
Model-Driven Elasticity
for Cloud Resources

Hayet Brabra1,2(B), Achraf Mtibaa3, Walid Gaaloul1,
and Boualem Benatallah4

1 Telecom SudParis, UMR 5157 Samovar, Universite Paris-Saclay, Paris, France
hayet.brabra@telecom-sudparis.eu

2 FSEG, Miracl Laboratory, Universiy of Sfax, Sfax, Tunisia
3 ENETCOM, Miracl Laboratory, Universiy of Sfax, Sfax, Tunisia

4 UNSW, Sydney, Australia

Abstract. Elasticity is a key distinguishing feature of cloud services.
It represents the power to dynamically reconfigure resources to adapt
to varying resource requirements. However, the implementation of such
feature has reached a level of complexity since various and non stan-
dard interfaces are provided to deal with cloud resources. To alleviate
this, we believe that elasticity features should be provided at resource
description level. In this paper, we propose a Cloud Resource Description
Model (cRDM) based on State Machine formalism. This novel abstrac-
tion allows representing cloud resources while considering their elasticity
behavior over the time. Our prototype implementation shows the feasi-
bly and experiments illustrate the productivity and expressiveness of our
cRDM model in comparison to traditional solutions.

Keywords: Elasticity · Cloud resources · State machine
Orchestration

1 Introduction

Elasticity is one of the main assets characterizing the cloud services. It is achieved
through invocation of reconfiguration actions that run as a result of events,
allowing a controller to automatically (re)configure cloud resources. However,
exploiting such feature poses a great complexity due to the proliferation of tools
that offer heterogeneous resource orchestrations and elasticity services [6]. Exist-
ing cloud orchestration and elasticity solutions rely on procedural programing
languages (e.g., most of them are based on low-level scripting) to support the
elasticity of cloud resources [9,15,17,18]. Prominent examples include: Puppet,
Docker, Cloudify, AWS AutoScaling and IBM AutoScale [4,5,18]. This diver-
sity implies that cloud programmers are forced to be aware of different low-level
cloud service APIs, command line syntax and procedural programming con-
structs, to describe and control the elasticity of cloud services. Moreover, this

c© Springer International Publishing AG, part of Springer Nature 2018
J. Krogstie and H. A. Reijers (Eds.): CAiSE 2018, LNCS 10816, pp. 187–202, 2018.
https://doi.org/10.1007/978-3-319-91563-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_12&domain=pdf

188 H. Brabra et al.

problem worsens as the variety of cloud services and the variations of applica-
tion resource requirements and constraints increase [15,17]. Not only that, the
emergence of federated cloud makes this problem too unreasonably complicated.

A more effective solution should allow users to specify their resources and
elasticity features regardless the technical specifications of any cloud provider
or orchestration tool. We believe that elasticity features should be provided at
resource description level. Instead of relying on low-level scripting mechanisms or
provider-specific rule engines, we argue that models and languages for describing
cloud resources should be endowed with intuitive constructs that can be used to
specify a range of flexible elasticity mechanisms.

Motivated by these considerations, we propose, in this paper, a cloud
Resource Description Model (cRDM) to describe cloud resources and their elas-
ticity. Our model is based on a new abstraction that we call Cloud resource
requirement State Machine (C-SM), which allows representing cloud resources
while considering their elasticity behaviour. We adopt state-machine formalism
as it provides refreshing graphical notations in contrast with existing largely text-
based solutions. Indeed, state-based model has been commonly used to model the
behaviour of systems due to the fact that it is simple and intuitive. In this model,
states will be used to characterize application specific resource requirements,
when they are needed while transitions between states are triggered when cer-
tain conditions are satisfied. Transitions automatically trigger controller actions
to perform the desired resource (re-)configurations to satisfy the requirements
of target states. Our model has been prototypically implemented and evaluated
using experiments with real cloud use cases illustrating its productivity and
expressiveness in comparison to traditional solutions.

The paper is structured as follows: Sect. 2 articulates the motivations of our
model. In Sects. 3 and 4, we present our model. Section 5 describes our implemen-
tation and evaluation. In Sects. 6 and 7, we present related work and conclusion.

2 Limitations in Current Cloud Description
and Elasticity Solutions

In this section, we investigate through a motivating example, specific limitations
among existing cloud resources description and elasticity solutions.

