
A Framework to Simplify Usability
Analysis of Constraint Solvers

Broderick Crawford1(B), Ricardo Soto1, and Franklin Johnson2(B)

1 Pontificia Universidad Católica de Valparáıso, Valparáıso, Chile
{broderick.crawford,ricardo.soto}@pucv.cl
2 Universidad de Playa Ancha, Valparáıso, Chile

franklin.johnson@upla.cl

Abstract. Currently, given the complexity of industrial problems, a
powerful software is required to solve Constraint Satisfaction Problems.
The constraint solvers are a kind of software that are based on a con-
straint approach. During the last years many constraint solvers have been
created, some of them are intricate software and others are libraries to
extend the features of a programming language. There are few efforts to
have a framework that allows to compare a constraint system and less
to allow the usability analysis of the solvers. In most cases, the users
of these systems are more concerned about the number of enumeration
and propagation strategies that can be used instead of the ease of use
of constraint solvers. This paper presents a framework to compare and
obtain a simple and objective analysis of the usability of these kind of
systems. The paper shows that it is possible to establish comparison in
terms of usability, allowing an analysis beyond the simple comparison of
their internal strategies.

Keywords: Constraint programming · Constraint solvers · Usability

1 Introduction

The new industrial problems are increasingly difficult to solve, these problems
use more complex models with more variables and data. Given the difficulty of
these problems is not feasible to solve manually and it is necessary to use complex
software to solve them. There is thus a strong need for powerful software tools
using a simple user interface. This kind of complex problems are classified as
combinatorial problems.

Constraint Programming (CP) [27] is a powerful programming paradigm
devoted to the efficient resolution of combinatorial problems. Under this
paradigm, a problem needs to be modelled as a Constraint Satisfaction Problem
(CSP), which corresponds to a formal representation of the problem. The CSP
mainly consist in a set of variables holding a domain and a set of constraints.
CSPs are usually resolved by a constraint solver which has a powerful search
engine. The search engine finds a proper solution by building and exploring a
c© Springer International Publishing AG, part of Springer Nature 2018
G. Meiselwitz (Ed.): SCSM 2018, LNCS 10913, pp. 19–31, 2018.
https://doi.org/10.1007/978-3-319-91521-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91521-0_2&domain=pdf


20 B. Crawford et al.

search tree. The constraint solver has two main process, the enumeration process
and the propagation process. The enumeration process is responsible for assign-
ing permitted values to the variables in order to generate partial solutions to
be verified, while propagation aims at deleting from domains values that do not
lead to any solution. The constraint solvers have different enumeration and prop-
agation strategies, which are used in the resolution process of the problems [29].

During the last years many constraint solvers have been created [32], some
of them are intricate software and others are libraries to extend the features of
a programming language. Since different kinds of constraint solver are available,
in some cases, it is difficult to objectively decide which constraint solver to use.
A proper selection of a solver can be vital to a project. The developer must have
a constraint solver which suits your needs. In some cases, these can be simple,
using a constraint solver as a black box, in which only it is sufficient to enter and
tune different parameters. But in other cases the developer will need a flexible
system that allows him to develop more complex models, which is not available
only by setting the solver.

Usability is defined as a quality attribute to measure the ease with which a
user interacts with the system. The system users generally have different levels of
expertise and experience. In software engineering, usability is the degree to which
a software can be used by specified consumers to achieve quantified objectives
with effectiveness, efficiency, and satisfaction in a quantified context of use [1].
A usability analysis may be conducted by a usability analyst. The usability
includes methods of measuring usability, such as needs analysis and the study of
the principles behind the perceived efficiency of an object. Usability differs from
user satisfaction and user experience because usability does not directly consider
usefulness or utility [22].

In the literature there are few works based on the usability of the Constraint
Programming systems. In most cases, the studies are based on the performance
and the number and kinds of strategies that the solvers implement [30] instead
of the ease of use of the constraint solvers.

The main idea of this paper is to present a framework to compare and obtain
a simple and objective analysis of the usability of the constraint solver. The
proposed framework is based on the usability attributes proposed by Nielsen [22].
With this framework we try to measure attributes such as efficiency, ease-of-
use, satisfaction, learnability, memorability. They are identified and related to
usability scenarios. To test the simple usability analysis framework to constraint
solver, we define the specific features needed, and then a heuristic evaluation can
be performed using the proposed framework.

