based model capturing the agreement
between a provider and its customers and can be used to figure out the most suit-
able data movement strategy. The model is enriched with data movement actions,
defined and classified in the paper. We mapped the effect of actions over goals using
contribution links that enable the method to be used at runtime for selecting the
best action given a goal violation. At this stage, the validation of the approach is
limited to the analysis of scalability, which demonstrated a linear increase of the
response timewith respect to the increase of thenumber of goals.Additional experi-
mentations areplanned in thenear future toalsodemonstrate that the enactmentof
thedatamovement is able to improve the satisfactionof the customer requirements.
In future work, we are going to refine the existing model by exploring the outcome
of dealingwith partially satisfied goals, instead of boolean conditions, also enabling
the customer to set weights indicating the most relevant requirements. We are also
refining the contribution links associating to them a quantitative value expressing
the expected impact of the movement on the indicators associated to the goal, sim-
ilarly to [22]. We are also going to investigate the implementation of controllers
to manage multiple goal-based models for supporting multi-client requirements
satisfaction.

Acknowledgments. DITAS project is funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement RIA 731945.



218 P. Plebani et al.

References

1. Agrawal, D., Abbadi, A.E., Emekci, F., Metwally, A.: Database management as a ser-
vice: challenges and opportunities. In: Proceedings of IEEE International Conference
on Data Engineering, pp. 1709–1716 (2009)

2. Amarasinghe, S.P., Lam, M.S.: Communication optimization and code generation
for distributed memory machines. SIGPLAN Not. 28(6), 126–138 (1993)

3. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the next
ten years. JSW 6(5), 747–768 (2011)

4. Aydemir, F.B., Giorgini, P., Mylopoulos, J.: Multi-objective risk analysis with goal
models. In: Proceedings of the Research Challenges in Information Science, pp. 1–10.
IEEE (2016)

5. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Inter-
net of Things. In: Proceedings of the MCC Workshop on Mobile Cloud Computing,
pp. 13–16 (2012)

6. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Commun.
ACM 60(4), 64–72 (2017). http://doi.acm.org/10.1145/2983528

7. Chung, L.,Nixon,B.A.,Yu,E.,Mylopoulos, J.:Non-functionalRequirements in Soft-
ware Engineering. International Series in Software Engineering, vol. 5. Springer, New
York (2012). https://doi.org/10.1007/978-1-4615-5269-7

8. D’Andria, F., Field, D., Kopaneli, A., Kousiouris, G., Garcia-Perez, D., Pernici, B.,
Plebani, P.: Data movement in the Internet of Things domain. In: Dustdar, S., Ley-
mann, F., Villari, M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp. 243–252. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24072-5 17

9. Francesconi, F., Dalpiaz, F., Mylopoulos, J.: Models for strategic planning: applying
TBIMto theMontreux JazzFestival case study. In: 2015 IEEE9th InternationalCon-
ference on Research Challenges in Information Science (RCIS), pp. 229–238. IEEE
(2015)

10. Gembicki, F., Haimes, Y.: Approach to performance and sensitivity multiobjective
optimization: the goal attainment method. IEEE Trans. Autom. control 20, 769–771
(1975)

11. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal reasoning tech-
niques for goal models. J. Data Seman. 1(1), 1–20 (2003)

12. Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos,
J.: Strategic business modeling: representation and reasoning. Softw. Syst. Model.
13(3), 1015–1041 (2014)

13. Horkoff, J., Borgida, A., Mylopoulos, J., Barone, D., Jiang, L., Yu, E., Amyot, D.:
Making data meaningful: the business intelligence model and its formal seman-
tics in description logics. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol.
7566, pp. 700–717. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33615-7 17

14. Horkoff, J.,Yu,E.: Interactive goalmodel analysis for early requirements engineering.
Requir. Eng. 21(1), 29–61 (2016)

15. Leighton, F.T., Lewin,D.M.:Content delivery network using edge-of-network servers
for providing content delivery to a set of participating content providers, 22 April
2003

16. Letier, E., Van Lamsweerde, A.: Reasoning about partial goal satisfaction for require-
ments and design engineering. ACM SIGSOFT Soft. Eng. Notes. 29, 53–62 (2004)

17. Lu, P., Zhang, L., Liu, X., Yao, J., Zhu, Z.: Highly efficient data migration and backup
for big data applications in elastic optical inter-data-center networks. IEEE Netw.
29(5), 36–42 (2015)

http://doi.acm.org/10.1145/2983528
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1007/978-3-319-24072-5_17
https://doi.org/10.1007/978-3-642-33615-7_17
https://doi.org/10.1007/978-3-642-33615-7_17


Fog Computing and Data as a Service 219

18. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: Reference model
for service oriented architecture 1.0. Technical report, OASIS (2006)

19. OpenFog Consortium Architecture Working Group: OpenFog Architecture
Overview, February 2016. http://www.openfogconsortium.org/ra

20. Plebani, P., Garcia-Perez, D., Anderson, M., Bermbach, D., Cappiello, C., Kat, R.I.,
Pallas, F., Pernici, B., Tai, S., Vitali, M.: Information logistics and Fog computing:
the DITAS approach. In: Proceedings of the Forum and Doctoral Consortium at
CAISE 2017, pp. 129–136 (2017)

21. Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and minimum-cost satisfiability
for goal models. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp.
20–35. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25975-6 4

22. Vitali, M., Pernici, B., O’Reilly, U.M.: Learning a goal-oriented model for energy
efficient adaptive applications in data centers. Inf. Sci. 319, 152–170 (2015)

http://www.openfogconsortium.org/ra
https://doi.org/10.1007/978-3-540-25975-6_4

	Fog Computing and Data as a Service: A Goal-Based Modeling Approach to Enable Effective Data Movements
	1 Introduction
	2 Motivating Example
	3 Data Movement in Fog Computing
	3.1 Movement Actions and Transformations
	3.2 From Movement Classes to Movement Instances

	4 A Goal-Based Approach for Data Movement Management
	4.1 A Goal-Based Modeling Language for Data Movement Management
	4.2 Using the Goal-Based Model

	5 Scalability Evaluation
	6 Related Work
	7 Concluding Remarks
	References