Motivating Scenario. Consider a cloud user wants to specify resource require-
ments and constraints for deploying an e-commerce application, which consists of
a Mongo database, a NodeJS server and a Java script application (Fig. 1(a)). The
user selects Amazon web services (AWS) to deploy this application and specifies
that she needs 5 virtual machine (VM) instances to be hosted in for one year from
Monday, 1st of January 2018. Each instance has 8 GB RAM and 4 GHz CPU. As
QoS Constraint, the user would like that the availability for each instance must
be at least 99%. Moreover, when the average CPU usage for 5 min is greater
than or equal 80%, she wants 5 more instances to be added from AWS. In con-
trast, these 5 instances should be removed whenever the average CPU usage is
less than 20%. However, during the business spikes every weekend, whenever

Model-Driven Elasticity for Cloud Resources 189

Fig. 1. (a) Cloud Resources for deploying an E-commerce application; (b) List of avail-
able cloud description and orchestration Interfaces

the application reaches 10 instances in AWS, she wants to horizontally scale
out into another cloud like Openstack by adding 10 instances. Accordingly, the
user first needs to describe her application, required resources and dependencies
between them. Secondly, she needs to specify elasticity policies that control the
application at runtime. Finally, if she wants to use cloud resources from other
providers such Rackspace or Openstack, she requires to carry out some adap-
tations in the application and elasticity policies to make it compatible with the
target management interfaces. Additionally, she can use an orchestration tool
such Cloudify or Docker to support the multi-providers deployment. However,
as shown in Fig. 1(b), AWS, Openstack, Rackspace, Docker and Cloudify provide
heterogeneous resource description models (RDMs) and management interfaces
and rely on low-level script-based APIs.

Based on these observations, we concluded that existing cloud resources
description and elasticity solutions (1) are rarely transparent and adaptive to
support the management of resources across various providers; (2) oblige users
to acquire new expertise in multiple RDMs and different elasticity mechanisms;
and (3) lead to a costly environments and potential vendor lock-in as exploiting
resources from a new provider demands extensive programming effort [9].

3 Identifying Basic Cloud Resources Abstractions

We identify the required modeling abstractions that allow users to specify their
cloud resources and their elasticity policies. To do so, we first performed a domain
analysis on cloud resources from several providers, including AWS, Openstack,
OCCI and TOSCA. We selected these services as they represent the range of
different types of cloud services available: commercial offer, open source imple-
mentation, and open standard. Then, we analyzed the different RDMs used by
the cloud orchestration tools, including, Cloudify and Docker and the elasticity
solutions used in these tools and cloud solutions cited above. Intentionally, we
want a model that is very simple, so that it could help us start from a minimal
base and progressively extend it as needed. In this section, we focus on the basic
abstractions to be included when using cloud resources from one provider.

190 H. Brabra et al.

Fig. 2. UML class diagram for the Cloud Resource Description Model

3.1 Abstractions Overview

Figure 2 represents the conceptual UML model illustrating the main modeling
abstractions of our cRDM. For illustration purpose, we rely on the motivating
example previously described, which consists in deploying an E-commerce appli-
cation both on AWS and OpenStack. As shown in Fig. 2, CloudResource is the
root concept, which is described by a Name that indicates a resource name and
Type that indicates its type (e.g. Compute, Database, etc.) and a set of other
optional attributes (e.g. Description). Moreover, it is associated by four main
concepts. Resource Requirement includes the name-value pairs describing
the requirement attributes associated with the resource, such as CPU, RAM,
etc. Link represents relationship between cloud resources. It is defined by a
Name (e.g., hosted-in), Linktype (e.g. Containment, Communication, Hosting,
etc.) and source and target participants resources. QoS Constraint represents
a constraint on a particular QoS metric. It is defined through Name that indi-
cates the QoS metric, Operator that indicates the comparison operator, Value

Model-Driven Elasticity for Cloud Resources 191

that indicates the metric value, and Unit that indicates the measurement unit.
C-SM is a Cloud Requirement State Machine that aims at capturing the elas-
ticity behavior of a cloud resource over its life cycle.

Example. Figure 3 shows the corresponding cRDM instance of the motivation
example. It consists of four cloud resources instantiated from the CloudResource
concept: Node-JS, NodeBookshop, Mongo-Database and VM1. For example, VM1
is a virtual machine defined by the name vmcompute and type Compute and rep-
resents a host for Node-JS and Mongo-Database resources. This was accomplished
by hosted-in links between these resources. Besides, the VM1 is associated with
VM1-requirements, VM1-QoS and VM1-CSM. VM1-requirements indicates that
VM1 should have 4 GB RAM, 4 GHz CPU, 5 instances and is acquired from
AWS provider. VM1-QoS indicates that VM1 availability should be at least 99%.
VM1-CSM specifies the elasticity behaviour related to VM1.