This work shows that it is possible to establish an adequate framework for
comparing constraint Solvers in terms of usability, allowing an analysis beyond
the simple comparison of their internal strategies.

This paper is organized as follows. Section 2 presents the constraint solvers,
Sect. 3 presents some principles of usability the framework. Section 4 presents the
framework to Simplify Usability Analysis of constraint solvers. The conclusions
are outlined in Sect. 5.



A Framework to Simplify Usability Analysis of Constraint Solvers 21

2 The Constraint Solvers

A constraint solver is a Constraint Programming System that implements con-
straint programming to solve CSP [16]. These solvers can integrate a con-
straint logic language, a constraint programming libraries, and some languages
that support constraint programming. The solvers have different enumeration
and propagation strategies, which are used in the process of resolution of the
problems.

A constraint solver implements an algorithm for solving allowed constraints
in conformity with the constraint theory. The constraint solver collects the con-
straints that arrive. It puts them into the data structure for constraints (con-
straint store) and then it tests their satisfiability, simplifies and if possible solves
them. When used from within a constraint programming language, a constraint
solver should be able to perform the following reasoning services: Satisfiability
test where evaluates whether it is feasible to satisfy a constraint. Simplification
where tries to transform a given constraint into a logically equivalent, but sim-
pler constraint. Determination where evaluates that a variable in a constraint
can only take a unique value, Variable projection elimination where eliminates
a variable by projecting a constraint onto all other variables [8].

2.1 Classification of CP Solvers

Traditionally, to modelling and solving CSPs logical languages have been used.
The logical languages are declarative and efficient. Moreover, there are various
efforts to solve CSP using other languages, for which they have implemented spe-
cialized library for the management of CP. These efforts to generate constraint
programming systems commonly referred as Constraint solvers, have resulted in
specialized compilers or libraries to implement Constraint Programming.

The classification of Constraint solvers can be performed by multiple criteria.
In this case we classify according to: logic programming languages, libraries to
other imperatives languages, or constructed as specific solvers [6].

Constraint Logic programming languages. A brief description of different
logic programming language is presented. These languages are classified into
two groups; The Glass-Box and Black-Box. So, first the features for each classi-
fication will be explained. The distinction between a Black Box and Glass Box
is difficult to establish. The Glass-Box [13] languages provide very simple and
primitive constraints, whose propagation scheme can be formally specified. The
constraints are used to build high-level constraints, for each application. More-
over, the Black-Box languages provide a wide range of high-level constraints
whose implementation is hidden from the user. These constraints perform spe-
cific tasks very efficiently. In these languages, it is difficult for a user to add
new constraints, as these must be defined at a low level requiring a detailed
knowledge of the implementation.

Glass-Box Languages: We can define two types of glass-box languages. These
differ in the way that constraint propagation may be defined: either using a



22 B. Crawford et al.

single form of relational construct called an indexical or by means of special
Constraint Handling Rules (CHR) [7].

An indexical is a reactive functional rule of the form X in R where X is a
domain variable. R is a set-valued range expression of the form t1 . . . t2 in which
terms t1 and t2 denote singleton ranges, parameters, integers, combinations of
terms using arithmetical operators or indexical ranges.

This constraint can be seen as an abstract machine for propagation-based
constraint solving. It is possible to directly encode most of the higher level FD
(finite domain) constraints with this one basic constraint. Traditionally among
these languages we can find clp(FD) [15], and SICtus [3].

On the other hand the Constraint Handling Rules is a declarative program-
ming language extension introduced in 1991 [9] by Thom Frühwirth. Originally
designed for developing (prototypes of) constraint programming systems, CHR
is increasingly used as a high-level general-purpose programming language. A
CHR languages can define simplification and propagation over user defined
constraints.

The application of consecutively CHRs allows to solve the constraints defined
by the user. Originally CHRs were created to simplify the constraint languages,
but it has spread to build CP solvers for particular applications and domains.

Black-Box Languages: A Black Box is a system such that the user sees only
its input and output data: its internal structure or mechanism is invisible to
him [11]. This approach partially addresses the requirement for simplicity since
the user does not have to be aware of (or modify or extend) embedded techniques
and algorithms. However, a Black-Box constraint solver must have a default
configuration that yields in most cases the best behaviour that could be obtained
by fine tuning of available options. This can be achieved by making the solver
robust. One of the most popular black-box languages are Eclipse [21], Oz [28],
Ilog SOLVER [14], B-prolog [33].