3.2 States

A state has a string label and two attributes (isInitial and isFinal) indicat-
ing whether the state is a final or initial. It is also associated with the
ResourceRequirement concept to characterize the application-specific resource
requirements in that state. As illustrated in the Fig. 3, VM1-CSM instance con-
sists of four states S1, S2, S3 and S4 that VM1 may go through during its life
cycle where S1 is the initial state and S4 represent the final state. Each state
is annotated with resource requirements that should be satisfied under it. For
example, the state S1 can only be reached if 5 instances of VM1 from AWS have
been started.

3.3 Transitions

We use transitions to express the elasticity behaviour of a cloud resource. Each
transition is labeled with a re-configuration policy. A reconfiguration policy aims
at automatically triggering a reconfiguration action as result of events to sat-
isfy the requirements of the target state. Conceptually, as shown in Fig. 2, each
transition is specified by Identifier that indicates the transition identifier, source
that indicates the source state and target that indicates the target state and
consists of one or more Event and one Reconfiguration Action. Thus, cloud users
can annotate the transitions with those events and reconfiguration actions to
model reconfiguration policies of cloud resources without referring to any low-
level scripting mechanisms or provider specific policy engines.

3.3.1 Events
We distinguish three event types to trigger a reconfiguration action: Temporal
Events, Resource Related Events and User Action Events (see Fig. 2). Each event
is specified via a logic predicate expressed using the common grammar used in
the traditional state machine [16].

192 H. Brabra et al.

"

Fig. 3. cRDM instance provided by the cloud user for the use case

Temporal Events. Actions may require that certain temporal events occurred,
to be executed. We identify two patterns that these events can take: specified
date and periodicity patterns as they are the most used in practice [1,2]. The
specified date pattern specifies that an action needs to be executed at a specified
date. It defined through a predicate called TS-Event (c) with c defined as c::=
(Date = D) | c ∧ c | c ∨ c, where Date is a clock, and D is an absolute date
expressed as yy-mm-dd hh-mm-ss am/pm format. As shown in Fig. 3, TS-Event
(Date=2018-12-31 11:60:30 am) within the transition T5, T6 and T7 represents a
temporal event expressed using this pattern, which will be triggered on 2018-12-
31 at 11:60:30 am. Furthermore the periodicity pattern specifies that a certain
action needs to be executed following a certain periodicity rule over time, which
is defined using TP-Event (p) predicate with p is defined as p::=D | p ∧ p | p ∨
p, where D is a date defined following a periodicity rule and expressed using the
following EBNF notations.

<D>::= ’Every ’ <weakday >’-’{<weakday >’-’} ’at ’ <Time >

|’Everyday ’ ’at ’ <Time > ’Except ’ <weakday >’-’{<weakday >’-’}

<weakday >::= Monday | Tuesday |....| Sunday

<Time >::= <Hour >’:’<Minute >’:’<Second >’am’|’pm’
...........

Model-Driven Elasticity for Cloud Resources 193

For example, as shown in Fig. 3, TP-Event (Every Saturday at 8:00:00 am) within
T3 represents a temporal event, expressed using the above notations, which shall
be triggered every Saturday at 08:00:00 am.

Resource Related Events. Actions need to be executed once certain resource
metrics reach a predefined threshold. This type of event includes two sub-types of
event that we call Resource Usage Events and QoS Events. Both event sub-types
are defined using the predicate Q-event(q, fc, op, tr, u, w), where q is a metric,
fc precises the metric evaluation way (average, maximum, etc.), op ∈ {=, �=, <,
etc.}, tr is a threshold value, u is the used unit, and finally w defines a time
window during which the metric could be evaluated. Resource Usage Events
are defined using metrics related to the resource usage such as CPU usage,
RAM usage, etc. While QoS events are expressed through QoS metrics such as
availability, response time, etc. As shown in Fig. 3, the user defines their resource
related events in terms of CPU usage, such as Q-Event (cpuusage, average, >=,
80, %, 300 s) within T1, which checks whether the CPU usage average is greater
than or equal 80% for 5 min across all VM instances.

User Action Events. Actions are executed at the behest of a cloud user. For
instance, a cloud user can demand to set manually the capacity of the VM
resource. These events are defined through a predicate called U-Event(c) over a
set of messages M, with c defined as c::=(message=e) | c ∧ c | c ∨ c, where
message is an incoming message from a user and e ∈ M. For example, U-Event
(message=Stop) will be triggered when we receive from user a stop message.