Constraint programming libraries. A constraint programming library is a
tool kit for developing constraint-based systems and applications. These libraries
provide a constraint solver with all characteristics of an imperative language.

The constraint programming library differs from constraint logic program-
ming systems like CHIP [5], Eclipse [2] or SICStus Prolog [3] in some topics
such us imperative versus rule-based programming, stateful typed variables and
objects versus logic variables and terms, no pre-defined search versus built-in
depth-first search.

Constraint programming is often realized in imperative programming via
a separate library. Some popular libraries for constraint programming are:
Choco [4], Gecode [10], IBM ILOG CP [14], JaCop [17], OscaR [26] among
others.

Specific solver systems. These correspond to black-box systems, these systems
can be implemented using constraint logic programming languages or Constraint
programming libraries. This specialized solvers are closed systems that aim to



A Framework to Simplify Usability Analysis of Constraint Solvers 23

release the user from the complexity of the problem resolution, and only provide
an interface to parameterize them. Some of these Constraint solvers can be
Abscon [20], Mistral [12], CPHydra [25].

3 Principles of Usability

Usability refers to the user’s experience when interacting with a system. A system
with good usability is one that shows all the content in a clear and simple way
to understand by the user, this is a fundamental aspect of the software. Jakob
Nielsen [22], initially defined five basic attributes of usability:

1. Ease of learning: rapidity with which a user learns to use a system with which
has not previously had contact (which user does in a simple, fast and intuitive
way).

2. Efficiency: the user can achieve a high level of productivity by knowing how
to use a system.

3. Retention in time: that the user easily remember how the system was used if
he stops using it for a while.

4. User error rates: refers to the amount and severity of errors committed by
the user. When committing a fault, the system must inform the user and help
him solve it.

5. Subjective satisfaction: refers to whether users feel comfortable and satisfied
using the system, that is, whether they like it or not (subjective impression).

Nielsen also defines ten principles of usability, which are useful and easy to verify.

1. System visibility: The system must keep users informed of what is happen-
ing, through reasonable periodic feedback.

2. Match between system and the real world: The systems must speak the
language of the users, with words, phrases and familiar concepts for the
user.

3. User control and freedom: Users often choose options by mistake and clearly
need to indicate an exit for those unwanted situations without having to go
through extensive dialogues.

4. Consistency and standards: Users do not have to guess that different words,
situations or actions mean the same thing.

5. Error prevention: A careful design that prevents problems is better than
good error messages.

6. Recognition rather than recall: Make objects, actions and options visible.
The user does not have to remember information from one party to another.
The instructions for using the system must be visible or easily recoverable.

7. Flexibility and efficiency of use. Design a system that can be used by a wide
range of users. Provides instructions when necessary for new users without
hindering the path of advanced users.

8. Aesthetic and minimalist design. Do not show information that is not rele-
vant. Each piece of extra information competes with the important one and
decreases its relative visibility.



24 B. Crawford et al.

9. Help users recognize, diagnose, and recover from errors. To help users, error
messages should be written in simple languages, indicate the problem accu-
rately and show a solution.

10. Help and documentation. The best system is the one that can be used with-
out documentation, but always allows a help or documentation, this infor-
mation should be easy to find, directed to the tasks of the users, list the
concrete steps to do something and be brief.

Usability also used the heuristic evaluation (HE), HE is a usability engineer-
ing method “for finding usability problems in a user interface design by having a
small set of evaluators examine the interface and judge its compliance with recog-
nized usability principles (the “heuristics”)”. This method uses evaluators to find
usability problems or violations that may have a deleterious effect on the abil-
ity of the user interact with the system. Typically, these evaluators are experts
in usability principles, the domain of interest, or both. Nielsen and Molich [24]
described the HE methodology as “cheap”, “intuitive”, “requires no advance
planning”, and finally, “can be used early on in the development process”. Often
this methodology can be used in conjunction with other usability methodologies
to evaluate user interfaces [23].

4 The Proposed Framework

In the literature, there are not studies about usability in constraint solvers,
just some works comparing constraint languages and constraint solvers [6,18,31]
have been presented. But in all cases, there is an inherent difficulty in trying
to compare different systems built it in different environments, languages, and
paradigm. For this reason, we propose a framework to simplify usability analysis
of constraint solvers and make an objective evaluation based on the usability
attributes proposed by Nielsen.

To develop a general framework for different constraint solvers, we must
establish some broad criteria, which are not subject to specific conditions. Fur-
thermore comparing different solvers is subjected to factors such as differences
in modelling for each solver, different settings, among others [19,32]. Thus we
do not consider runtimes, or number of backtracks. we will only establish a sim-
ple and clear mechanism to measure constraint solver according to the specific
usability features that the evaluator needs.

Our framework is based on the usability attribute proposed by Nielsen and
the use of heuristic evaluation to test the usability using a standard test. This
framework provides a methodology based on 2 phases; Design phase, at this
stage the modelling of the test is carried out and the Evaluation phase, it is the
application of heuristic evaluation. The framework is presented in Fig. 1.

The Design phase suggests focusing on starting by modelling the usability of
the constraint solver, using the usability measurement model based on a three-
level hierarchy. This model defines the usability of constraint solver in terms of:
Criteria, metrics and attributes. This can be seen in Fig. 2.



A Framework to Simplify Usability Analysis of Constraint Solvers 25

Design phase
•Definition of criteria
•Selection of the metrics
•Selection of attributes

Evaluation Phase

•Perform the heuristic
evaluation

Fig. 1. Phases of the framework for CP solvers

Usability

Criteria

Metrics

Attributes

Constraint Solver

Fig. 2. Model based on a three-level hierarchy

First level: Definition of evaluation criteria. The criteria constitute the
parameters for the evaluation of usability at the highest level (first level). The
use of criteria refers to the use of a set of specific identifiers and primary char-
acteristics, which allow a critical examination of a Constraint solver.

Second level: Definition of evaluation metrics. In this context, they are defined
as two types of arguments; Attribute and measure of the attribute.

Third level: Definition of evaluation attributes. They are metrics that require
the definition of attributes and must be declared qualitatively or quantitatively.

The Fig. 2 allows us to visualize the relationship between the levels and pro-
cesses of usability evaluation. If a solver has more heuristic evaluations made
using the three-level hierarchy model, it will have greater usability. And from
this new specifications could be generated to modify the usability attributes of
the solver. This last part is intended for future corrections and improvements
that can be proposed to a solver.



26 B. Crawford et al.

4.1 Design Phase

In this phase, we determine the parameters for the measurement of usability.
We have defined a set of criteria that allow us to evaluate the usability, for
each criterion a metric is applied and for each metric an attribute is measured.
For the specific case of constraint solver, we have taken some criteria defined
in the previous section and adapted to be measured according to the features
of the solvers. We have defined the following criteria; Learning (in Table 1),
Contents (in Table 2), Operability (in Table 3), Attractiveness (in Table 4), and
Satisfaction (in Table 5).

4.2 Evaluation Phase

At the end, of the design phase and once the evaluation guide has been defined,
the heuristic evaluation can then be performed. In order to locate problems
associated with usability, a heuristic evaluation can then be applied, which allows
knowing in depth the constrain solver both functionally and its errors or possible
improvements.