3.3.2 Reconfiguration Actions
They specify how a cloud resource should behave when certain events occurs.
To identify them, we examined the reconfiguration and elasticity mechanisms
analyzed on research surveys [4,5] and proposed by cloud providers and orches-
tration tools. We organize them into five categories: horizontal scaling, vertical
scaling, migration, application reconfiguration and basic actions. Each reconfig-
uration action is defined by a name and a set of attributes defining the required
inputs to execute this action. In the following, we choose JSON schema to illus-
trate each action.

Horizontal Scaling (HS): represents the possibility to scale out and in by
adding or removing instances (e.g. VM). As shown in Fig. 4(a), HS action can
have scale-in or scale-out name and contains 4 attributes. The resource-target
represents the resource name that will be adjusted. The adjustment-type spec-
ifies the adjustment way which can be change-in-capacity (Add/Remove the
given number of resource instances), exact-capacity (Set the current number of
resource instances) or percent-change-in-capacity (Add/Remove a given percent-
age to the instances number). The adjust specifies the adjustment value. Finally,
the cooldown indicates the time period during which no other actions on the
same resource will be taken.

Vertical Scaling (VS): aims at scaling up and down of resources such as
processing, memory. As shown in Fig. 4(b), VS action can have scale-up or

194 H. Brabra et al.

Fig. 4. A JSON schema describing the main attributes for each reconfiguration action

scale-down name and has same attributes of HS action. Moreover, we add the
attribute-target to indicate the attribute name (e.g. CPU, RAM) to be modified.

Migration: includes two migration types: VM Migration and Application migra-
tion. In this category, we identify only one action which is a Migration action.
As shown in Fig. 4(c), a migrate action has migrate name and contains a set of
attributes: The target represents the VM or application component name that
will be migrated. The host which can be filled by the host name (e.g. The node
name in case of a VM migration or the VM name in case of an application
component migration). In some cases, it can be filled by None, so the controller
action must choose the appropriate host automatically. The type indicates the
migration type: Cold or Hot [4].

Application Reconfiguration (AR): consist of changing specific application
aspects such as DB recovery policy. As shown in Fig. 4(d), this action has as
name update and contains a set of attributes: the resource-target represents the
application component name; the attribute-target indicates the attribute name
to be modified and the attribute-value indicates the new value to be assigned.

Basic Actions: regroup the basic actions applied on a cloud resource including:
start, stop, restart and delete. As shown in Fig. 4(e), each basic action should
contain a Name that should be start, restart, stop, or delete and resource-target
as attribute that indicates the resource to be manipulated.

Example. As shown in Fig. 3, the user used both the HS and basic actions:
scale-out (“VM1”, “AWS”, “change-in-capacity”, 5, 60 s) within T1 represents an
instance from HS action, which allows to add for VM1 resource 5 instances from
AWS provider, where 60 s represent a clowdown period that must be respected
after triggering this action. delete (VM1) within T5, T6, T7 represents a basic
action that aims at removing permanently the resource VM1.

Model-Driven Elasticity for Cloud Resources 195

4 Supporting Multi-providers Abstractions

We now present how the above abstractions can be extended in order to sup-
port the multi-provider scenario. More specifically, we need to identify required
events leading a user to acquire cloud resources from a new provider and corre-
spondingly extend the reconfiguration actions. In fact, once a service has been
deployed in a cloud resource from a specific provider, different situation can
occur at runtime: (1) Service can be scaled manually (User Action Events) or
dynamically (Resource Related or Temporal Events) from a new provider; (2)
Service can be migrated to another provider at the behest of its user (User Action
Events); (3) Service can be migrated in case that the current provider does not
respect the QoS constraints (Resource Related Events); (4) finally, service can
be migrated to another provider when this provider offers better utility than
the previous one. Consequently, our basic resource model should be extended to
support these new considerations. To support (1), (2) and (3) we have to extend
the reconfiguration actions (i.e. horizontal and vertical scaling, migration, etc.)
by adding the property provider as an attribute to these actions. For instance, the
scale-out (“VM1”, “Openstack”, “change-in-capacity”, 10, 60 s) within T3 shows
HS action from a new provider which is OpenStack. Furthermore, to support (4),
a new type of events should be defined along with the above events, that we call
Market related events. As Market related events depend on QoS and resource
properties, we define it as one of the Resource Related Event.

Market Related Events. Events can be triggered whenever there is a cloud
resource offer providing QoS or any other property (e.g., price) that better sat-
isfies the user needs. We expressed it using the predicate M-Event (q, r, op, tr,
u, p), where q is the QoS or resource property, r is the cloud resource, and op,
tr and u have the same definition within Q-event. While p indicates the new
provider which can be filled by the provider name such Openstack, or by any, so,
the controller action must automatically choose the most appropriate provider.

5 Implementation and Evaluation

5.1 Proof of Concept

We built a proof-of-concept (POC) prototype for cRDM, called cRDM Core1,
which supports users to describe and configure their cloud resources by exploit-
ing the underlying cloud orchestration and providers solutions. Figure 5 shows
an overview of our prototype architecture. cRDM core is the central part in this
architecture, consisting in: cRDM editor, cRDM Validation, cRDM Generation
and Elasticity controller. The cRDM editor implemented using Sirius technol-
ogy2 and Java to provide a drag-and-drop interface enabling user to graphically
instantiate from cRDM model the corresponding cRDM instance. This instance
is then simply serialized as JSON/XMI file. cRDM Validation exploits this file to
1 http://www-inf.it-sudparis.eu/SIMBAD/tools/Cloud-RDM/.
2 https://www.obeodesigner.com/en/product/sirius.

http://www-inf.it-sudparis.eu/SIMBAD/tools/Cloud-RDM/
https://www.obeodesigner.com/en/product/sirius

196 H. Brabra et al.

Fig. 5. Architecture overview

check the user cRDM instance consistency by verifying both its syntax and struc-
ture. The cRDM Generation proceeds to generate all required files for ensuring
the deployment task. This generation is based on a model-driven generation tech-
nique and a set of connectors that serve to interpret the high-level descriptions
related to cloud resources and identify their low-level scripts and commands
required to manage and configure them. While the generation phase is impor-
tant, it is out of the scope of this paper due to the space limitation. Finally,
the Elasticity Controller is implemented in Java and allows the execution of
elasticity policies. From the defined C-SM machines, the elasticity controller
detects the needed information to be monitored and identifies the appropriate
reconfiguration actions to adapt the cloud resources at runtime.

5.2 Evaluation

We conducted two experiments using the implemented prototype to evaluate the
productivity and expressiveness of our cRDM in comparison with traditional
solutions. All experiment objects and results have been published online (see
footnote 1).

5.2.1 Experimentation 1
Experimental setup. We evaluated the productivity of our cRDM by conduct-
ing a user-study with 18 participants from Master students of the university of
Paris-Saclay. We test the productivity in terms of the efficiency and the useful-
ness of cRDM in describing the cloud resources and their elasticity behaviour.
The efficiency is measured in terms of the time taken to complete the mod-
eling and deployment tasks. The usefulness is determined via a questionnaire
that asses the participants feedbacks about our cRDM. The questionnaire (see
footnote 1) devised into four main parts: Background, Functionality, Usability,
Insights/Improvements. The background questions aim at evaluating the partic-
ipants familiarity with existing cloud resource description and elasticity tools.

Model-Driven Elasticity for Cloud Resources 197

Fig. 6. Time to complete the task; (a), (b) and (c) Time grouped by level of expertise;
(d) Average time for all the participants.

The functionality questions verify whether the participants correctly understand
the main functionalities of cRDM. The usability questions sought to discover
whether the key modeling abstraction offered are easy and intuitive. We asked
all participants to model and deploy the application described in our motivation
scenario only on AWS provider using our cRDM Core. For quantitative compar-
ison purpose, we asked them to do the same scenario with two provider-specific
solutions viz. IBM bluemix platform [2] and AWS CLI [1]. For the sake of analy-
sis, we classified a total of 18 participants into 2 main groups: (1) Generalist: who
have average knowledge of cloud tools (12 participants) and (2) Experimented
(6 participants): who have a sophisticated understanding of cloud tools.

Evaluation Results. Results of the experiment in Fig. 6(a), (b) and (c) show
the time taken using cRDM core, IBM bluemix and AWS CLI for the modeling
and deployment tasks. As shown, it was pleasantly surprising that even gener-
alist participants demonstrated a significant reduction in time. More precisely,
the time taken to complete these tasks was reduced by 17% in comparison to
other solutions. On the whole, as shown in Fig. 6(d), the participants took on
average 50 min using our tool, 73 min using IBM bluemix and 61 min using AWS
CLI. This demonstrates the efficiency of our cRDM model. In fact, we argue
that provider independent resource abstractions and graphical model like state
machine to describe the elasticity behaviour significantly improve the time-to-
modeling. In contrast, proprietary solutions such AWS CLI and IBM bluemix
necessarily demand extensive programming and documentation efforts. More
specifically, by using AWS CLI to deploy the requested application, participants
are inevitably forced to understand firstly AWS CloudFormation model to create
the corresponding template for both describing the required resources and their
scaling scripts, which also like AWS CLI provides low-level resource descriptions.
Likewise, participants are invited to understand diverse DevOps tools such cloud
foundry CLI when using IBM bluemix.