Table 1. List of metrics, and attributes associated to criteria Learning

Criteria Metrics Attribute

Learning Ease of learning Predictive

Familiarization

Synthetic

Help Consistency between the quality and quantity of help

Context sensitive help

Documentation Access to documentation / tutorials

Sufficiently explanatory and brief

Effectiveness Create a CSP model without help / documentation

Solve a CSP without help / documentation

Minimization of execution errors

Table 2. List of metrics, and attributes associated to criteria Contents

Criteria Metrics Attribute

Contents Content to control the enumeration Data type and data structures

Variable selection heuristics

Value selection heuristics

Content to control the propagation Definition of constraint

Create propagators

Content for cooperation Integration and portability

Input/output mechanisms



A Framework to Simplify Usability Analysis of Constraint Solvers 27

Table 3. List of metrics, and attributes associated to criteria Operability

Criteria Metrics Attribute

Operability Modelling facility Definition of constraint

kind of constraint

Facility of reification

Facility to define propagators

Facility to define value selection heuristics

Facility to define variable selection heuristics

Ease of running a model By command line

By code embedding

By call of functions

Easy to use Ease of installation

Simple and clear language

Allows selection for operating parameters

Error tolerance Self-exploratory error messages

Minimize recovery time

Facilitates the correction to continue

Detection and warning of entry errors

Understanding Interpretable interface functions

Clear explanation of input/output actions

Ease to understand the sequence of answers

Short messages and simple language

Clear functions that facilitate recall

Table 4. List of metrics, and attributes associated to criteria attractiveness

Criteria Metrics Attribute

Attractiveness Attractiveness of the interface Aesthetically pleasing

Consistent presentation

Presentation of results in text and
graphics

Combination of color/backgrounds

Customize Customization of elements for
modelling

Customizing elements to run CSP

Changeable elements in the
interface



28 B. Crawford et al.

Table 5. List of metrics, and attributes associated to criteria Satisfaction

Criteria Metrics Attribute

Satisfaction Reliability Texts and messages are easy to read

Simple and pleasant overall appearance

Allows access to help comfortably

The results are clearly presented

Acceptability Update mechanisms

Multiple functionalities

On-line support

Heuristics evaluation tasks. To heuristic evaluation to be effective, that is,
the greatest possible number of usability errors are found, it is recommended to
perform a series of tasks, which are presented below:

– Study previously the constraint solver to familiarize yourself with it.
– Determine the usability parameters established in the design phase.
– Define, for each of the parameters, a series of questions to determine if they are

met. Make an evaluation guide where each of the questions has the frequency
with which the problem appears as well as its impact. The proposed criteria
to estimate the impact of each of the questions is shown in the Table 6.

– Perform the heuristic evaluation of the tool using the guide.

Then it is proposed to make a selection of users. The selection of users is a
fundamental element in the evaluation process. In the selection can be considered
users with knowledge of the constraint solver, given the specific use of these
software. Finally, in the framework a review and analysis of data is proposed.
A systematic analysis of the data must be done in order to prepare a report
detailing the problems and possible solutions applicable to solver.

Table 6. Definition of impact

Impact Explanation

Low (1) Although it is recommended that the statement be fulfilled, its
non-compliance does not imply confusion or error in the user. It
would not give important usability problems.

Medium (2) Failure to comply can cause not very serious problems of usability
although it is convenient to solve them since it would facilitate the
operation of the system.

High (3) Produces significant problems of understanding and functionality in
the system so it is essential that the problem is solved. It can cause
serious usability problems



A Framework to Simplify Usability Analysis of Constraint Solvers 29

5 Conclusion

Currently, there is a variety of constraint solvers. These can be of different types
and cover different objectives. For this reason, it is difficult for a specialist to
decide which solver to use in a particular project. On the other hand, there are no
works that propose to evaluate any of these systems in terms of usability. For this
reason, we propose a framework to simplify usability analysis of constraint solvers
and make an objective evaluation based on the usability attributes proposed by
Nielsen.

We presented a classification of the different constraint solvers. Later we pre-
sented the structure of the proposed framework. This framework is characterized
by using two phases: a design phase, in which it is modelling the usability of the
constraint solver, using the usability measurement model based on a three-level
hierarchy. This model defines the usability of constraint solver in terms of: Crite-
ria, metrics and attributes. Later it is defined the evaluation phase which consists
in conduct the experimental evaluation, in this phase a heuristic evaluation is
performed.

Although no more extensive work has been done, this framework aims to
provide a general guide to analyse the usability of constraint solvers, delivering
a series of criteria, metrics and attributes specially adapted for this type of
system. In future work, the tests should be done and see if they are significant
for the use of solvers.

Acknowledgments. Broderick Crawford is supported by Grant CONICYT/FOND-
ECYT/REGULAR/1171243, Ricardo Soto is supported by Grant CONICYT/
FONDECYT/REGULAR/1160455

References

1. ISO 9241–11: Ergonomic requirements for office work with visual display terminals
(VDTs) - Part 11: Guidance on usability. International (1998)

2. Apt, K.R., Wallace, M.: Constraint Logic Programming Using Eclipse. Cambridge
University Press, New York (2007)

3. Carlsson, M., Mildner, P.: Sicstus prolog - the first 25 years. CoRR abs/1011.5640
(2010)

4. choco Team. choco: an open source Java constraint programming library. Research
report 10-02-INFO, École des Mines de Nantes (2010)

5. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Herold, A.: The CHIP
system: constraint handling in Prolog. In: Lusk, E., Overbeek, R. (eds.) CADE
1988. LNCS, vol. 310, pp. 774–775. Springer, Heidelberg (1988). https://doi.org/
10.1007/BFb0012892

6. Fernández, A., Hill, P.: A comparative study of eight constraint programming
languages over the boolean and finite domains. Constraints 5(3), 275–301 (2000)