Moreover, to evaluate the cRDM usefulness, we use the Usability section of
the questionnaire by asking participants to rate the usability for each abstrac-
tion (scale 0–5). We examined the basic cRDM abstractions: Cloud Resource,

198 H. Brabra et al.

Fig. 7. Usability rate of the main cRDM abstractions

Link, Resource Requirement, QoS Constraint, State, Reconfiguration actions.
We observed that the mean score for all abstractions in Fig. 7 is greater than
the neutral value of 3 with a noticeable difference. Overall participants reported
that our model is a familiar and intuitive, especially C-SM is not far from nat-
ural language and allows defining cloud resources elasticity behaviour in a very
simple and easy way. Accordingly, giving these observations, we confirm that the
key modeling abstractions offered are useful and comprehensible.

5.2.2 Experimentation 2
To evaluate the expressiveness of our cRDM, we used the two well known evalu-
ation techniques in the literature [11]: Comparison of the model with standards
or other proposed models; Application of the model to realistic examples or use
cases. The former provides a qualitative evaluation, while the latter quantita-
tively evaluates our model.

Qualitative Evaluation. Herein, we test cRDM expressiveness by evaluating
its overall coverage to others RDMs. We choose two RDMs: TOSCA [3] and
AWS Cloud Formation [1]. We intentionally choose these solutions as they rep-
resent the range of the different types of RDMs available in cloud community:
Provider-specific model and open standard. Concretely, we compared the con-
cepts defined in the different models to the ones defined in our cRDM. The
results summarized in Table 1(a) show that our cRDM model has a high cover-
age of TOSCA (80%) concepts related to cloud resources. In contrast, we observe

Table 1. cRDM coverage to (a) RDMs; (b) TOSCA use cases; (c) AWS CF use cases

RDMs Concepts Covered Rate
TOSCA 26 21 80 %
AWS Cloud Formation 9 3 33%

Average 56.5%

(a)
TOSCA use cases

case 1 case 2 case 3 case 4
cRDM instances 25 15 41 125
Generated TOSCA in-
stances

36 18 64 172

TOSCA instances 36 18 64 172
Coverage by the genera-
tion

100% 100% 100% 100%

(b)

AWS CF use cases
case 1 case 2 case 3 case 4

cRDM instances 26 36 66 64
Generated AWS CF in-
stances

70 80 102 130

AWS CF instances 70 80 102 130
Coverage by the genera-
tion

100% 100% 100% 100%

(c)

Model-Driven Elasticity for Cloud Resources 199

a low coverage of AWS Cloud Formation concepts (33%). This is not surpris-
ing because we intentionally aimed to hide low-level and technical descriptions
related to any provider-dependent solutions. By analyzing AWS Cloud Forma-
tion, we reveal that it provides user 9 main concepts to create and configure their
cloud resources. However, only three concepts have inevitably to be included in
the user template to specify the resources and their properties: Resources, Type
and Properties. Therefore, in our cRDM, we support only these three concepts.
Others Cloud Formation concepts include Metadata, Packages, Mapping, Trans-
form, are totally omitted in our cRDM with the aim of avoiding any handling
with low-level commands and hard coded scripts. Similarly, we only supported
TOSCA concepts that are most commonly used in resource descriptions and do
not oblige the user to deal with low-level scripting complexity like Interface and
Artifact concepts. In the following, we show that the no-support of the low-level
scripting at resource description level, does not reduce our cRDM expressiveness.

Quantitative Evaluation. In order to quantitatively evaluate our cRDM
expressiveness, we rely on 8 use cases identified in the different chosen mod-
els: TOSCA (4 use cases) and AWS Cloud Formation (4 use cases). These use
cases are specified as JSON and YAML templates. We use our cRDM core to con-
struct the corresponding cRDM instances for these use cases using our cRDM
model. Afterward, we exploit these instances to generate TOSCA and AWS
Cloud Formation templates using our generation technique. Finally, we evaluate
our cRDM expressiveness in terms of its coverage to use cases, by comparing the
concepts instances in generated templates with the ones in use cases templates.
Table 1(b) (respectively Table 1(c)) reports, for each TOSCA (respectively AWS
CF) use case, the number of obtained instances using cRDM model, the number
of obtained instances after the generation, and the number of instances that
really exist in TOSCA (respectively AWS CF) use case as well as the coverage
percentage of our cRDM after the generation. The obtained results show that
we have a complete coverage (100%) of all used use cases, this meaning that
all used use cases have been successfully covered when using our cRDM model
during the generation. Therefore, we confirm that the no-support of low-level
descriptions of cloud resources in our cRDM model does not have any influence
on its expressiveness. On the contrary, this leading to a considerable reduction
in the modeling complexity. For example, as specified in Table 1(b), to model the
first TOSCA use case, we made only 25 instances using our cRDM. While using
TOSCA model, this use case is composed of 36 instances since it includes low
level and specific descriptions related to each defined cloud resource. To over-
come this loss, we exploit the 25 instances created by our cRDM to interpret
the required low-level scripts and commands. Therefore, we generate 11 addi-
tional instances. This means that the complexity modeling was reduced by 31%

Table 2. MCR rate for TOSCA and AWS CF uses case

TOSCA use cases AWS CF use cases

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

MCR rate 31% 17% 36% 28% 62% 55% 36% 51%

200 H. Brabra et al.

(i.e. 1−(25/36)). Table 2 reports the modeling complexity reduction rate (MCR
rate) for each use case using our cRDM model.

5.3 Threats to Validity

Some potential threats to validity exist in our contribution. First, since we relied
on cloud orchestration tools and providers-specific solutions, any change in these
solutions oblige us to continually update our connectors to ensure a compliant
generation. Second, we validated our model productivity through a cloud use case
that supports only the horizontal scaling as it represents the most widespread
mechanism in the cloud. Third, our use case has been conducted with 18 students
and support only providers-specific solutions such AWS CLI and IBM Bleumix.
We believe that a larger number of participants, including professionals and a use
case supporting complex elasticity scenarios such as VM/Application migration,
need to be considered. Fourth, we validated the productivity and expressiveness
of our cRDM model. Our work request a further evaluation, including the cor-
rectness of our elasticity controller, which represents a good evidence that the
defined state machines behave as expected at runtime. Furthermore, the perfor-
mance evaluation of the whole system as well as a comparison with orchestration
tools like Docker and Cloudify will also be considered.

6 Related Work

Various cloud resource and elasticity description languages and models have
been proposed in industry and research. Market-leading providers like AWS
CloudFormation [1] and CA AppLogic aim to describe and deploy complete
application stacks. They propose provider-specific representations while our app-
roach allows the description of cloud resources and their elasticity policies in a
provider-independent way. Modern resource orchestration systems like Puppet,
Juju, Ansible and Chef provide scripting-based languages for describing resource
configurations over cloud services [18]. However, even sophisticated programmers
are regularly forced to understand different low-level cloud APIs to create and
maintain complex resource configurations and describe their elasticity policies.
In contrast to the above, we contribute in providing high-level modeling abstrac-
tions that facilitate the description of cloud resources as well as their elasticity
without referring to any low-level languages or providers-specific formats.

In research, to the best of our knowledge, cloud resources and their elastic-
ity description have been studied separately. In [13], the authors introduce a
description and deployment model called “Virtual Solution Model” that models
a resource as a provider-independent resource configuration. However, this model
allows users to describe resource configurations from a single provider for a sin-
gle deployment. Moreover, various research works have concentrated on using
semantic-based languages [6] to describe cloud resources. However, the largest
amount of researcher’s attention have been largely focused on cloud resources
discovery and selection. Although there are a few of research work [8,10] that

Model-Driven Elasticity for Cloud Resources 201

have recently emerged to deal with the orchestration aspects, none of them con-
sider elasticity policies that are required at control runtime. Other related works
have only focused on the definition and implementation of the cloud resource
elasticity [7,12,14,19]. They have based on domain specific languages to define
the elasticity policies for cloud resources. Our model differs from these works
in four main points: (i) We based our model on state machine to describe the
elasticity behaviour of a cloud resource, the state machine model considerably
simplifies the manner of understanding compared to textual notations provided
by the most of the previous work; (ii) We support multiple types of event, in
contrast to the above solutions, which support only resource-usage based events;
(iii) We support multiple type of elasticity actions, while the previous approaches
support only vertical and horizontal scaling; (iv) Finally, our model allows to
manage elasticity across multiple clouds, in contrast to these works, which define
elasticity rules for scaling resources from only one provider.