7. Fruhwirth, T.: Theory and practice of constraint handling rules. J. Logic Program.
37(1–3), 95–138 (1998)

8. Frühwirth, T., Abdennadher, S.: Principles of constraint systems and constraint
solvers (2005)

https://doi.org/10.1007/BFb0012892
https://doi.org/10.1007/BFb0012892


30 B. Crawford et al.

9. Frühwirth, T., Raiser, F. (eds.) Constraint Handling Rules: Compilation, Execu-
tion, and Analysis, March 2011

10. Gecode Team. Gecode: Generic constraint development environment (2006).
http://www.gecode.org

11. Gent, I.P., Jefferson, C., Miguel, I.: MINION: a fast scalable constraint solver. In:
Proceedings of ECAI 2006, Riva del Garda, pp. 98–102. IOS Press (2006)

12. Hebrard, E., Siala, M.: Mistral 2.0. LAAS-CNRS, Universite de Toulouse, CNRS,
Toulouse, France, XCSP3 Competition (2007)

13. Hentenryck, P.V., Saraswat, V., Deville, Y.: Design, implementation, and evalua-
tion of the constraint language cc(FD). J. Logic Program. 37(1–3), 139–164 (1998)

14. IBM company: Ibm ilog cp (2006)
15. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(R ) language and

system. ACM Trans. Program. Lang. Syst. 14(3), 339–395 (1992)
16. Mariott, K., Stuckey, P.: Programming with Constraints: An Introduction. MIT

Press, London (1998)
17. Kuchcinski, K., Szymanek, R.: Jacop library user’s guide (2010). http://jacopguide.

osolpro.com/guideJaCoP.html
18. Lazaar, N., Gotlieb, A., Lebbah, Y.: A CP framework for testing CP. Constraints

17(2), 123–147 (2012)
19. Lecoutre, C., Roussel, O., van Dongen, M.: Promoting robust black-box solvers

through competitions. Constraints 15(3), 317–326 (2010)
20. Lecoutre, C., Tabary, S.: Abscon 109 A generic CSP solver (2006)
21. Niederliński, A.: A gentle guide to constraint logic programming via eclipse (2012)
22. Nielsen, J.: Usability 101: Introduction to usability. Nielsen Norman Group, 4

January 2012
23. Nielsen, J., Molich, R.: Teaching user interface design based on usability engineer-

ing. SIGCHI Bull. 21(1), 45–48 (1989)
24. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI 1990, pp.
249–256. ACM, New York (1990)

25. O’mahony, E., Hebrard, E., Holland, A., Nugent, C.: Using case-based reasoning
in an algorithm portfolio for constraint solving. In: Iris Conference on Artificial
Intelligence and Cognitive Science (2008)

26. OscaR Team. OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
27. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,

Amsterdam (2006)
28. Smolka, G.: The development of Oz and Mozart. In: Van Roy, P. (ed.) MOZ 2004.

LNCS, vol. 3389, p. 1. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31845-3 1

29. Soto, R., Crawford, B., Olivares, R., Galleguillos, C., Castro, C., Johnson, F.,
Paredes, F., Norero, E.: Using autonomous search for solving constraint satisfaction
problems via new modern approaches. Swarm Evol. Computat. 30, 64–77 (2016)

30. Soto, R., Crawford, B., Palma, W., Galleguillos, K., Castro, C., Monfroy, E., John-
son, F., Paredes, F.: Boosting autonomous search for CSPs via skylines. Inf. Sci.
308, 38–48 (2015)

31. Tulácek, M.: Constraint solvers, bachelor thesis, Charles university in Prague
(2009)

http://www.gecode.org
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
https://bitbucket.org/oscarlib/oscar
https://doi.org/10.1007/978-3-540-31845-3_1
https://doi.org/10.1007/978-3-540-31845-3_1


A Framework to Simplify Usability Analysis of Constraint Solvers 31

32. Wallace, M., Schimpf, J., Shen, K., Harvey, W.: On benchmarking constraint logic
programming platforms. Response to Fernandez and Hill’s “a comparative study
of eight constraint programming languages over the boolean and finite domains”.
Constraints 9(1), 5–34 (2004)

33. Zhou, N.-F.: The language features and architecture of B-Prolog. Theory Pract.
Log. Program. 12(1–2), 189–218 (2012)


	A Framework to Simplify Usability Analysis of Constraint Solvers
	1 Introduction
	2 The Constraint Solvers
	2.1 Classification of CP Solvers

	3 Principles of Usability
	4 The Proposed Framework
	4.1 Design Phase
	4.2 Evaluation Phase

	5 Conclusion
	References