7 Conclusion

This paper proposed a novel Cloud Resource Description Model based on a state
machine, that provides high-level abstractions to describe cloud resources and
their elasticity features. The adoption of state machine to describe the elasticity
behaviour hides the actual complex implementation within cloud orchestration
and providers tools. The model has been implemented and evaluated using exper-
iments showing significantly its productivity and expressiveness. Future work will
focus on evaluating first the correctness of our elasticity controller, and then the
performance of the whole orchestration system. Besides, we plan to specify the
formal semantics of our cRDM model.

References

1. AWS CLI: AWS Cloud Formation. https://aws.amazon.com/documentation/
2. IBM bluemix platform. https://www.ibm.com/cloud-computing/bluemix/
3. TOSCA. https://www.oasis-open.org/committees/tosca/
4. Al-Dhuraibi, Y., et al.: Elasticity in cloud computing: state of the art and research

challenges. IEEE Trans. Serv. Comput. (TSC) (2017)
5. Naskos, A., Gounaris, A., Sioutas, S.: Cloud elasticity: a survey. In: Karydis, I.,

Sioutas, S., Triantafillou, P., Tsoumakos, D. (eds.) ALGOCLOUD 2015. LNCS,
vol. 9511, pp. 151–167. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29919-8 12

6. Brabra, H., et al.: Semantic web technologies in cloud computing: a systematic
literature review. In: IEEE SCC, pp. 744–751 (2016)

7. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: An extensible language
for controlling elasticity in cloud applications. In: International Symposium on
Cluster, Cloud, and Grid Computing, pp. 112–119 (2013)

8. Dastjerdi, A.V., et al.: Cloudpick: a framework for QoS-aware and ontology-based
service deployment across clouds. Softw. Pract. Exper. 45(2), 197–231 (2015)

https://aws.amazon.com/documentation/
https://www.ibm.com/cloud-computing/bluemix/
https://www.oasis-open.org/committees/tosca/
https://doi.org/10.1007/978-3-319-29919-8_12
https://doi.org/10.1007/978-3-319-29919-8_12

202 H. Brabra et al.

9. Weerasiri, D., Barukh, M.C., Benatallah, B., Cao, J.: A model-driven framework
for interoperable cloud resources management. In: Sheng, Q.Z., Stroulia, E., Tata,
S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 186–201. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46295-0 12

10. Dimitris, G.: A semantic framework to support the management of cloud-based
service provision within a global public inclusive infrastructure. Int. J. Electron.
Commer. 20(1), 142–173 (2015)

11. Horkoff, J., Aydemir, F.B., Li, F.-L., Li, T., Mylopoulos, J.: Evaluating modeling
languages: an example from the requirements domain. In: Yu, E., Dobbie, G.,
Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 260–274. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12206-9 21

12. Jrad, A.B., Bhiri, S., Tata, S.: Description and evaluation of elasticity strategies
for business processes in the cloud. In: SCC, pp. 203–210 (2016)

13. Konstantinou, A.V., et al.: An architecture for virtual solution composition and
deployment in infrastructure clouds. In: International Workshop on Virtualization
Technologies in Distributed Computing, pp. 9–18 (2009)

14. Kritikos, K., et al.: SRL: A scalability rule language for multi-cloud environments.
In: International Conference on Cloud Computing Technology and Science (2014)

15. Liu, C., Loo, B.T., Mao, Y.: Declarative automated cloud resource orchestration.
In: Proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC) (2011)

16. Ponge, J., et al.: Analysis and applications of timed service protocols. ACM Trans.
Softw. Eng. Methodol. 19(4), 1–38 (2010)

17. Ranjan, R., Benatallah, B.: Programming cloud resource orchestration framework:
operations and research challenges. CoRR (2012)

18. Thomas, D., Wouter, J., Bart, V.: A survey of system configuration tools. In: Inter-
national Conference on Large Installation System Administration, LISA (2010)

19. Zabolotnyi, R., et al.: SPEEDL-a declarative event-based language to define the
scaling behavior of cloud applications. In: IEEE World Congress on Services (2015)

https://doi.org/10.1007/978-3-319-46295-0_12
https://doi.org/10.1007/978-3-319-12206-9_21

	Model-Driven Elasticity for Cloud Resources
	1 Introduction
	2 Limitations in Current Cloud Description and Elasticity Solutions
	3 Identifying Basic Cloud Resources Abstractions
	3.1 Abstractions Overview
	3.2 States
	3.3 Transitions
	3.3.1 Events
	3.3.2 Reconfiguration Actions

	4 Supporting Multi-providers Abstractions
	5 Implementation and Evaluation
	5.1 Proof of Concept
	5.2 Evaluation
	5.2.1 Experimentation 1
	5.2.2 Experimentation 2

	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	References

